On Confining Interactions in 141
A.Zamolodchikov

Conference in the Memory of Aliosha Zamolodchikov
Saclay/ENS 2009






"It's great that it [some result] is exact, but is it correct?”

Aliosha



e P.Fonseca, AZ, 2001

e P.Fonseca, AZ; 2006

e V.Fateev, S.Lukyanov, AZ, 2009



Confinement is rather common phenomenon in 141 models

Its mechanism is relatively simple:

£ g + At

V = Ae |z1 — x9]

Confining potential — Tower of “Meson” states (stable & resonances)

May occure due to:

e Adding perturbation which lifts vacuum degeneracy from spon-
taneously broken symmetry; “Quarks” are domain walls.

e Presence of gauge field (abeelian or non-abelian), Ae ~ E.

The two may be related through bosonization (QED>)



Typical model:

L= (06~ V(9)

Vyymnf @) Vymnk @) + N Vogymnf @)

Confining interaction between the kinks (‘“quarks’)

g + At




Details may depend on specific model, but basic physics is con-
trolled by one (dimensionless) parameter

Ae
52—2
my

The “string tension” Ae may deepend on h (as well as on other
parameters of the model), but at small h

Ae ~ h

In physical system £ is real and > 0, but it is interesting to study
analytic properties of physical quantities (eg(&), Mn(£), etc) as the
functions of complex &.

Basic analytic features are expected to be universal, i.e. shared
by all confining interactions in 141.



One is well-known: There is essential singularity at € = 0 (Andreev
(1967), Fisher (1964), Langer (1967), Kobzarev, Okun, Voloshin
(1975), Coleman (1977))

Veymm (@) + h Vasymm (¢)

Analytic continuation to negative h turns vacuum into ‘false vac-
uum”

Yymnf @) + WV, (@) Voo @) = h Vigymm(@ )

" " :

vacuum

“False vacuum’ decay:

T

Smeg(€) ~ (=€) e I at ¢<O0.



disc( €9) ~ i (~& ) exp(TU/E)

Do we encounter other singularities as we go under the branch
cut?

Proposition:

e [ here are infinitely many singularities under the branch cut,
accumulating towards & = 0.

e The singularities are critical points (R, diverges), with scaling,
critical exponents, and all that.




Generally, physical nature of these singularities is yet to be under-
stood.

Subject of this talk: Evidence for their presence.

Some complex singularities are expected: “Quantum spinodal”

&= Espi nodal




Why infinitely many? Any one of the "meson” masses M, (£) may
turn to zero at certain (complex) values of €.

Simple WKB analysis (generally valid at small £): Two quarks
with linear confining interaction,

H = w(p1) +w(p2) + Ae |1 — z2|

Periodic motion — Quantization condition:

sinh(20) =20 =n¢ (n+1/2), n=0,1,2,...

My = 2mg cosh 0, .
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My = 2mg cosh 0,, turns to zero when

This happens at




In fact, the leading WKB breaks down when 6 gets close to inw/2.

sinh(20) =20 =& (n+1/2) + €2 51(0) + €3 95(0) + ...

where S1(0),S5(0),... have poles at § = in/2.

More elaborated approach is needed.

Two models:

e Ising Field Theory in a magnetic field
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Ising Field Theory

Yymnt @)

Symmetry restoration transition

(Universality class of 2D Ising)

L=—9(19)Y —mgyp —ho
o(x)- "spin field” .

Spontaneous magnetization at h = 0,
5= (o) = (21/12 .—1/8 A3/2) m;/8
At small h
Ae = 2ho
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1 mq

= £8/15 — 1,8/15

YL = "Quantum spinodal” = 2D CFT with ¢ = —-22/5
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Mass spectrum of IFT (numerical)
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Mass spectrum M_n(eta) in IFT

1 mq

= £8/15 — 1,8/15
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Magnetic field h — Confining interaction between the " quarks”

Ae = 25 h 4+ O(h3)

Meson states

d
| My, P) :/%wn(ap) al, ah | 0)+ ..

Weak coupling (small h):

Keeping some multi-quark terms, as needed for Lorentz invariance
= Bethe-Salpeter equation

Rapidity variables:

Py —I—p_|_=mqeﬁ+9, P_|_—p_|_=mqeﬁ_9

LLorentz invariance: W,, depends only on 6.
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Bethe-Salpeter equation

M? o0 do’
2 n / /
my — v,(0) = A / G(0|0") Vp(0') —
[ d 4cosh20] n(9) " ) (0167 Wn( )27r
['he kernel
h( — ¢ 1 sinh@® sinho’
016"y = 2 cosh( ) sin sin

sinh2(0 — ') ' 4 cosh2 cosh2 ¢’
has second-order pole at § = 6/ — Confining interaction.

= Tower of eigenvalues M,(n), n=1,2,3,...
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Real n = mg/|h|8/15
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Analysis of the BS equation shows infinite set <1)5f singularities
(square-root) at complex n ( = at complex £ =n~ 8):

() 3

/4T15 \ =

MfBS)(n) ~ (n— 77Y|_)1/2 in BS approximation
Mi(n) ~ (n—mnyv)>/12 in full theory
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In IFT the BS equation is an approximation (uncontrolled at finite
n), as it ignores multi-meson states.

