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From Teichmüller spaces to Yangian algebras

Leonid Chekhov and Marta Mazzocco

• Combinatorial description of Teichmüller spaces Tg,s,n of Riemann surfaces
Σg,s,n of genus g with s holes and n orbifold points.

• geodesic algebras An (Σ0,1,n) and Dn (Σ0,2,n); braid-group action.

• associated Fuchsian systems → (...possibly next time...)

• geodesic algebras Dn as semiclassical limit of twisted Yangian algebras

• Finite-dimensional reductions: p-level reduction for Dn and the representation
for Dn.
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Combinatorial description of Teichmüller spaces of Riemann surfaces Σg,s,n of genus
g, with s > 0 holes and n ≥ 0 orbifold points of order 2.

Poincaré uniformization: Σg,s,n = H/∆g,s,n,

∆g,s,n – a Fuchsian group—discrete finitely generated subgroup of PSL(2, R), its
generators γ1, . . . , γ2g+s−1 ∈ PSL(2, R) are hyperbolic elements and the remaining
n generators Fi are elliptic elements of rotations through the angle π.

• fat graph technique of R.Penner for punctured RS’89. Introducing coordinates
in Tg,s; generalized to surfaces with holes (V.V.Fock)’93 with the coordinates
in the decorated Teichmüller spaces T H

g,s = Tg,s ⊗ Rs

• quantization of coordinates of T H
g,s (L.Ch., V.V.Fock)’97.

• Poisson and quantum algebras of geodesic functions [L.Ch. Fock]’99

• quantum Thurston theory [L.Ch., R.Penner]’04
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Hyperbolic elements in PSL(2, R) are in one-to-one correspondence with closed

geodesics on the Riemann surface and with closed paths in the fat graph.

Origin of graphs:
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• We associate a fat-graph to the topology of the Riemann surface:

1. All the inner vertices are trivalent

2. The vertices terminating at the orbifold points are one-valent.

3. Each face must contain exactly one hole.

4. We associate a real number Zα to every nonoriented edge. These numbers are
the coordinates of the decorated Teichmüller space T H

g,s,n = Tg,s,n ⊗ Rs.

Define R/L matrices for right/left turns, F for reflection at an orbifold point, XZα
for passage through the αth edge:

R :=

(
1 1
−1 0

)

, L :=

(
0 1
−1 −1

)

, F :=

(
0 1
−1 0

)

, Xzα :=



 0 − exp
(

zα
2

)

exp
(
−zα

2

)
0



 .

We obtain the matrix product representation γI = RXzip
. . . Xzik

FXzik
. . . LXzi1

for
Fuchsian group elements following its path in the graph.

• The main algebraic object is the geodesic function GγI:

GγI := tr γI = tr(RXzip
. . . Xzik

FXzik
. . . LXzi1

) = e$γI/2 + e−$γI/2

for a hyperbolic element (
∣∣∣$γI

∣∣∣ is the length of the corresponding closed geodesic),
and tr Fi = 0.
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Poisson bracket

Label all edges entering one vertex clockwise

z1= z3+1

z2z3
, then {zi, zi+1} = 1.

These brackets induce the Goldman bracket between geodesic functions [L.Ch.,

V.Fock] (B.Goldman had obtained this bracket using the Chern–Simons action for
2+1 gravity).

If two closed geodesics do not intersect, their geodesic functions Poisson commute;
hence

The lengths of the geodesics going around the holes are central elements

Poisson algebra of Gγ is usually infinite (and has an exponential growth). Interesting

particular cases are those when we can close this algebra on the level of finitely
many geodesic functions, or may introduce a “regular” structure on an infinite set.
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Poisson relation (for a single intersection)






Gγ
Gγ̃




 = 1
2

Gγ̃γ

−1
2

Gγ̃γ−1

Classical skein relation (for a single intersection)

Gγ
Gγ̃

=

Gγ̃γ

+

Gγ̃γ−1

Using these two relations, we construct all the Poisson algebras of geodesic func-

tions: {Gγ̃, Gγ} = 1
2Gγ̃γ − 1

2Gγ̃γ−1 = 1
2Gγ̃Gγ − Gγ̃γ−1.
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The group Gn =∆0,1,n

The Poincaré disc (constant curvature −1) with n marked points si, i = 1, . . . , n in

the interior. At each point si, we introduce the element Fi of the rotation through

π; each Fi = UiFU−1
i is a conjugate of the matrix F =

(
0 1
−1 0

)

.

