Differential equations and elliptic conformal blocks in Liouville field theory

A.V. Litvinov, A. Neveu, E. Onofri and V.F.

Liouville theory

- Lagrangian: $\mathcal{L}=\frac{1}{4 \pi}\left(\partial_{a} \varphi\right)^{2}+\mu e^{2 b \varphi}$
- Central charge: $c_{L}=1+6 Q^{2}$ where $Q=b+\frac{1}{b}$
- Primary fields: $V_{\alpha}=e^{2 \alpha \varphi}$ have conformal dimensions $\Delta(\alpha)=\alpha(Q-\alpha)$
- Three-point function (Dorn-Otto-Zamolodchikov-Zamolodchikov):

$$
\begin{aligned}
& C\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left[\pi \mu \gamma\left(b^{2}\right) b^{2-2 b^{2}}\right]^{\frac{(Q-\alpha)}{b}} \times \\
& \times \frac{\Upsilon(b) \Upsilon\left(2 \alpha_{1}\right) \Upsilon\left(2 \alpha_{2}\right) \Upsilon\left(2 \alpha_{3}\right)}{\Upsilon(\alpha-Q) \Upsilon\left(\alpha-2 \alpha_{1}\right) \Upsilon\left(\alpha-2 \alpha_{2}\right) \Upsilon\left(\alpha-2 \alpha_{3}\right)},
\end{aligned}
$$

- Four-point function: $\left\langle V_{\alpha_{1}}\left(z_{1}, \bar{z}_{1}\right) V_{\alpha_{2}}\left(z_{2}, \bar{z}_{2}\right) V_{\alpha_{3}}\left(z_{3}, \bar{z}_{3}\right) V_{\alpha_{4}}\left(z_{4}, \bar{z}_{4}\right)\right\rangle \sim$

$$
\sim \int_{\mathcal{C}} C\left(\alpha_{1}, \alpha_{2}, \frac{Q}{2}+i P\right) C\left(\frac{Q}{2}-i P, \alpha_{3}, \alpha_{4}\right)\left|\mathfrak{F}_{P}\left(\left.\begin{array}{cc}
\alpha_{2} & \alpha_{3} \\
\alpha_{1} & \alpha_{4}
\end{array} \right\rvert\, x\right)\right|^{2} d P
$$

- Conformal block: $\mathfrak{F}_{P}\left(\left.\begin{array}{cc}\alpha_{2} & \alpha_{3} \\ \alpha_{1} & \alpha_{4}\end{array} \right\rvert\, x\right)=$
in a closed form
- Elliptic block (Al. Zamolodchikov):

$$
\begin{aligned}
\mathfrak{F}_{P}\left(\left.\begin{array}{cc}
\alpha_{2} & \alpha_{3} \\
\alpha_{1} & \alpha_{4}
\end{array} \right\rvert\, x\right)=(16 q)^{P^{2}} x^{\frac{Q^{2}}{4}-\Delta_{1}-\Delta_{2}} & (x-1)^{\frac{Q^{2}}{4}-\Delta_{1}-\Delta_{4} \times} \\
& \times \theta_{3}(q)^{3 Q^{2}-4 \sum_{k} \Delta_{k} \mathfrak{H}_{P}\left(\left.\begin{array}{cc}
\alpha_{2} & \alpha_{3} \\
\alpha_{1} & \alpha_{4}
\end{array} \right\rvert\, q\right)} \text {, }
\end{aligned}
$$

where $q=e^{i \pi \tau}$ with $\tau=i \frac{K(1-x)}{K(x)}$, satisfies a recursive relation which leads to an effective algorithm for calculation of its expansion in power series of q (which is more convenient for numerical studies than the ordinary x expansion)

