New results on the integrable structure of CFT.

Fedor Smirnov

Joint work with H. Boos, M. Jimbo, T. Miwa

1. Previous results. On the space $\mathfrak{H}_{\mathrm{S}}=\underset{j=-\infty}{\infty} \mathbb{C}^{2}$, acts the Hamoltonian

$$
H=\frac{1}{2} \sum_{k=-\infty}^{\infty}\left(\sigma_{k}^{1} \sigma_{k+1}^{1}+\sigma_{k}^{2} \sigma_{k+1}^{2}+\Delta \sigma_{k}^{3} \sigma_{k+1}^{3}\right), \quad \Delta=\frac{1}{2}\left(q+q^{-1}\right)
$$

We consider $q=e^{\pi i \nu}$.
Introduce the Matsubara space $\mathfrak{H}_{\mathrm{M}}=\bigotimes_{\mathbf{j}=1}^{\mathbf{n}} \mathbb{C}^{2}$, and the operator

$$
T_{\mathrm{S}, \mathrm{M}}=\prod_{j=-\infty}^{\curvearrowright} T_{j, \mathrm{M}}
$$

where

$$
T_{j, \mathbf{M}} \equiv T_{j, \mathbf{M}}(1), \quad T_{j, \mathbf{M}}(\zeta)=\prod_{\mathbf{m}=\mathbf{1}}^{\curvearrowleft} L_{j, \mathbf{m}}\left(\zeta / \tau_{\mathbf{m}}\right) .
$$

The L-operator is:

$$
L_{j, \mathbf{m}}(\zeta)=q^{\frac{1}{2}}\left(q^{\frac{1}{2} \sigma_{j}^{3} \sigma_{\mathbf{m}}^{3}} \zeta-q^{-\frac{1}{2} \sigma_{j}^{3} \sigma_{\mathbf{m}}^{3}} \zeta^{-1}+\left(q-q^{-1}\right)\left(\sigma_{j}^{+} \sigma_{\mathbf{m}}^{-}+\sigma_{j}^{-} \sigma_{\mathbf{m}}^{+}\right)\right)
$$

Set $S(k)=\frac{1}{2} \sum_{j=-\infty}^{k} \sigma_{k}^{3}$. We consider the quasilocal operators with tail α :

$$
q^{2 \alpha S(0)} \mathcal{O} \in \mathcal{W}_{\alpha, 0}
$$

The problem is to compute

$$
Z^{\kappa}\left\{q^{2 \alpha S(0)} \mathcal{O}\right\}=\frac{\operatorname{Tr}_{\mathrm{S}} \operatorname{Tr}_{\mathrm{M}}\left(T_{\mathrm{S}, \mathrm{M}} q^{2 \kappa S+2 \alpha S(0)} \mathcal{O}\right)}{\operatorname{Tr}_{\mathrm{S}} \operatorname{Tr}_{\mathrm{M}}\left(T_{\mathrm{S}, \mathrm{M}} q^{2 \kappa S+2 \alpha S(0)}\right)}
$$

Graphically, the numerator is
Space

$$
\eta=\mathrm{L}_{\mathrm{i} \mathbf{j}} \quad \nLeftarrow=\mathrm{q}^{\mathrm{K} \sigma^{3}} \quad \phi=\mathrm{q}^{(\alpha+\mathrm{K}) \sigma^{3}}
$$

Our main achievement. Consider the space

$$
\mathcal{W}^{(\alpha)}=\bigoplus_{s=-\infty}^{\infty} \mathcal{W}_{\alpha-s, s}
$$

