On Confining Interactions in $1+1$

A.Zamolodchikov

Conference in the Memory of Aliosha Zamolodchikov Saclay/ENS 2009
"It's great that it [some result] is exact, but is it correct?"

Aliosha

- P.Fonseca, AZ, 2001
- P.Fonseca, AZ; 2006
- V.Fateev, S.Lukyanov, AZ, 2009

Confinement is rather common phenomenon in $1+1$ models
Its mechanism is relatively simple:

Confining potential \rightarrow Tower of "Meson" states (stable \& resonances)

May occure due to:

- Adding perturbation which lifts vacuum degeneracy from spontaneously broken symmetry; "Quarks" are domain walls.
- Presence of gauge field (abeelian or non-abelian), $\Delta \varepsilon \sim E$.

The two may be related through bosonization $\left(Q E D_{2}\right)$

Typical model:

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-V(\phi)
$$

$$
\mathrm{V}_{\text {symm }}(\phi)
$$

$$
\mathrm{V}_{\text {symm }}(\phi)+\mathrm{h} \mathrm{~V}_{\text {asymm }}(\phi)
$$

Confining interaction between the kinks ("quarks")

Details may depend on specific model, but basic physics is controlled by one (dimensionless) parameter

$$
\xi=\frac{\Delta \varepsilon}{m_{q}^{2}}
$$

The "string tension" $\Delta \varepsilon$ may deepend on h (as well as on other parameters of the model), but at small h

$$
\Delta \varepsilon \sim h
$$

In physical system ξ is real and ≥ 0, but it is interesting to study analytic properties of physical quantities $\left(\varepsilon_{0}(\xi), M_{n}(\xi)\right.$, etc) as the functions of complex ξ.

Basic analytic features are expected to be universal, i.e. shared by all confining interactions in $1+1$.

One is well-known: There is essential singularity at $\xi=0$ (Andreev (1967), Fisher (1964), Langer (1967), Kobzarev, Okun, Voloshin (1975), Coleman (1977))

$$
V_{\text {symm }}(\phi)+h \operatorname{Vasymm}(\phi)
$$

Analytic continuation to negative h turns vacuum into "false vacuum"

$$
\mathrm{V}_{\text {symn }}(\phi)+\mathrm{h} \mathrm{~V}_{\text {asymm }}(\phi)
$$

$$
\mathrm{V}_{\text {symm }}(\phi)-\mathrm{h} \mathrm{~V}_{\text {asymm }}(\phi)
$$

vacuum
"False vacuum" decay:

$$
\Im m \varepsilon_{0}(\xi) \sim(-\xi) e^{-\frac{\pi}{|\xi|}} \quad \text { at } \quad \xi<0 .
$$

Do we encounter other singularities as we go under the branch cut?

Proposition:

- There are infinitely many singularities under the branch cut, accumulating towards $\xi=0$.
- The singularities are critical points (R_{c} diverges), with scaling, critical exponents, and all that.

Generally, physical nature of these singularities is yet to be understood.

Subject of this talk: Evidence for their presence.

Some complex singularities are expected: "Quantum spinodal"

$$
\xi=\xi_{\text {spinodal }}
$$

Why infinitely many? Any one of the " meson" masses $M_{n}(\xi)$ may turn to zero at certain (complex) values of ξ.

Simple WKB analysis (generally valid at small ξ): Two quarks with linear confining interaction,

$$
H=\omega\left(p_{1}\right)+\omega\left(p_{2}\right)+\Delta \varepsilon\left|x_{1}-x_{2}\right|
$$

Periodic motion \rightarrow Quantization condition:

$$
\begin{gathered}
\sinh (2 \theta)-2 \theta=\pi \xi(n+1 / 2), \quad n=0,1,2, \ldots \\
M_{n}=2 m_{q} \cosh \theta_{n} .
\end{gathered}
$$

$$
\xi=|\xi| e^{i \phi}
$$

$M_{n}=2 m_{q} \cosh \theta_{n}$, turns to zero when
θ_{n} hits $i \pi / 2$
This happens at

$$
\xi_{n}=\frac{e^{\frac{3 \pi i}{2}}}{n+1 / 2}
$$

In fact, the leading WKB breaks down when θ gets close to $i \pi / 2$.

$$
\sinh (2 \theta)-2 \theta=\pi \xi(n+1 / 2)+\xi^{2} S_{1}(\theta)+\xi^{3} S_{2}(\theta)+\ldots
$$

where $S_{1}(\theta), S_{2}(\theta), \ldots$ have poles at $\theta=i \pi / 2$.