- Degenerate fields V_{α} with $\alpha=\alpha_{m n}=-\frac{m b}{2}-\frac{n}{2 b}$ have a null-vector in their Verma module at level $(m+1)(n+1)$ and hence four-point function satisfies Fuchsian ordinary differential equation of the same order (Belavin-Polyakov-Zamolodchikov 1984). An explicit integral representaion for the solution to this equation can be obtained. For example in the case $n=0$ one has

$$
\begin{gathered}
\left\langle V_{-\frac{m b}{2}}(x, \bar{x}) V_{\alpha_{1}}(0) V_{\alpha_{2}}(1) V_{\alpha_{3}}(\infty)\right\rangle=\Omega_{m}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)|x|^{2 m b \alpha_{1}}|x-1|^{2 m b \alpha_{2}} \\
\times \int \prod_{k=1}^{m}\left|t_{k}\right|^{2 A}\left|t_{k}-1\right|^{2 B}\left|t_{k}-x\right|^{2 C} \prod_{i<j}\left|t_{i}-t_{j}\right|^{-4 b^{2}} d^{2} t_{1} \ldots d^{2} t_{m}
\end{gathered}
$$

with parameters

$$
\begin{gathered}
A=b\left(\alpha-2 \alpha_{1}-Q+m b / 2\right), \quad B=b\left(\alpha-2 \alpha_{2}-Q+m b / 2\right) \\
C=b(Q+m b / 2-\alpha)
\end{gathered}
$$

- However, for several important purposes one needs the differential operator for the four-point correlation function in explicit form.
- We consider five-point function

$$
\begin{aligned}
& \left\langle V_{-\frac{1}{2 b}}(z) V_{\alpha_{1}}(0) V_{\alpha_{2}}(1) V_{\alpha_{3}}(\infty) V_{\alpha_{4}}(x)\right\rangle= \\
& =z^{\frac{1}{2 b^{2}}(z-1)^{\frac{1}{2 b^{2}}} \frac{(z(z-1)(z-x))^{\frac{1}{4}}}{(x(x-1))^{\frac{2 \Delta\left(\alpha_{4}\right)}{3}+\frac{1}{12}} \Theta_{1}^{\prime}(0)^{\frac{b^{-2}+1}{3}}} \Psi(u \mid q),} .
\end{aligned}
$$

with $u=\frac{\pi}{4 K(x)} \int_{0}^{\frac{z-x}{x(z-1)}} \frac{d t}{\sqrt{t(1-t)(1-x t)}}$. One finds, that $\Psi(u \mid \tau)$ satisfies:

$$
\begin{align*}
& {\left[\partial_{u}^{2}-\mathbb{U}(u \mid \tau)+\frac{4 i}{\pi b^{2}} \partial_{\tau}\right] \Psi(u \mid \tau)=0} \tag{*}\\
& \mathbb{U}(u \mid \tau)=\sum_{j=1}^{4} s_{j}\left(s_{j}+1\right) \wp\left(u-\omega_{j}\right)
\end{align*}
$$

parameters s_{k} are related with α_{k} as $\alpha_{k}=\frac{Q}{2}-\frac{b}{2}\left(s_{k}+\frac{1}{2}\right)$ and ω_{k} are half periods.

- One can try to find a solution to (*) in a form

$$
\Psi(u \mid q)=u^{s_{4}+1}\left(\Psi(\tau)+\Psi_{-1}(\tau) u^{2}+\Psi_{-2}(\tau) u^{4}+\ldots\right)
$$

- Function $\vec{\Psi}(\tau)=\left(\begin{array}{c}\ldots \\ \Psi_{-1}(\tau) \\ \Psi(\tau)\end{array}\right)$ satisfies

$$
\begin{equation*}
\left(-J_{-}+\frac{i}{\pi b^{2}} \frac{\partial}{\partial \tau}+\sum_{k=1}^{\infty} \frac{W^{(k+1)}(\tau)}{k!^{2}} J_{+}^{k}\right) \vec{\Psi}(\tau)=0, \tag{**}
\end{equation*}
$$