The group Gn is generated by all the Fi. The element γij = FiFj is always a
hyperbolic element whose invariant axis is a unique geodesic that passes through

the points si and sj with the length being the double geodesic distance between si

and sj (red geodesic lines in the figure).

Gij = tr γij.
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•

•
•

•

•

•

s1
s2

s3

s4

s5
s6

The Poincaré disc with n = 6 orbifold points si. The group generated by Fi is hyperbolic (modulo

exactly the conjugates of the elements Fi) iff there exists a pattern of green geodesic lines, each

passing through exactly one point si, that are pairwise parallel at infinity, as shown. Red geodesic

lines are the invariant axes of elements γi,i+1 = FiFi+1, the part of an axis that lies in the fundamental

domain is drawn as the solid line.
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•

•
•

•

•

•

Y2

Y3Z2 Z4

The associated fat graph dual to the ideal triangle decomposition of the fundamental domain. Real

numbers Zi, i = 1, . . . ,6 and Y2, Y3, and Y4 associated to all the edges; we indicate those relevant

for constructing the geodesic function G2,4.

G2,4 = tr LXY2
RXY3

LXZ4
FXZ4

RXY3
LXY2

RXZ2
FXZ2
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• •

•

The orbifold Riemann surface Σ0,1,3. Lines decomposing into ideal triangles (green) start at the

obrifold points and spiral asymptotically to the geodesic boundary of the hole whose perimeter is

$P = |Z1 + Z2 + Z3|,
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Example: Surface with one hole and three orbifold points (A3)

z1

z2

z3 z1

z2

z3 z1

z2

z3

G12 =Tr(RXz1FXz1LXz2FXz2) = ez1+z2 + e−z1−z2 + e−z1+z2

G23 =Tr(RXz2FXz2LXz3FXz3) = ez2+z3 + e−z2−z3 + e−z2+z3

G13 =Tr(RXz3FXz3LXz1FXz1) = ez3+z1 + e−z3−z1 + e−z3+z1

Central element:

2−e2z1+2z2+2z3−e−2z1−2z2−2z3= G2
12 + G2

13 + G2
23 − G12G13G23, the Markov element M

Goldman bracket=semiclassical Nelson–Regge (NR) brackets:

{G12, G13} = 2G23 − G12G13, {G12, G23} = G12G23 − 2G13 {G13, G23} = 2G12 − G13G23.
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Action of the braid group for An

The braid-group transformation is interchanging of order of orbifold points by ro-
tating the ith point about the i + 1th point:

•

• •

•

•

•

•

sαi

s′αi

sαi+1

d

e c

→

• •

•

•

•

•s̃αi+1

s̃αi

d

f

c

Globally: natural braid group action: Bn = {β1,2, . . . , βn−1,n}.

subject to the standard braid-group relations: βi−1,iβi,i+1βi−1,i(A) = βi,i+1βi−1,iβi,i+1(A).

Braid-group invariants = modular invariants = Poisson invariants
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For instance, for n = 3 we have

β1,2(G12, G13, G23) = (G12, G23, G13−G12G23) β2,3(G12, G13, G23) = (G13, G12−G13G23, G23)

We can present this action in the matrix form:

βi,i+1(A) = Bi,i+1(Gi,i+1)A
[
Bi,i+1(Gi,i+1)

]T
.

where (in the case n = 3)

A =




1 G12 G13
0 1 G23
0 0 1



 , B1,2(G) =




G12 −1 0
1 0 0
0 0 1



 , B2,3(G) =




1 0 0
0 G23 −1
0 1 0



 .

