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1. Previous results. On the space s = & C?, acts the Hamoltonian

j=—o0
0

H:% D (020i+1+020z+1+A0202+1)7 A:%(QWLq_l)-

k=—o0

We consider ¢ = e™*.

Introduce the Matsubara space $Hn = & C?, and the operator
j=1

%
00

where

m=—1 .—p.2I24



The L-operator is:

Lj,m(C) — q% (Q%U?Uf’ng _ q—%U?Uf’nC—l + (g — q_l) (J;LU;H + U;%t))
k . = =
Set S(k) =3 >. o}p.We consider the quasilocal operators with tail a:
j=—00

q2aS(O)O c Wa,O .

The problem is to compute

TrsTrpg (TS,MQZmS—I—ZozS(O) O)

Zm{QZQS(O)O} _
T T T g5 +205(0) )
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Graphically, the numerator is

Space
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Our main achievement. Consider the space

W(a) — é Woz—s,sa

S=—00

By purely algebraic construction we introduced action of creation

-annihilation operators on the space W

t*(¢), b*(C), €*(¢);  b((), ()

such that W(®) is created form the primary field ¢2*°(°) by Taylor
coefficients of t*({), b*(¢), ¢*(¢) at ¢* = 1.
The expectation values are computed in this basis as

Z4(GD) - 8T (D () B¢ e (G ) e (¢ () } =

7/7]:1,(] .

p
=TT p(¢?) det (. ¢))
1=1
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The functions p(¢) and w((, &) are defined by Matsubara data only.
Consider the transfer-matrices in Matsubara direction T (¢, x) and
Tm (¢, Kk + ), for example,

3

Ta(G, k) = (=1)™ T (Tjm(€)g"™ ),

Introduce the eigenvectors |x), |k + a) with eigenvalues T'((, k),
T(¢,x+ «)such that T'(1, k), T(1, k + «) are of maximal absolute value.

The functions p(¢) and w((, &) are constructed from T'((, k), T((, k + ).
p IS simple:

T(¢, k+ )

p(C|li,l€—|—Oé) — T(Caﬁ)

We define w in TBA style. Let

1— q‘1C>n Q(¢q, k)

“(C’“):( - ) QUaLr)
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It satisfies the Destri-De Vega equations:

d&?

log a((, )——2wm+log( ) /K /&) log (14 a(&, k ))5

We define

¢ +1
2(¢* =1)°

In particular, K(¢{) = K(¢,0).

L (¢q,0) —w(ca,a)),

$(G.a) =¢° —

K(Cva) —

Introduce the resolvent:

R(C,€) - / K(¢/n, )R, €)dm(n) = K(C/€,a),
C

d772
n?p(nlk, k+a) (1+a(n, k)

dm(n) =
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Introduce the notations
Acf(Q) = f(Cq)— f(Cq™), 07 f(z) = f(Cq) —p(C)f(C),
and two kernels

fiert(C, &) = 0 (C/& @), frignt(C, &) = 0 (/€ @)

Now we are ready to define:
W(C, €Lk, @) = = (fiert * fright + fiett % Rx frignt) (¢, €) + 67 67 AT (/€ )

where x stands for integration with dm. We use

o

4 o 1 N dn?
A0 == f o G Vi

0
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Vacuum expectation values in infinite volume:

vac|q?*°(©) O|vac)
(vac|q2e5(0)|vac)

Zoo{q2aS(O)O} _ <

Our operators are such that under 7, effectively b*({) = 0, ¢*(¢) = 0,

£(¢) = 2.

This is an evidence of their similarity with Virasoro algebra in CFT.
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Screening operators on the lattice. Let us try to have more parameters

considering the trace

Trg Tryg (Yl\(/I_S)TS,MQZﬁS—I—ZaS(O)O) ,

Spin of © must equal s, so, we take

q2aS(O)O

= b*(&) - b (ED(Gn) BTG (G -

Old computation is not applicable because

E7b* (¢ Z Eb%, 4.

(Gt (¢F) -+t

X) + breg (§)(X) .

(G (@ F=50)
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To cut a long story short, | write the final answer:

Trs Tryg (Yl\(;IS)TS,MQQHSb:o,O R A (q2(a+s)5(0)0)>

00,28 —2

Z&,s{q2a5(0)0} _
TrsTrym (Yl\(/ig)TS,Mq2RSb;o,O .. .b:‘;o,zs_z (q2(a—|—s)5(0)))

For this functional the same determinant formulae hold. The difference is
that we have now

T, k+ a,s)
T(¢, k)

p(Clh i+ 0, 5) =

Notice that T'({, x + «, s) satisfies the same Baxter equations as
T((, k + « — s), but the number of Bethe roots is n/2 — s. We can consider

s € 7. using for s < 0 the screening operators c*_ .