where

$$
J_{-}=\left(\begin{array}{cccc}
\cdots & \cdots & \cdots & \cdots \\
\cdots & 0 & 0 & 0 \\
\cdots & -2 s_{4}-5 & 0 & 0 \\
\cdots & 0 & -s_{4}-\frac{3}{2} & 0
\end{array}\right) \quad J_{+}=\left(\begin{array}{cccc}
\cdots & \cdots & \cdots & \cdots \\
\cdots & 0 & 1 & 0 \\
\cdots & 0 & 0 & 1 \\
\cdots & 0 & 0 & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
W^{(k)}(\tau(x))= & \left(\frac{2 K(x)}{\pi}\right)^{2 k}\left((-1)^{k+1}(x-1) \mathrm{w}_{1}^{(k)} P_{k}(x)+\right. \\
& \left.+x \mathrm{w}_{2}^{(k)} P_{k}(1-x)-(-1)^{k-1} x(x-1) \mathrm{w}_{3}^{(k)} x^{k-2} P_{k}(1 / x)\right)
\end{aligned}
$$

with $\mathrm{w}_{j}^{(k)}=\left[s_{j}\left(s_{j}+1\right)+\frac{s_{4}\left(s_{4}+1\right)}{\left(4^{k}-1\right)}\right]$ and $\mathrm{sn}^{2}(t \mid \sqrt{x})=\sum \frac{P_{k+1}(1-x)}{k!^{2}} t^{2 k}$.

- One can notice that if the parameter s_{4} in eq (**) from the previous slide takes the values*

$$
s_{4}=-m-\frac{3}{2}
$$

then the infinite chain of equations $(* *)$ has a finite sub-chain. Due to the triangle form of $(* *)$ it is easy to conclude that the function $\Psi(\tau)$ satisfies a differential equation of the order $(m+1)$. Examples are $\left(\right.$ here $\left.W^{(k)}(x)=\left(\frac{d \tau}{d x}\right)^{k} W^{(k)}(\tau)\right)$

- For $m=1 \quad\left(\partial^{2}+W^{(2)}(x)\right) \Psi=0$
- For $m=2 \quad\left(\partial^{3}+4 W^{(2)}(x) \partial+2 \partial W^{(2)}(x)+W^{(3)}(x)\right) \Psi=0$

$$
\begin{aligned}
& - \text { For } m=3 \quad\left(\partial^{4}+10 W^{(2)}(x) \partial^{2}+\left(10 \partial W^{(2)}(x)+6 W^{(3)}(x)\right) \partial+\right. \\
& \left.\quad+\left(9 W^{(2)}(x)^{2}+3 \partial^{2} W^{(2)}(x)+3 \partial W^{(3)}(x)+W^{(4)}(x)\right)\right) \Psi=0
\end{aligned}
$$

*It corresponds to the situation $\alpha_{4}=\frac{1}{2 b}-\frac{m b}{2}$ and hence in the operator product expansion $V_{-\frac{1}{2 \beta}}(z) V_{\alpha_{4}}(x)$ appears the degenerate field $V_{-\frac{m b}{2}}$.

Integrable potentials and conformal blocks

- We consider again the generalized Lamé heat equation

$$
\left[\partial_{u}^{2}-\mathbb{U}(u \mid \tau)+\frac{4 i}{\pi b^{2}} \partial_{\tau}\right] \Psi(u \mid \tau)=0
$$

with

$$
\mathbb{U}(u \mid \tau)=\sum_{j=1}^{4} s_{j}\left(s_{j}+1\right) \wp\left(u-\omega_{j}\right)
$$

- We propose that for $s_{k}=m_{k}+\frac{2 n_{k}}{b^{2}}$ equation is integrable
- For example let $s_{1}=s_{2}=s_{3}=0$ and $s_{4}=1$

$$
\Psi(u \mid q)=\int_{0}^{\pi}\left(\frac{\Theta_{1}(v)}{\Theta_{1}^{\prime}(0)^{\frac{1}{3}}}\right)^{b^{2}} \frac{E(u+v)}{E(u) E(v)} \Psi_{0}\left(u+b^{2} v \mid q\right) d v
$$

where Ψ_{0} is the solution of the heat equation and $E(u)=\frac{\Theta_{1}(u)}{\Theta_{1}^{\prime}(0)}$

