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Liouville theory
Lagrangian: £ = 3=(0ap)? + pe?*?
Central charge: ¢; =14 6Q% where Q = b —|—%
Primary fields: V., = e2®% have conformal dimensions A(a) = a(Q—a)

Three-point function (Dorn-Otto-Zamolodchikov-Zamolodchikov):
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e Conformal block: gp(g? gi

e Elliptic block (Al. Zamolodchikov):
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where q = T with 7 = ZKI(<1(:;;§C)' satisfies a recursive relation which

leads to an effective algorithm for calculation of its expansion in power
series of ¢ (which is more convenient for numerical studies than the
ordinary x expansion)




e Degenerate fields V, with a = amn = —”Sb — 5 have a null-vector
in their Verma module at level (m + 1)(n + 1) and hence four-point
function satisfies Fuchsian ordinary differential equation of the same
order (Belavin-Polyakov-Zamolodchikov 1984). An explicit integral
representaion for the solution to this equation can be obtained. For
example in the case n = 0 one has
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e However, for several important purposes one needs the differential
operator for the four-point correlation function in explicit form.



e \We consider five-point function
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with v = IR (@) Io eIk One finds, that W(u|r) satisfies:
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parameters s; are related with oy as o = % — g (sk + %) and wj are
half periods.

e One can try to find a solution to (*) in a form
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e Function W(r) = (W1(7)> satisfies
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e One can notice that if the parameter s4 in eq (**) from the previous

slide takes the values*
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then the infinite chain of equations (**) has a finite sub-chain. Due
to the triangle form of (**) it is easy to conclude that the function

W (7) satisfies a differential equation of the order (m 4+ 1). Examples
are (here W) (z) = (40)kw (k) (1))

— For m =1 <82 + W(2>(a;)) W =0

— For m =2 (03 + 4W ) ()0 + 20W () (z) + W(3)(w)) W =0
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*It corresponds to the situation as = %—%b and hence in the operator product expansion

V_ﬁ(z)vm(:c) appears the degenerate field V_.w.



Integrable potentials and conformal blocks

e \We consider again the generalized Lamé heat equation
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e \We propose that for sp = my + % equation is integrable
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In the dual case s1 =sp, =s3 =0 and s; = >
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For general s = my + % we expect solution is likely to be given by

an integral of dimension

N = g +n1 + n2 + n3 + ng4,
where g is the number of gaps for the classical potential
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here m = ) m;. For example, for s; = s, =s3 =0 and sz = m
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e In order to obtain the conformal block one has to take instead of W
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and take the limit «w — O

e Let us define:
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where N,, IS the normalization constant

e [ he product of structure constants simplifies drastically
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e [ he integral over the intermediate momentum P goes as shown
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e [ his deformation of the contour is prescribed by the condition that
the four-point correlation function is single-valued
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Surprisingly, the result of integration over the momentum P is given
by a multiple integral over the torus 1" with periods = and =«
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We note that this integral representation looks like Coulomb gas rep-
resentation of the one-point correlation function of the operator V__
in LFT with parameter ¥ = -2 on a torus
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e Let us define function 7 (a,b|q) in Liouville field theory with cosmo-
logical constant u and coupling constant b on a torus
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We define also the function S(«, b|q) which is related to the four-point

correlation function in LFT on sphere as (here { = % — %)
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e [ he correspondence between the one-point toric and the four-point
spheric correlation functions states that
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Conformal blocks and Nekrasov partition function

One-point conformal block ]—"a )(q) is defined as the contribution to the
trace of the conformal family with conformal dimension A = QT + P2

2A + A?(a) — A(a)
2
It was proposed by Alday, Gaiotto and Tachikawa that
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where Z(e1,e2, m,a) is the instanton part of the Nekrasov partition func-
tion in NN =2* U(2) SYM with
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where a is VEV of scalar field, m is the mass of the adjoint hypermultiplet
and ¢, are the parameters of the {2 background. Parameter ¢q is given by
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Nekrasov partition function
R k
Z(e1,e0,m,a) =1+ Z q" 3,
k=1

can be represented as a sum over partitions. Let Y = (Y1, Y>) be the pair
of Young diagrams with the total numbers of cells equal to N. Then

B 2 (Eij(s) —a)(Q — E;(s) — a)
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where
E;ij(s) = 2P¢jj — bHy (s) + b1 (Vy,(s) + 1),

Hy (s) and Vi (s) are respectively the horizontal and vertical distance from
the square s to the edge of the diagram Y.

e AGT relation can proved using Al. Zamolodchikov's recursive formula



e Seiberg-Witten prepotential can be obtained in the limit h — 0O
1
Z(e1,20,m,8) — exp (15 F (m,@la) + 0(1))

e Let us consider two-point function with one degenerate field

W(z) ~ <V_g(z)Va(0)>
This function satisfies Scrodinger equation
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We look for the solution in the form
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WHKB approximation gives
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where E(q) = 4q904F (q) is given by
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