Q: Do the complex singularities exist in full theory?
Physics is similar to QCD»>. At N, = oo the BS approximation is
exact ('t Hooft, 1974)

Q': Do similar singularities exist in 't Hooft's model of mesons?
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t" Hooft’'s model: QCD»

Ne¢ —
4g

At N, = oo the Bethe-Salpeter equation is exact.

o o 1 e(y) _ 2
[ngl_x]sO(w)— /O dy (y_x)z—% A p(z)

7Tm2

oz=—2q—1, M2=27792)\.
Y

Spectral problem for A  {An(a)}.

Analytic properties of \p(«) at complex o7 Singular points?
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Singularity at a« = —1. Chiral limit mq — O:

M% ~ mgg — Agla) ~ Va+1

Critical point. At finite N,

Ne WZW [Griayor] + wtr [Gflavor + GT

flavor]

For Gfjayor = U(Ny)

_1_ 1.2/ A N¢Ne+1 Ny

1-A
pr~mg T gita, = ~
d 2Nc(Ng+ Ne)  2Nc

[Gepner, 1985; Affleck, 1986]

Other (complex) singularities?
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Rapidity form: z = % (1 4 tanh )

[204— X ]w(e):/_oo G(6— 0') W (0) db

cosh?2 6
1
G0 -0 =
( ) sinh2(6 — ")
has second-order pole at 6§ = ¢’.
Yet more convenient form
oo :
W (0) :/ 22 el @ (v)
—o0 2T
pY o0
a4+~ cothlao@) =22 A S(v — ') ()
2 2 2 J—
v

S(v) =

25inh%’/
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e ®(v) is meromorphic function of v, with poles at
Vi —I- QiN, — V] — QiN,
with N =0,1,2,..., and v; - roots of

w4 i
—coth— =20
at >

with Smy; > 0 at real a > —1
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e At complex a the pole —yg can wander into the upper half-plane,
and at special o it hits another pole there.

§\
o /
) v
=
L
—i
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e This gives rise to singularities (square-root branching points of
An(a)) at

ap = —% [1 4 cosh(my)]

Sil’]h(ﬂ'Vk)—ﬂ'Vk:O ) §R€Vk§0

Singular points in alpha-plane, under the branch cut

20
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-10 X
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n=va+1l ~ mq/gzl/\/g

Singular points in the plabe of sqgrt(alpha+1)
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Proposition: n; are critical points:

Aop(a) ~ /n—mng



The operator

S:d(v) — /OO dv' S(v—1v)d)

— 00
IS inverse to a finite-difference operator = Finite difference equa-
tion

Qv +21) + Qv —2i) —2Q(v) =U) Q)
for
Qv) = [a sinh > + B3 cosh ?] d(v)
with

% 771/] —1

U =22/\[ ~~ coth ==
(v) T oz—l—2 5

Baxter's TQ equation (with T'(v) =24+ U(v))

Analytic results for Ap(«)
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1. Systematic large-n expansions of )\n(a):

2 C
n=2Xx- " log(2\) — Co(a) + + 2/\(200

T

_|_

;3 [C’3(a) (= )RSSJ“ @) (|og (zm\e’YE) —I—C”3(a))] +
where
Cola) = — —|— 2—a log (47re7E)
a_2/oo dt sinh(t) (sinh(2t) — 2t)
212 J—co t cosh2(t) (a sinh(¢) + t cosh(t)) ’
Ca(e) = 5 5 [a®+ (1" (1 + )]
Ca(0) = 5 [Ba* + 72 (1 +a)?]
CL(a) :_1—|—33a+% /_O:Odt sinh(2t) — 2t

t sinh(t) ( sinh(t) 4+ ¢ cosh(t) ) -

['t Hooft, 1974; Brauer, Spence, Weis, 1979; Fateev, Lukyanov,
AZ, 2009]
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2. Exact sum rules:

(D — N 1 ), & 1
G = —, GY =
+ (a) mzz:O )‘%m(a) (a) mzz:O A%m-l—l(a)

G\ (a) = log(8r) —2+£1—
a (oo dt sinh(¢) (sinh(2t) £+ 2t)
4 J-0o t cosh?(t) (asinh(t) 4+t cosh(t))

D)~ (a—a)™2,  G(a) ~ (a—ap)t/?

oy, are critical points: M2, (ay,) ~ /o — ay.
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Speculation: N, < oo,
M3 (a) ~ (o — ay)k

with critical exponents

ay are likely to become non-trivial (non-unitary) CFT.

Q: What kind of criticality «; correspond to?

Requires study of finite N, QCD».
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Summary:

e Ne = o0 QCD» has infinitely many critical points at complex
o= mg/g2 —1

e [ his phenomenon seems to be common for confining theories
in 141 (e.g. IFT in a magnetic field).
Questions:

e \What these critical points try to tell us about basic mechanism
of confinement?

e Are similar singularities present in 4D7

e \What would Aliosha say?
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