By purely algebraic construction we introduced action of creation -annihilation operators on the space $\overline{\mathcal{W}}^{(\alpha)}$:

$$
\mathbf{t}^{*}(\zeta), \mathbf{b}^{*}(\zeta), \mathbf{c}^{*}(\zeta) ; \quad \mathbf{b}(\zeta), \mathbf{c}(\zeta)
$$

such that $\mathcal{W}^{(\alpha)}$ is created form the primary field $q^{2 \alpha S(0)}$ by Taylor coefficients of $\mathbf{t}^{*}(\zeta), \mathbf{b}^{*}(\zeta), \mathbf{c}^{*}(\zeta)$ at $\zeta^{2}=1$.
The expectation values are computed in this basis as

$$
\begin{aligned}
& Z^{\kappa}\left\{\mathbf{t}^{*}\left(\zeta_{1}^{0}\right) \cdots \mathbf{t}^{*}\left(\zeta_{p}^{0}\right) \mathbf{b}^{*}\left(\zeta_{1}^{+}\right) \cdots \mathbf{b}^{*}\left(\zeta_{q}^{+}\right) \mathbf{c}^{*}\left(\zeta_{q}^{-}\right) \cdots \mathbf{c}^{*}\left(\zeta_{1}^{-}\right)\left(q^{2 \alpha S(0)}\right)\right\}= \\
& =\prod_{i=1}^{p} \rho\left(\zeta_{i}^{0}\right) \operatorname{det}\left|\omega\left(\zeta_{i}^{+}, \zeta_{j}^{-}\right)\right|_{i, j=1, \cdots q} .
\end{aligned}
$$

The functions $\rho(\zeta)$ and $\omega(\zeta, \xi)$ are defined by Matsubara data only. Consider the transfer-matrices in Matsubara direction $T_{\mathbf{M}}(\zeta, \kappa)$ and $T_{\mathbf{M}}(\zeta, \kappa+\alpha)$, for example,

$$
T_{\mathbf{M}}(\zeta, \kappa)=(-1)^{S_{\mathbf{M}}} \operatorname{Tr}_{j}\left(T_{j, \mathbf{M}}(\zeta) q^{\kappa \sigma_{j}^{3}}\right),
$$

Introduce the eigenvectors $|\kappa\rangle,|\kappa+\alpha\rangle$ with eigenvalues $T(\zeta, \kappa)$, $T(\zeta, \kappa+\alpha)$ such that $T(1, \kappa), T(1, \kappa+\alpha)$ are of maximal absolute value. The functions $\rho(\zeta)$ and $\omega(\zeta, \xi)$ are constructed from $T(\zeta, \kappa), T(\zeta, \kappa+\alpha)$. ρ is simple:

$$
\rho(\zeta \mid \kappa, \kappa+\alpha)=\frac{T(\zeta, \kappa+\alpha)}{T(\zeta, \kappa)} .
$$

We define ω in TBA style. Let

$$
\mathfrak{a}(\zeta, \kappa)=\left(\frac{1-q^{-1} \zeta}{1-q \zeta}\right)^{\mathbf{n}} \frac{Q(\zeta q, \kappa)}{Q\left(\zeta q^{-1}, \kappa\right)} .
$$

It satisfies the Destri-De Vega equations:

$$
\log \mathfrak{a}(\zeta, \kappa)=-2 i \nu \kappa+\log \left(\frac{d(\zeta)}{a(\zeta)}\right)-\int_{C} K(\zeta / \xi) \log (1+\mathfrak{a}(\xi, \kappa)) \frac{d \xi^{2}}{\xi^{2}},
$$

We define

$$
\psi(\zeta, \alpha)=\zeta^{\alpha} \frac{\zeta^{2}+1}{2\left(\zeta^{2}-1\right)}, \quad K(\zeta, \alpha)=\frac{1}{2 \pi i}\left(\psi(\zeta q, \alpha)-\psi\left(\zeta q^{-1}, \alpha\right)\right)
$$

in particular, $K(\zeta)=K(\zeta, 0)$.
Introduce the resolvent:

$$
\begin{aligned}
& R(\zeta, \xi)-\int_{C} K(\zeta / \eta, \alpha) R(\eta, \xi) d m(\eta)=K(\zeta / \xi, \alpha), \\
& d m(\eta)=\frac{d \eta^{2}}{\eta^{2} \rho(\eta \mid \kappa, \kappa+\alpha)(1+\mathfrak{a}(\eta, \kappa))} .
\end{aligned}
$$