Meanwhile βi,i+1(AT ) = Bi,i+1(G)AT
[
Bi,i+1(G)

]T
, therefore, any linear combi-

nation A + λ−1AT transforms in the same way, so the generating function for
braid-group invariants is

det
(
A + λ−1AT

)
;

For n = 3, the invariant is again the Markov element det
(
A + AT

)
= 8 − 2M.
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Surface with two holes and n orbifold points (Dn)

Ĝi,j
j

k

l

i

Ĝj,i

j

k

l

i

Ĝk,k

j

k

l

i

Dn algebra has therefore n2 generators Ĝi,j, i, j = 1, . . . , n.

Braid group 〈β1,2, . . . , βn−1,n, βn,1〉:

βi,i+1Ĝk,l = ˜̂
Gk,l, :






˜̂
Gi+1,k = Ĝi,k k )= i, i + 1,
˜̂
Gi,k = Ĝi,kĜi,i+1 − Ĝi+1,k k )= i, i + 1,
˜̂
Gk,i+1 = Ĝk,i k )= i, i + 1,
˜̂
Gk,i = Ĝk,iĜi,i+1 − Ĝk,i+1 k )= i, i + 1,
˜̂
Gi,i+1 = Ĝi,i+1
˜̂
Gi+1,i+1 = Ĝi,i
˜̂
Gi,i = Ĝi,iĜi,i+1 − Ĝi+1,i+1
˜̂
Gi+1,i = Ĝi+1,i + Ĝi,i+1Ĝ2

i,i − 2Ĝi,iĜi+1,i+1

i = 1, . . . , n−1,
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βn,1Ĝk,l = ˜̂
Gk,l :






˜̂
G1,k = Ĝn,k k )= n,1,
˜̂
Gn,k = Ĝn,kĜn,1 − Ĝ1,k k )= n,1,
˜̂
Gk,1 = Ĝk,n k )= n,1,
˜̂
Gk,n = Ĝk,nĜn,1 − Ĝk,1 k )= n,1,
˜̂
Gn,1 = Ĝn,1
˜̂
G1,1 = Ĝn,n
˜̂
Gn,n = Ĝn,nĜn,1 − Ĝ1,1
˜̂
G1,n = Ĝ1,n + Ĝn,1Ĝ2

n,n − 2Ĝn,nĜ1,1

.

The Dn Poisson algebra (with terms up to the third order in Ĝi,j in the r.h.s.) is
an abstract algebra (satisfies the Jacobi relations).

Remark. The quantum version of these relations below was presented in [L.Ch.
J.Phys.A’09]
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Infinite-dimensional algebras Dn

We introduce a new hole with the perimeter |Ph| generated by the element Mh,
TrMh = ePh/2 + e−Ph/2 := Π, and consider the algebraic elements G(k)

ij

• •

•

•

•

•

h

1n

ij
G(0)

i,j

in fact,

• •

•

•

•

•

h

1n

ij

all the lines are double lines (reflected back at orbifold points)

• •

•

•

•

•

h

1n

ij
G(1)

i,j

in fact,

• •

•

•

•

•

h

1n

ij
G(2)

i,j
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We introduce the generating function

Gi,j(λ) := A(0)
i,j +

∞∑

k=1
G(k)

i,j λ
−k,

where A(0) is an upper-triangular matrix with the entries G(0)
i,j above the diagonal

and unities on the diagonal.

For Gi,j(λ), using the Goldman brackets and skein relations, we obtain the algebra
{
Gj,i(λ),Gp,l(µ)

}
=

(

ε(j − p) −
λ+ µ

λ− µ

)

Gp,i(λ)Gj,l(µ) +

(

ε(i − l) +
λ+ µ

λ− µ

)

Gp,i(µ)Gj,l(λ) +

+

(

ε(i − p) −
1 + λµ

1 − λµ

)

Gj,p(λ)Gi,l(µ) +

(

ε(j − l) +
1 + λµ

1 − λµ

)

Gl,i(λ)Gp,j(µ)

This is an abstract infinite dimensional Poisson algebra Dn.
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Relation to the reflection equation