- In the dual case $s_{1}=s_{2}=s_{3}=0$ and $s_{4}=\frac{2}{b^{2}}$

$$
\Psi(u \mid q)=\Theta_{1}^{\prime}(0)^{\frac{2}{3}\left(1-\frac{2}{b^{2}}\right)} \int_{0}^{\pi}\left(\frac{\Theta_{1}(v)}{\Theta_{1}^{\prime}(0)^{\frac{1}{3}}}\right)^{\frac{4}{b^{2}}}\left(\frac{E(u+v)}{E(u) E(v)}\right)^{\frac{2}{b^{2}}} \Psi_{0}(u+2 v \mid q) d v
$$

- For general $s_{k}=m_{k}+\frac{2 n_{k}}{b^{2}}$, we expect solution is likely to be given by an integral of dimension

$$
N=g+n_{1}+n_{2}+n_{3}+n_{4},
$$

where g is the number of gaps for the classical potential

$$
g=\frac{1}{2}\left(2 \max m_{k}, 1+\mathrm{m}-\left(1+(-1)^{\mathrm{m}}\right)\left(\min m_{k}+\frac{1}{2}\right)\right),
$$

here $\mathrm{m}=\sum m_{k}$. For example, for $s_{1}=s_{2}=s_{3}=0$ and $s_{4}=m$

$$
\begin{aligned}
& \Psi(u \mid q)= \int_{0}^{\pi} . . \int_{0}^{\pi} \prod_{k=1}^{m}\left(\frac{\Theta_{1}\left(v_{k}\right)}{\Theta_{1}^{\prime}(0)^{\frac{1}{3}}}\right)^{m b^{2}} \\
& \prod_{i<j}\left|\frac{\Theta_{1}\left(v_{i}-v_{j}\right)}{\Theta_{1}^{\prime}(0)^{\frac{1}{3}}}\right|^{-b^{2}} \\
& \prod_{k=1}^{m} \frac{E\left(u+v_{k}\right)}{E(u) E\left(v_{k}\right)} \psi_{0}\left(u+b^{2} v \mid q\right) d v_{1} \ldots d v_{m},
\end{aligned}
$$

- In order to obtain the conformal block one has to take instead of Ψ_{0}

$$
\Psi_{P}^{ \pm}(u \mid q)=q^{P^{2}} e^{ \pm 2 b^{-1} P u}
$$

and take the limit $u \rightarrow 0$

- Let us define:

$$
\mathcal{H}_{m}^{(P)}(q) \stackrel{\text { def }}{=} \mathfrak{H}_{P}\left(\left.\begin{array}{cc}
\frac{Q}{2}-\frac{b}{4} & \frac{Q}{2}-\frac{b}{4} \\
-\frac{(2 m-1) b}{4} & \frac{Q}{2}-\frac{b}{4}
\end{array} \right\rvert\, q\right)
$$

then

$$
\mathcal{H}_{m}^{(P)}(q)=N_{m}^{-1} \int_{0}^{\pi} \ldots \int_{0}^{\pi} e^{2 b P\left(u_{1}+\cdots+u_{m}\right)} \prod_{k=1}^{m} E\left(u_{k}\right)^{m b^{2}} \prod_{i<j}\left|E\left(u_{i}-u_{j}\right)\right|^{-b^{2}} d \vec{u}
$$

where N_{m} is the normalization constant

- The product of structure constants simplifies drastically

$$
\begin{aligned}
C\left(-\frac{(2 m-1) b}{4}, \frac{Q}{2}-\frac{b}{4}, \frac{Q}{2}\right. & +i P) C\left(\frac{Q}{2}-i P, \frac{Q}{2}-\frac{b}{4}, \frac{Q}{2}-\frac{b}{4}\right) \sim \\
& \sim 16^{-2 P^{2}} \prod_{k=1}^{m} \gamma\left(i b P-\frac{k b^{2}}{2}\right) \gamma\left(-i b P-\frac{k b^{2}}{2}\right) .
\end{aligned}
$$