Introduce the notations

$$
\Delta_{\zeta} f(\zeta)=f(\zeta q)-f\left(\zeta q^{-1}\right), \quad \delta_{\zeta}^{-} f(z)=f(\zeta q)-\rho(\zeta) f(\zeta),
$$

and two kernels

$$
f_{\text {left }}(\zeta, \xi)=\delta_{\zeta}^{-} \psi(\zeta / \xi, \alpha), \quad f_{\text {right }}(\zeta, \xi)=\delta_{\xi}^{-} \psi(\zeta / \xi, \alpha)
$$

Now we are ready to define:

$$
\omega(\zeta, \xi \mid \kappa, \alpha)=-\left(f_{\text {left }} \star f_{\text {right }}+f_{\text {left }} \star R \star f_{\text {right }}\right)(\zeta, \xi)+\delta_{\zeta}^{-} \delta_{\xi}^{-} \Delta_{\zeta}^{-1} \psi(\zeta / \xi, \alpha),
$$

where \star stands for integration with $d m$. We use

$$
\Delta_{\zeta}^{-1} \psi(\zeta, \alpha)=-\int_{0}^{\infty} \frac{1}{2 \nu\left(1+(\zeta / \eta)^{\frac{1}{\nu}}\right)} \psi(\eta, \alpha) \frac{d \eta^{2}}{2 \pi i \eta^{2}} .
$$

Vacuum expectation values in infinite volume:

$$
Z_{\infty}\left\{q^{2 \alpha S(0)} \mathcal{O}\right\}=\frac{\langle\operatorname{vac}| q^{2 \alpha S(0)} \mathcal{O}|\mathrm{vac}\rangle}{\langle\operatorname{vac}| q^{2 \alpha S(0)}|\mathrm{vac}\rangle}
$$

Our operators are such that under Z_{∞} effectively $\mathbf{b}^{*}(\zeta)=0, \mathbf{c}^{*}(\zeta)=0$, $\mathbf{t}^{*}(\zeta)=2$.

This is an evidence of their similarity with Virasoro algebra in CFT.

Screening operators on the lattice. Let us try to have more parameters considering the trace

$$
\operatorname{Tr}_{\mathbf{S}} \operatorname{Tr}_{\mathbf{M}}\left(Y_{\mathbf{M}}^{(-s)} T_{\mathrm{S}, \mathbf{M}} q^{2 \kappa S+2 \alpha S(0)} \mathcal{O}\right)
$$

Spin of \mathcal{O} must equal s, so, we take

$$
\begin{aligned}
& q^{2 \alpha S(0)} \mathcal{O} \\
& =\mathbf{b}^{*}\left(\xi_{1}\right) \cdots \mathbf{b}^{*}\left(\xi_{s}\right) \mathbf{b}^{*}\left(\zeta_{m}^{-}\right) \cdots \mathbf{b}^{*}\left(\zeta_{1}^{-}\right) \mathbf{c}^{*}\left(\zeta_{1}^{+}\right) \cdots \mathbf{c}^{*}\left(\zeta_{m}^{+}\right) \mathbf{t}^{*}\left(\zeta_{1}^{0}\right) \cdots \mathbf{t}^{*}\left(\zeta_{m}^{0}\right)\left(q^{2(\alpha+s) S(0)}\right)
\end{aligned}
$$

Old computation is not applicable because

$$
\xi^{-\alpha} \mathbf{b}^{*}(\xi)(X)=\sum_{j=0}^{s-1} \xi^{2 j} \mathbf{b}_{\infty, 2 j}^{*}(X)+\mathbf{b}_{\mathrm{reg}}^{*}(\xi)(X)
$$