Twisted Yangians by Molev, Ragoucy, and Sorba: for trigonometric R-matrix

R(u, v) = (u − v)
∑

i )=j

Eii ⊗ Ejj + (q−1u − qv)
∑

i

Eii ⊗ Eii

+ (q−1 − q)u
∑

i>j

Eij ⊗ Eji + (q−1 − q)v
∑

i<j

Eij ⊗ Eji, q = e−iπ!,

acting in the tensor product of spaces 1 and 2 and for the (quantum) quantities

si,j(u) =
∑∞

k=0 s(k)i,j u−k such that s(0)
ii = 1, i = 1, . . . , n and s(0)

ij = 0 for 1 ≤ j < i ≤ n,
we have the (matrix) reflection equation

R(u, v)S1(u)Rt(u−1, v)S2(v) = S2(v)R
t(u−1, v)S1(u)R(u, v)

(the symbol t denotes the transposition only in the first space).

Lemma Poisson algebra Dn of G(k)
i,j is the semiclassical limit ! → 0 of the quantum

twisted Yangian algebra for Si,j(u) = Gi,j(u).
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Braid-group action for Dn.

For G(λ), the matrix representation for the braid-group action reads

βi,i+1G(λ) = Bi,i+1G(λ)
(
Bi,i+1

)T
, βn,1G(λ) = Bn,1(λ)G(λ)

(
Bn,1(λ

−1)
)T

,

where

Bi,i+1 =

...
i

i + 1
...





. . .
1

G(0)
i,i+1 −1
1 0

1
.. .





.

and

Bn,1(λ) =





0 0 . . . 0 λ
0 1 0 . . . 0
... 0 . . . . . . ...
0 ... . . . 1 0

−λ−1 0 . . . 0 G(1)
n,1




.
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Quantization on the level of Teichmüller space coordinates is the mere correspon-
dence principle:

[Z!
i , Z!

j ] = 2πi!{Zi, Zj}.

For the quantum geodesic functions G!
γ, we have (×

×•
×
× is the quantum ordering):

G!
γ ≡ ×

×tr PZ1...Zn
×
× ≡

∑

j∈J

exp





1

2

∑

α∈E(Γg,δ)

(
mj(γ, α)Z!

α + 2πi!cj(γ, α)
)




,

all the G!
γ are Hermitian operators, and we have the quantum skein relation:

G!
γ

G!
γ̃

= q−1

G!
γ̃γ

+q

G!
γ̃γ−1

to be applied simultaneously at all the intersections (the empty loop is −q − q−1).

21



Quantum braid-group action for D!
n.

Quantum version D!
n = Y ′

q(on) – the (full) twisted Yangian algebra.

For G!
i,j(λ) = A!

i,j +
∑∞

k=1 G(k)
i,j

!
λ−k, where all the G(s)

i,j

!
, s = 0,1, . . . , are Hermitian

operators and A!
i,i = q−1, q† = q−1, the braid-group action is

βi,i+1G!(λ) = B!
i,i+1G

!(λ)
(
B!

i,i+1

)†
, βn,1G!(λ) = B!

n,1(λ)G!(λ)
(
B!

n,1(λ
−1)

)†
,

where

B!
i,i+1 =

...
i

i + 1
...





. . .
1

qG(0)!
i,i+1 −q2

1 0
1

...





.

and

B!
n,1(λ) =





0 0 . . . 0 λ
0 1 0 . . . 0
... 0 . . . . . . ...
0 ... . . . 1 0

−q2λ−1 0 . . . 0 qG(1)
n,1

!





.
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Finite-dimensional reductions and Casimirs

Central elements of Dn are generated by detG(u), identically to the twisted Yangian
case.

Level-p reduction: Mp
h = E or G(k+p)

i,j = G(k)
i,j for any k (the inner hole reduces

to a Zp-orbifold point). Every such reduction is automatically Poissonian due to

the Korotkin–Samtleben brackets. We have the algebra D(p)
n generated by G(k)

i,j =

G(p−k)
j,i for k = 0, . . . , p − 1.