More elaborated approach is needed.

Two models:

- Ising Field Theory in a magnetic field
- QCD_{2} at $N_{c}=\infty$

Ising Field Theory

Symmetry restoration transition
(Universality class of 2D Ising)

$$
\mathcal{L}=-\bar{\psi}(\gamma \partial) \psi-m_{q} \bar{\psi} \psi-h \sigma
$$

$\sigma(x)$ - "spin field".

Spontaneous magnetization at $h=0$,

$$
\bar{\sigma}=\langle\sigma\rangle=\left(2^{1 / 12} e^{-1 / 8} A^{3 / 2}\right) m_{q}^{1 / 8}
$$

At small h

$$
\Delta \varepsilon=2 h \bar{\sigma}
$$

$$
\eta=\frac{1}{\xi^{8 / 15}}=\frac{m_{q}}{h^{8 / 15}}
$$

$Y L=$ "Quantum spinodal" $\Rightarrow 2 D$ CFT with $c=-22 / 5$

Mass spectrum of IFT (numerical)

Magnetic field $h \rightarrow$ Confining interaction between the "quarks"

$$
\Delta \varepsilon=2 \bar{\sigma} h+O\left(h^{3}\right)
$$

Meson states

$$
\left|M_{n}, P\right\rangle=\int \frac{d p}{2 \pi} \Psi_{n}(P, p) \mathbf{a}_{P+p}^{\dagger} \mathbf{a}_{P-p}^{\dagger}|0\rangle+\ldots
$$

Weak coupling (small h):

Keeping some multi-quark terms, as needed for Lorentz invariance
\Rightarrow Bethe-Salpeter equation

Rapidity variables:

$$
P_{+}+p_{+}=m_{q} e^{\beta+\theta}, \quad P_{+}-p_{+}=m_{q} e^{\beta-\theta}
$$

Lorentz invariance: Ψ_{n} depends only on θ.

Bethe-Salpeter equation

$$
\left[m_{q}^{2}-\frac{M_{n}^{2}}{4 \cosh ^{2} \theta}\right] \Psi_{n}(\theta)=\Delta \varepsilon \int_{-\infty}^{\infty} G\left(\theta \mid \theta^{\prime}\right) \Psi_{n}\left(\theta^{\prime}\right) \frac{d \theta^{\prime}}{2 \pi}
$$

The kernel

$$
G\left(\theta \mid \theta^{\prime}\right)=2 \frac{\cosh \left(\theta-\theta^{\prime}\right)}{\sinh ^{2}\left(\theta-\theta^{\prime}\right)}+\frac{1}{4} \frac{\sinh \theta}{\cosh ^{2} \theta} \frac{\sinh \theta^{\prime}}{\cosh ^{2} \theta^{\prime}}
$$

has second-order pole at $\theta=\theta^{\prime} \rightarrow$ Confining interaction.
\Rightarrow Tower of eigenvalues $M_{n}(\eta), n=1,2,3, \ldots$

Real $\eta=m_{q} /|h|^{8 / 15}$

Analysis of the BS equation shows infinite set of singularities (square-root) at complex η (\equiv at complex $\xi=\eta^{-\frac{15}{8}}$):

E.g.

$$
\begin{aligned}
& M_{1}^{(\mathrm{BS})}(\eta) \sim\left(\eta-\eta_{\mathrm{YL}}\right)^{1 / 2} \\
& M_{1}(\eta) \sim\left(\eta-\eta_{\mathrm{YL}}\right)^{5 / 12}
\end{aligned}
$$

in BS approximation
in full theory

In IFT the BS equation is an approximation (uncontrolled at finite η), as it ignores multi-meson states.

Q: Do the complex singularities exist in full theory?

Physics is similar to QCD_{2}. At $N_{c}=\infty$ the BS approximation is exact ('t Hooft, 1974)

Q': Do similar singularities exist in 't Hooft's model of mesons?
t' Hooft's model: QCD 2

$$
\mathcal{L}=\frac{N_{c}}{4 g^{2}} \operatorname{tr}\left(F^{2}\right)-\bar{\psi}\left(\gamma D+m_{q}\right) \psi, \quad D_{\mu}=\partial_{\mu}+A_{\mu}
$$

At $N_{c}=\infty$ the Bethe-Salpeter equation is exact.

$$
\begin{gathered}
{\left[\frac{\alpha}{x}+\frac{\alpha}{1-x}\right] \varphi(x)-\int_{0}^{1} \mathrm{~d} y \frac{\varphi(y)}{(y-x)^{2}}=2 \pi^{2} \lambda \quad \varphi(x)} \\
\alpha=\frac{\pi m_{q}^{2}}{g^{2}}-1, \quad M^{2}=2 \pi g^{2} \lambda
\end{gathered}
$$

Spectral problem for λ : $\quad\left\{\lambda_{n}(\alpha)\right\}$.