To cut a long story short, I write the final answer:
$Z^{\kappa, s}\left\{q^{2 \alpha S(0)} \mathcal{O}\right\}=\frac{\operatorname{Tr}_{\mathbf{S}} \operatorname{Tr}_{\mathbf{M}}\left(Y_{\mathbf{M}}^{(s)} T_{\mathrm{S}, \mathbf{M}} q^{2 \kappa S} \mathbf{b}_{\infty, 0}^{*} \cdots \mathbf{b}_{\infty, 2 s-2}^{*}\left(q^{2(\alpha+s) S(0)} \mathcal{O}\right)\right)}{\operatorname{Tr}_{\mathrm{S}} \operatorname{Tr}_{\mathbf{M}}\left(Y_{\mathrm{M}}^{(s)} T_{\mathrm{S}, \mathbf{M}} q^{2 \kappa S} \mathbf{b}_{\infty, 0}^{*} \cdots \mathbf{b}_{\infty, 2 s-2}^{*}\left(q^{2(\alpha+s) S(0)}\right)\right)}$.
For this functional the same determinant formulae hold. The difference is that we have now

$$
\rho(\zeta \mid \kappa, \kappa+\alpha, s)=\frac{T(\zeta, \kappa+\alpha, s)}{T(\zeta, \kappa)} .
$$

Notice that $T(\zeta, \kappa+\alpha, s)$ satisfies the same Baxter equations as
$T(\zeta, \kappa+\alpha-s)$, but the number of Bethe roots is $\mathbf{n} / 2-s$. We can consider
$s \in \mathbb{Z}$ using for $s<0$ the screening operators $\mathbf{c}_{\infty, j}^{*}$.

Screenings on the lattice are "topological":
Space

$+=R_{i j}$
$\psi=\mathrm{q}^{\mathrm{k} \sigma^{3}}$
$\phi=q^{(\alpha+\kappa) \sigma^{3}}$

Scaling limit. In the limit $\mathbf{n} \rightarrow \infty$ Bethe roots scale for $1 \ll j \ll \mathbf{n}$ as

$$
\zeta_{j}=\text { Const } \cdot\left(\frac{j}{\mathbf{n}}\right)^{\nu}
$$

The scaling limit consists in

$$
\mathbf{n} \rightarrow \infty, \quad a \rightarrow 0, \quad \mathbf{n} a=2 \pi C R \text { fixed }
$$

This scaling limit is chiral.

The following limit exists:

$$
\rho_{R}(\lambda \mid \kappa, \kappa+\alpha, s)=\lim _{\mathbf{n} \rightarrow \infty, a \rightarrow 0,2 \pi R=\mathbf{n} a} \rho\left(\lambda a^{\nu} \mid \kappa, \kappa+\alpha, s\right),
$$

Morevover,

$$
\rho_{R}(\lambda \mid \kappa, \kappa+\alpha, s)=\rho_{R}\left(\lambda \mid \kappa, \kappa^{\prime}\right), \quad \kappa^{\prime}=\kappa+\alpha+\frac{1-\nu}{\nu} s .
$$

Similarly,

$$
\omega_{R}\left(\lambda, \mu \mid \kappa, \kappa^{\prime}, \alpha\right)=\lim _{\mathbf{n} \rightarrow \infty, a \rightarrow 0,2 \pi R=\mathbf{n} a} \omega\left(\lambda a^{\nu}, \mu a^{\nu} \mid \alpha, \kappa, s\right)
$$

So in the weak sense the operators are defined

$$
\boldsymbol{\tau}^{*}(\lambda)=\lim _{a \rightarrow 0} \mathbf{t}^{*}\left(\lambda a^{\nu}\right), \quad \boldsymbol{\beta}^{*}(\lambda)=\lim _{a \rightarrow 0} \mathbf{b}^{*}\left(\lambda a^{\nu}\right), \quad \boldsymbol{\gamma}^{*}(\lambda)=\lim _{a \rightarrow 0} \mathbf{c}^{*}\left(\lambda a^{\nu}\right),
$$

and the main identity turns into (we set $q^{2 \alpha S(0)} \rightarrow \Phi_{\alpha}(0)=\phi_{\alpha}(0) \bar{\phi}_{\alpha}(0)$)