Due to the periodicity G(λ) becomes 1
λp−1Gp(λ), where

Gp(λ) := A(0) +
G(1)

λ
+ · · · +

G(p−1)

λp−1 +
A(0)T

λp
,

The central elements of D(p)
n are generated by detGp(λ). The maximum number

of independent central elements is
[
np
2

]
.

Remark: at p = 1, we obtain the An algebra generating function det(A + λ−1AT ).
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From Dn to Dn

We use the skein relations to represent elements G(1)
i,j with i ≤ j (i.e., those with

self-intersections):

G(1)
i,i → Ĝ2

i,i +Π2 − 2, G(1)
i,j → 2Ĝi,iĜj,j − Ĝj,i + (Π2 − 2)Ĝi,j, 1 ≤ i < j ≤ n,

or, in the graphical form,

= + −2

= 2 − + −2

(In these relations we used that the empty loop is −2.) Note the appearance of
the parameter related to the inner hole perimeter Ph:

Π := ePh/2 + e−Ph/2.

Very useful is to write this reduction in terms of the matrices Â, R̂, and Ŝ:

G(1) → R̂ + Ŝ + (Π2 − 1)Â − ÂT .
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Here R̂ is the n × n skewsymmetric matrix of entries:

(R̂)i,j :=






−Ĝj,i − Ĝi,j + Ĝi,iĜj,j j > i
Ĝj,i + Ĝi,j − Ĝi,iĜj,j j < i

0 j = i
,

Ŝ is the symmetric matrix of entries:

(Ŝ)i,j := Ĝi,iĜj,j for all 1 ≤ i, j ≤ n;

and Â is the upper triangular matrix of entries

Â =





1 Ĝ1,2 Ĝ1,3 . . . Ĝ1,n
0 1 Ĝ2,3 . . . Ĝ2,n
0 0 1 .. . ...
... ... . . . . . . Ĝn−1,n
0 0 . . . 0 1




.
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We then continue expressing higher G(k) fixing the parameter i and moving j coun-

terclockwise as below

i j

= 2

i j

−

i j

+(Π2 − 2)

i j

= 2

i j

−

i j

+(Π2 − 2)

i j

Performing the summation over k in the resulted reduction formulas, we obtain

G(λ) →
λ

(λ− 1)(e−Phλ− 1)(ePhλ− 1)
×

×
[
(λ− 1)R̂ + (λ+ 1)Ŝ + (λ2 − 1)Â − (λ− λ−1)ÂT

]
,

Remark: This representation is consistent with the p-level reduction provided epPh =
1 and Π )= 0, or p ≥ 3.
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Central elements of Dn algebra

The braid-group representations for Dn and G(u) coincide. So, the central elements
are again generated by detG(λ).

Proposition. The Dn algebra admits exactly n algebraically independent central
elements c1, . . . , cn. They are generated by

det
[
(λ− 1)R̂ + (λ+ 1)Ŝ + (λ2 − 1)Â − (λ− λ−1)ÂT

]
=

= (λ− 1)n−1
[
λn+1 +

n∑

i=1
λici + (−1)n+1

n∑

i=1
λ1−ici + (−1)n+1λ−n

]
.

[The proof follows from that Ŝ has rank one and all other summands contain (λ−1),

so the determinant contains (λ−1)n−1; the remaining expansion produces n central
elements.]
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Outlook

Because the algebra Dn is the semiclassical limit of the Yangian algebra of Molev,

Sorba, and Ragoucy, the full Yangian algebra is therefore the quantum extension
of the Dn algebra.

2+1 gravity = Chern–Simons action
∫

d2xdtA ∧ dA + 2
3A ∧ A ∧ A—a topological

theory.

Observables = lengths of closed geodesics: complexification of Gi,j. Describing
quantum theory of 2+1 gravity.

Quantum version of a general Fuchsian system is the KZ system [Reshetikhin’90].
Quantum version of the Dubrovin system – in progress; the quantum Stokes param-

eters G!
i,j must then be (quantum) monodromies of this system providing possibly

a description of quantum Frobenius manifolds.
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