- The integral over the intermediate momentum P goes as shown

- This deformation of the contour is prescribed by the condition that the four-point correlation function is single-valued
- Surprisingly, the result of integration over the momentum P is given by a multiple integral over the torus T with periods π and $\pi \tau$

$$
\begin{aligned}
& \int_{\mathcal{C}} \frac{|q|^{2 P^{2}} \mathfrak{F}_{m}(P \mid \tau) \mathfrak{F}_{m}\left(-P \mid \tau^{*}\right)}{\prod_{k=1}^{m} \sin \left(\pi\left(i b P+\frac{k b^{2}}{2}\right)\right) \sin \left(\pi\left(i b P-\frac{k b^{2}}{2}\right)\right)} d P= \\
& =\Lambda_{m}(\operatorname{Im}(\tau))^{-1 / 2} \int_{T} \ldots \int_{T} \prod_{k=1}^{m} \mathcal{E}\left(u_{k}, \bar{u}_{k}\right)^{m b^{2}} \prod_{i<j} \mathcal{E}\left(u_{i}-u_{j}, \bar{u}_{i}-\bar{u}_{j}\right)^{-b^{2}} d^{2} \vec{u}
\end{aligned}
$$

where

$$
\begin{gathered}
\mathfrak{F}_{m}(P \mid \tau) \stackrel{\text { def }}{=} \int_{0}^{\pi} \ldots \int_{0}^{\pi} e^{2 b P\left(u_{1}+\cdots+u_{m}\right)} \prod_{k=1}^{m} E\left(u_{k}\right)^{m b^{2}} \prod_{i<j}\left|E\left(u_{i}-u_{j}\right)\right|^{-b^{2}} d \vec{u} \\
\mathcal{E}(u, \bar{u})=E(u) \bar{E}(\bar{u}) e^{-\frac{2(\operatorname{Im} u)^{2}}{\pi \operatorname{Im} \tau}}
\end{gathered}
$$

- We note that this integral representation looks like Coulomb gas representation of the one-point correlation function of the operator $V_{-m b^{\prime}}$ in LFT with parameter $b^{\prime}=\frac{b}{\sqrt{2}}$ on a torus
- Let us define function $\mathcal{T}(\alpha, b \mid q)$ in Liouville field theory with cosmological constant μ and coupling constant b on a torus

$$
\mathcal{T}(\alpha, b \mid q) \stackrel{\text { def }}{=}\left[\pi \mu \gamma\left(b^{2}\right) b^{2-2 b^{2}}\right]^{\frac{\alpha}{b}}|\eta(\tau)|^{-4 \Delta(\alpha)}\left\langle V_{\alpha}\right\rangle_{\tau}
$$

We define also the function $\mathcal{S}(\alpha, b \mid q)$ which is related to the four-point correlation function in LFT on sphere as (here $\zeta=\frac{Q}{2}-\frac{b}{4}$)

$$
\begin{aligned}
\mathcal{S}(\alpha, b \mid q) \stackrel{\text { def }}{=}\left[\pi \mu \gamma\left(b^{2}\right) b^{2-2 b^{2}}\right]^{\frac{\alpha}{b}+\frac{1}{2 b}-\frac{1}{4}} & \times \\
& \times|x(x-1)|^{\frac{4}{3} \Delta(\alpha)}\left\langle V_{\alpha}(x, \bar{x}) V_{\zeta}(0) V_{\zeta}(1) V_{\zeta}(\infty)\right\rangle .
\end{aligned}
$$

- The correspondence between the one-point toric and the four-point spheric correlation functions states that

$$
\mathcal{S}(\alpha, b \mid q)=\aleph\left(\left(\alpha-\frac{b}{4}\right) \sqrt{2}, \frac{b}{\sqrt{2}}\right) \mathcal{T}\left(\left(\alpha-\frac{b}{4}\right) \sqrt{2}, \left.\frac{b}{\sqrt{2}} \right\rvert\, q\right)
$$

where $\mathcal{\aleph}(\alpha, b)$ is given by

$$
\aleph(\alpha, b)=\frac{\Upsilon_{b}(\alpha)}{\Upsilon_{b}\left(\frac{1}{2 b}\right)} \frac{\Upsilon_{b}\left(\frac{1}{b}\right)}{\Upsilon_{b}\left(\alpha+\frac{1}{2 b}\right)}
$$