$$
\begin{aligned}
& Z_{R}^{\kappa, \kappa^{\prime}}\left\{\boldsymbol{\tau}^{*}\left(\lambda_{1}^{0}\right) \cdots \boldsymbol{\tau}^{*}\left(\lambda_{p}^{0}\right) \boldsymbol{\beta}^{*}\left(\lambda_{1}^{+}\right) \cdots \boldsymbol{\beta}^{*}\left(\lambda_{q}^{+}\right) \gamma^{*}\left(\lambda_{q}^{-}\right) \cdots \boldsymbol{\gamma}^{*}\left(\lambda_{1}^{-}\right)\left(\Phi_{\alpha}(0)\right)\right\}= \\
& =\prod_{i=1}^{p} \rho_{R}\left(\lambda_{i}^{0} \mid \kappa, \kappa^{\prime}\right) \operatorname{det}\left|\omega_{R}\left(\lambda_{i}^{+}, \lambda_{j}^{-} \mid \kappa, \kappa^{\prime}, \alpha\right)\right|_{i, j=1, \cdots q} .
\end{aligned}
$$

Our main claim is that $Z_{R}^{\kappa, \kappa^{\prime}}$ describes the expectation values of descendants of the primary field ϕ_{α} on the cylinder with asymptotical condition defined by the primary fields $\phi_{\kappa+1}, \phi_{\kappa^{\prime}+1}$ for the chiral CFT with the central charge $c=1-6 \frac{\nu^{2}}{1-\nu}$. The scaling dimensions are $\Delta_{\alpha}=\frac{\alpha(\alpha-2) \nu^{2}}{4(1-\nu)}$.
2. Three point functions in CFT. Consider the cylinder:

$$
-\infty<\operatorname{Re}(z)<\infty, \quad-\pi R<\operatorname{Im}(z)<\pi R, \quad \mathbb{R}-\pi i R=\mathbb{R}+\pi i R
$$

on which we have the CFT with the energy-momentum tensor $T(z)$. At the point $z=0$ we insert the primary field $\phi_{\alpha}(0)$. Define the descendants by

$$
\mathbf{l}_{k}(O(0))=\oint y^{k+1} T(y) O(0) \frac{d y}{2 \pi i} .
$$

We call this local description. On the other hand we have the global description

$$
T(z)=\frac{1}{R^{2}}\left(\sum_{j=-\infty}^{\infty} e^{\frac{n z}{R}} L_{n}-\frac{c}{24}\right)
$$

We set

$$
T(z)=T_{+}(z)+T_{-}(z), \quad T_{+}(z)=\frac{1}{R^{2}}\left(\sum_{j=1}^{\infty} e^{\frac{n z}{R}} L_{n}+\frac{L_{0}}{2}-\frac{c}{48}\right)
$$

Then if the primary fields $\phi_{\kappa+1}, \phi_{\kappa^{\prime}+1}$ describe the asymptotic conditions we have

$$
\lim _{z \rightarrow \infty} T_{+}(z)=\frac{1}{2 R^{2}}\left(\Delta_{\kappa+1}-\frac{c}{24}\right), \quad \lim _{z \rightarrow-\infty} T_{-}(z)=\frac{1}{2 R^{2}}\left(\Delta_{\kappa^{\prime}+1}-\frac{c}{24}\right) .
$$

The OPE's in this setting read as

$$
\begin{aligned}
T(x) T(y) & =\frac{1}{R} \frac{d}{d y} T(y) \chi(x-y)-2 T(y) \frac{1}{R} \frac{d}{d x} \chi(x-y) \\
& -\frac{c}{12 R} \frac{d^{3}}{d x^{3}} \chi(x-y)+: T(x) T(y): \\
T(x) \phi(y) & =\frac{1}{R} \frac{d}{d y} \phi(y) \chi(x-y)-\Delta \phi(y) \frac{1}{R} \frac{d}{d x} \chi(x-y)+: T(x) \phi(y):,
\end{aligned}
$$

with $\chi(x)=\frac{1}{2} \operatorname{coth} \frac{x}{2 R}$, which brings a frightening number of Bernoulli numbers into the three-point functions of descendants.