00,7 "
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Screenings on the lattice are "topological:

Space
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Scaling limit. In the limit n — oo Bethe roots scale for 1 << j << n as

¢; = Const - <l> :
n

The scaling limit consists in

n—oo, a—0, na=2rCR fixed

e
2

This scaling limit is chiral.
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The following limit exists:

pr(AlR, K+ a,s) = 1118[12 o p(Aa” |k, k + a,s),
Morevover,
, , 1 —v
pr(Alk, k+a,s) = pr(Ak,K), K =r+a-+ s
Similarly,
wr(\, plk, &' a) = lim w(Aa”, pa”la, Kk, s) .

n—oo, a—0, 2r R=na
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So in the weak sense the operators are defined

7*(A) = lim t*(Aa”), B%(\) = lim b*(Aa”), ~*(A) = lim c*(Aa"),

a—0 a—0 a—0

and the main identity turns into (we set ¢>*°(©) — ®,(0) = ¢4 (0)d(0))
ZEE () AT BTN OT) A (A (@a(0))} =

i,5=1,q

p
= [LprNls, v') det Jwr (X, A7 |1, w7, ),
=1

Our main claim is that Zg’“/ describes the expectation values of descen-
dants of the primary field ¢, on the cylinder with asymptotical condition

defined by the primary fields ¢, 1, ¢.-1+1 for the chiral CFT with the central

ala—2)v?

chargec=1— 6%. The scaling dimensions are A, = )
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2. Three point functions in CFT. Consider the cylinder:
—oo < Re(z) <oo, —wmR<IM(z) <R, R—-—7miR=R+miR,

on which we have the CFT with the energy-momentum tensor 7'(z). At the
point z = 0 we insert the primary field ¢, (0). Define the descendants by

1L(0(0)) = 74 S HT()0(0) Y

2T

We call this local description. On the other hand we have the global
description

()= o5 (Y L 2)
Jj=—00
We set - )
1 ne
T(z) =T (2) +T_(z), T4 (2) ﬁ(ZeR n+70_%>
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Then if the primary fields ¢,..1, ¢ 1 describe the asymptotic conditions
we have

, 1 c , 1 c
lim T_|_(Z) — ﬁ (Aﬁ_|_1 — ﬂ) , lim T_ (Z) — 2—R2 (AK/—I—I — ﬂ) .

Zz— 00 Z— — 00

The OPE’s in this setting read as

T@)T() = 5 TN~ 1) = 270 X )
- L X (@) T@)T() -
T(@)0(y) = 53 OWx(z ~ ) = Aol) 1 Tox(z ~ 1)+ T@)o0) -

with x(z) = % coth 55 » Which brings a frightening number of Bernoulli num-

bers into the three-point functions of descendants.
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The integrable structure of CFT is based on Zamolodchikov’s local
integrals of motion. They are described by densities hyy(2).
Important warning. Local integrals in our setting play double role.

©
: dz :
iy, (0(0)) = j[ ho(2)00) 5, =1y, ete
i
N
u+mtR p
2
Ip—1(u) = / hzk(z)z—m. :
u—miR
Ipg_1(00) = Iog—1(K), Iog—1(—00) = Iop—1(K")
Obviously,

(i2k-1(0(0))) = (Tzk-1(K") = T2r—1()){O(0)) .
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Comparing scaling limit with CFT.

On the lattice the local operators were found around
(?=1.

The formula
CZ _ >\2CL2V

shows that after the scaling limit they have to be looked for at
A =00,

The dimensional arguments imply that if the entire construction is

consistent with CFT they have to be found in series In A v. Letus
Investigate that.

One thing which is clear from the very beginning: 7*(\) must describe the
action of i»,._;. How to see that?

.—p.19/24



First,
TM(C? K’) — BLZ()\ ’%)

where
TR g
Tg“(\, k) =Tr ¢" P exp ()\ / (0+6_2¢(fc) + 0'_6290(3:)) 5 u )
g
—miR

According to BLZ

log (TE# (A, k) =~ R Co)A¥ + > A7 Cp(v)Iapcr -

k=1
Together with
(i) = 5 (i (00)) = (s ()~ Taka()(0(0)
this means
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Now we set k = s’ which means working modulo action of is;_1. The
guotient space can be generated, for example, by 1_5;,.. How to compare
action of our fermions with Virasoro? We need to know the asymptotics

©.@)
2k—1 20—1

WR(A7IU|/{7 /{7(1) = Z AT M Y w2k—1,2l—1("{’705)7
k,l=1

and to compare it with the three-point functions of descendants. For the
fermions we define

* — _2k—1 " > _2k—1
BT (A\) = Z)\ v Bog—1, Y (A) = Z)‘ Y Y 2k—1;
k=1 k=1

Computing the asymptotics is hard, but we did it. | present the results of

comparison.
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Introducing

2 g T 2m—1 o1
Dop—1(a) = (5 ) C(v)""v (1—-v)".
1) 'F( 4 (2m- 1)(1 u)>

we have on levels 2 and 4:

B171(¢a) = D1(a)D1(2 — @) 1-2(¢a) .
Bi73(0a) = 3D1(@)Ds(2 — ) (125 + 220400 1) (),

B371(Pa) = %Dg(a)Dl(Q — Q) (12_2 4 2(16—3)—6da 1_4) (6n),

where
6

o = V(25 —¢)(24A, +1—¢)
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A formula for Alyosha.
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Consider @ 3-perturbation of ¢ < 1 model.

Second chirality:
B;n_l, ~5 ., are related to 1_,;, by the same formulae with

o — —C.

We have

Tagtiay

<6;+7*—B;—+’7>§— ((I)oz)>Pert
I (P >PI ¢ = Orn O g

H sin 7
>< . 21 Q .
o1 e T+ LI sinm(5;(2m —1) £ §)
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