Conformal blocks and Nekrasov partition function

One-point conformal block $\mathcal{F}_{\alpha}^{(\Delta)}(q)$ is defined as the contribution to the trace of the conformal family with conformal dimension $\Delta=\frac{Q^{2}}{4}+P^{2}$

$$
\mathcal{F}_{\alpha}^{(\Delta)}(q) \stackrel{\text { def }}{=} \operatorname{Tr}_{\Delta}\left(q^{L_{0}-\frac{c}{24}} V_{\alpha}(0)\right)=1+\frac{2 \Delta+\Delta^{2}(\alpha)-\Delta(\alpha)}{2 \Delta} q+\ldots
$$

It was proposed by Alday, Gaiotto and Tachikawa that

$$
\mathcal{F}_{\alpha}^{(\Delta)}(q)=\left(\frac{q^{\frac{1}{24}}}{\eta(\tau)}\right)^{2 \Delta(\alpha)-1} Z\left(\varepsilon_{1}, \varepsilon_{2}, m, a\right)
$$

where $Z\left(\varepsilon_{1}, \varepsilon_{2}, m, a\right)$ is the instanton part of the Nekrasov partition function in $\mathcal{N}=2^{*} U(2)$ SYM with

$$
P=\frac{a}{\hbar}, \quad \alpha=\frac{m}{\hbar}, \quad \varepsilon_{1}=\hbar b, \quad \varepsilon_{2}=\frac{\hbar}{b}
$$

where a is VEV of scalar field, m is the mass of the adjoint hypermultiplet and ε_{k} are the parameters of the Ω background. Parameter q is given by

$$
q=e^{2 i \pi \tau}, \quad \text { where } \quad \tau=\frac{4 i \pi}{g^{2}}+\frac{\theta}{2 \pi}
$$

Nekrasov partition function

$$
Z\left(\varepsilon_{1}, \varepsilon_{2}, m, a\right)=1+\sum_{k=1}^{\infty} q^{k} \mathfrak{Z}_{k}
$$

can be represented as a sum over partitions. Let $\vec{Y}=\left(Y_{1}, Y_{2}\right)$ be the pair of Young diagrams with the total numbers of cells equal to N. Then

$$
\mathfrak{Z}_{N}=\sum_{\vec{Y}} \prod_{i, j=1}^{2} \prod_{s \in Y_{i}} \frac{\left(E_{i j}(s)-\alpha\right)\left(Q-E_{i j}(s)-\alpha\right)}{E_{i j}(s)\left(Q-E_{i j}(s)\right)}
$$

where

$$
E_{i j}(s)=2 P \epsilon_{i j}-b H_{Y_{j}}(s)+b^{-1}\left(V_{Y_{i}}(s)+1\right)
$$

$H_{Y}(s)$ and $V_{Y}(s)$ are respectively the horizontal and vertical distance from the square s to the edge of the diagram Y.

- AGT relation can proved using AI. Zamolodchikov's recursive formula
- Seiberg-Witten prepotential can be obtained in the limit $\hbar \rightarrow 0$

$$
Z\left(\varepsilon_{1}, \varepsilon_{2}, m, \vec{a}\right) \rightarrow \exp \left(\frac{1}{\hbar^{2}} \mathcal{F}(m, \vec{a} \mid q)+O(1)\right)
$$

- Let us consider two-point function with one degenerate field

$$
\Psi(z) \sim\left\langle V_{-\frac{b}{2}}(z) V_{\alpha}(0)\right\rangle
$$

This function satisfies Scrödinger equation

$$
\left(-\partial_{z}^{2}+\frac{b^{2} m^{2}}{\hbar^{2}} \wp(z)\right) \Psi(z)=\frac{i b^{2}}{\pi} \partial_{\tau} \Psi(z)
$$

We look for the solution in the form

$$
\Psi(z)=\exp \left(\frac{1}{\hbar^{2}} \mathcal{F}(q)+\frac{b}{\hbar} \mathcal{W}(z \mid q)+\ldots\right)
$$

WKB approximation gives

$$
\mathcal{W}(z \mid q)=\int \sqrt{E(q)-m^{2} \wp(z)} d z
$$

where $E(q)=4 q \partial_{q} \mathcal{F}(q)$ is given by

$$
\oint_{A} \sqrt{E(q)-m^{2} \wp(z)} d z=2 \pi a
$$