The integrable structure of CFT is based on Zamolodchikov's local integrals of motion. They are described by densities $h_{2 k}(z)$. Important warning. Local integrals in our setting play double role.

$$
\mathbf{i}_{2 k-1}(O(0))=\oint h_{2 k}(z) O(0) \frac{d z}{2 \pi i}, \quad \mathbf{i}_{1}=\mathbf{l}_{-1}, \quad \text { etc }
$$

$$
I_{2 k-1}(u)=\int_{u-\pi i R}^{u+\pi i R} h_{2 k}(z) \frac{d z}{2 \pi i},
$$

$$
I_{2 k-1}(\infty)=I_{2 k-1}(\kappa), \quad I_{2 k-1}(-\infty)=I_{2 k-1}\left(\kappa^{\prime}\right)
$$

Obviously,

$$
\left\langle\mathbf{i}_{2 k-1}(O(0))\right\rangle=\left(I_{2 k-1}\left(\kappa^{\prime}\right)-I_{2 k-1}(\kappa)\right)\langle O(0)\rangle .
$$

Comparing scaling limit with CFT.

On the lattice the local operators were found around

$$
\zeta^{2}=1
$$

The formula

$$
\zeta^{2}=\lambda^{2} a^{2 \nu}
$$

shows that after the scaling limit they have to be looked for at

$$
\lambda^{2}=\infty .
$$

The dimensional arguments imply that if the entire construction is consistent with CFT they have to be found in series in $\lambda^{-\frac{1}{\nu}}$. Let us investigate that.

One thing which is clear from the very beginning: $\tau^{*}(\lambda)$ must describe the action of $\mathbf{i}_{2 k-1}$. How to see that?

First,

$$
T_{\mathbf{M}}(\zeta, \kappa) \rightarrow T_{\mathbf{H}}^{\mathrm{BLZ}}(\lambda, \kappa),
$$

where

$$
T_{\mathbf{H}}^{\mathrm{BLZ}}(\lambda, \kappa)=\operatorname{Tr} q^{\kappa \sigma^{3}} \mathcal{P} \exp \left(\lambda \int_{-\pi i R}^{\pi i R}\left(\sigma^{+} e^{-2 \varphi(x)}+\sigma^{-} e^{2 \varphi(x)}\right) \frac{d x}{2 \pi i}\right)
$$

According to BLZ

$$
\log \left(T_{\mathbf{H}}^{\mathrm{BLZ}}(\lambda, \kappa)\right) \simeq R C_{0}(\nu) \lambda^{\frac{1}{\nu}}+\sum_{k=1}^{\infty} \lambda^{-\frac{2 k-1}{\nu}} C_{k}(\nu) I_{2 k-1}
$$

Together with

$$
\rho_{R}\left(\lambda \mid \kappa, \kappa^{\prime}\right)=\frac{T\left(\lambda, \kappa^{\prime}\right)}{T(\lambda, \kappa)}, \quad\left\langle\mathbf{i}_{2 k-1}(O(0))\right\rangle=\left(I_{2 k-1}\left(\kappa^{\prime}\right)-I_{2 k-1}(\kappa)\right)\langle O(0)\rangle
$$

this means

$$
\boldsymbol{\tau}^{*}(\lambda) \simeq \exp \sum_{k=1}^{\infty} \lambda^{-\frac{2 k-1}{\nu}} C_{k}(\nu) \mathbf{i}_{2 k-1}
$$

Now we set $\kappa=\kappa^{\prime}$ which means working modulo action of $\mathbf{i}_{2 k-1}$. The quotient space can be generated, for example, by $l_{-2 k}$. How to compare action of our fermions with Virasoro? We need to know the asymptotics

$$
\omega_{R}(\lambda, \mu \mid \kappa, \kappa, \alpha) \simeq \sum_{k, l=1}^{\infty} \lambda^{-\frac{2 k-1}{\nu}} \mu^{-\frac{2 l-1}{\nu}} \omega_{2 k-1,2 l-1}(\kappa, \alpha),
$$

and to compare it with the three-point functions of descendants. For the fermions we define

$$
\boldsymbol{\beta}^{*}(\lambda)=\sum_{k=1}^{\infty} \lambda^{-\frac{2 k-1}{\nu}} \boldsymbol{\beta}_{2 k-1}^{*}, \quad \boldsymbol{\gamma}^{*}(\lambda)=\sum_{k=1}^{\infty} \lambda^{-\frac{2 k-1}{\nu}} \gamma_{2 k-1}^{*},
$$

Computing the asymptotics is hard, but we did it. I present the results of comparison.

Introducing

$$
D_{2 m-1}(\alpha)=\sqrt{\frac{2}{\pi \nu}} \frac{\Gamma\left(\frac{\alpha}{2}+\frac{2 m-1}{2 \nu}\right)}{(m-1)!\Gamma\left(\frac{\alpha}{2}+\frac{(2 m-1)(1-\nu)}{2 \nu}\right)} \Gamma(\nu)^{-\frac{2 m-1}{\nu}}(1-\nu)^{n} .
$$

we have on levels 2 and 4:

$$
\begin{aligned}
& \boldsymbol{\beta}_{1}^{*} \gamma_{1}^{*}\left(\phi_{\alpha}\right)=D_{1}(\alpha) D_{1}(2-\alpha) \mathbf{l}_{-2}\left(\phi_{\alpha}\right), \\
& \boldsymbol{\beta}_{1}^{*} \gamma_{3}^{*}\left(\phi_{\alpha}\right)=\frac{1}{2} D_{1}(\alpha) D_{3}(2-\alpha)\left(\mathbf{l}_{-2}^{2}+\frac{2(16-c)+6 d_{\alpha}}{9} \mathbf{l}_{-4}\right)\left(\phi_{\alpha}\right), \\
& \boldsymbol{\beta}_{3}^{*} \gamma_{1}^{*}\left(\phi_{\alpha}\right)=\frac{1}{2} D_{3}(\alpha) D_{1}(2-\alpha)\left(\mathbf{l}_{-2}^{2}+\frac{2(16-c)-6 d_{\alpha}}{9} \mathbf{l}_{-4}\right)\left(\phi_{\alpha}\right),
\end{aligned}
$$

where

$$
d_{\alpha}=\frac{6}{\sqrt{(25-c)\left(24 \Delta_{\alpha}+1-c\right)}} .
$$

A formula for Alyosha.

Consider $\Phi_{1,3}$ perturbation of $c<1$ model.
Second chirality:
$\overline{\boldsymbol{\beta}}_{2 n-1}^{*}, \overline{\boldsymbol{\gamma}}_{2 n-1}^{*}$ are related to $\overline{\mathrm{l}}_{-2 k}$ by the same formulae with

$$
\alpha \rightarrow-\alpha
$$

We have

$$
\begin{aligned}
& \frac{\left\langle\boldsymbol{\beta}_{I^{+}}^{*} \boldsymbol{\gamma}_{I^{-}}^{*} \overline{\boldsymbol{\beta}}_{\bar{I}^{+}}^{*} \bar{\gamma}_{\bar{I}^{-}}^{*}\left(\Phi_{\alpha}\right)\right\rangle_{\text {Pert }}}{\left\langle\Phi_{\alpha}\right\rangle_{\text {Pert }}}=\delta_{I^{+}, \bar{I}^{-}} \delta_{I^{-}, \bar{I}^{+}} m^{\left|I^{+}\right|+\left|I^{-}\right|} \\
& \times \prod_{2 m-1 \in I^{+} \cup I^{-}} \frac{\sin \pi\left(\frac{1-\nu}{2 \nu}(2 m-1) \pm \frac{\alpha}{2}\right)}{\sin \pi\left(\frac{1}{2 \nu}(2 m-1) \pm \frac{\alpha}{2}\right)}
\end{aligned}
$$