Analytic properties of $\lambda_{n}(\alpha)$ at complex α ? Singular points?

Singularity at $\alpha=-1$. Chiral limit $m_{q} \rightarrow 0$:

$$
M_{\pi}^{2} \sim m_{q} g \quad \rightarrow \quad \lambda_{0}(\alpha) \sim \sqrt{\alpha+1}
$$

Critical point. At finite N_{c}

$$
N_{c} \mathrm{WZW}\left[G_{\text {flavor }}\right]+\mu \operatorname{tr}\left[G_{\text {flavor }}+G_{\text {flavor }}^{\dagger}\right]
$$

For $G_{\text {flavor }}=U\left(N_{f}\right)$

$$
\mu \sim m_{q}^{\frac{1}{1-\Delta}} g^{\frac{1-2 \Delta}{1-\Delta}}, \quad \Delta=\frac{N_{f} N_{c}+1}{2 N_{c}\left(N_{f}+N_{c}\right)} \sim \frac{N_{f}}{2 N_{c}}
$$

[Gepner, 1985; Affleck, 1986]

Other (complex) singularities?

Rapidity form: $x=\frac{1}{2}(1+\tanh \theta)$

$$
\begin{aligned}
{\left[2 \alpha-\frac{\pi^{2} \lambda}{\cosh ^{2} \theta}\right] \Psi(\theta) } & =\int_{-\infty}^{\infty} G\left(\theta-\theta^{\prime}\right) \Psi(\theta) d \theta \\
G\left(\theta-\theta^{\prime}\right) & =\frac{1}{\sinh ^{2}\left(\theta-\theta^{\prime}\right)}
\end{aligned}
$$

has second-order pole at $\theta=\theta^{\prime}$.

Yet more convenient form

$$
\begin{gathered}
\psi(\theta)=\int_{-\infty}^{\infty} \frac{d \nu}{2 \pi} e^{i \nu \theta} \Phi(\nu) \\
{\left[\alpha+\frac{\pi \nu}{2} \operatorname{coth} \frac{\pi \nu}{2}\right] \Phi(\nu)=\frac{\pi \lambda}{2} \int_{-\infty}^{\infty} d \nu^{\prime} S\left(\nu-\nu^{\prime}\right) \Phi\left(\nu^{\prime}\right)} \\
S(\nu)=\frac{\pi \nu}{2 \sinh \frac{\pi \nu}{2}}
\end{gathered}
$$

- $\Phi(\nu)$ is meromorphic function of ν, with poles at

$$
\nu_{l}+2 i N, \quad-\nu_{l}-2 i N,
$$

with $N=0,1,2, \ldots$, and ν_{l} - roots of

$$
\alpha+\frac{\pi \nu}{2} \operatorname{coth} \frac{\pi \nu}{2}=0
$$

with $\Im m \nu_{l} \geq 0$ at real $\alpha>-1$

- At complex α the pole $-\nu_{0}$ can wander into the upper half-plane, and at special α_{k} it hits another pole there.

- This gives rise to singularities (square-root branching points of $\left.\lambda_{n}(\alpha)\right)$ at

$$
\begin{gathered}
\alpha_{k}=-\frac{1}{2}\left[1+\cosh \left(\pi \nu_{k}\right)\right] \\
\sinh \left(\pi \nu_{k}\right)-\pi \nu_{k}=0, \quad \Re e \nu_{k} \leq 0
\end{gathered}
$$

$$
\eta=\sqrt{\alpha+1} \sim m_{q} / g=1 / \sqrt{\xi}
$$

Singular points in the plabe of sqrt(alpha +1)

Proposition: η_{k} are critical points:

$$
\lambda_{2 k}(\alpha) \sim \sqrt{\eta-\eta_{k}}
$$

The operator

$$
\widehat{S}: \Phi(\nu) \rightarrow \int_{-\infty}^{\infty} d \nu^{\prime} S\left(\nu-\nu^{\prime}\right) \Phi\left(\nu^{\prime}\right)
$$

is inverse to a finite-difference operator \Rightarrow Finite difference equation

$$
Q(\nu+2 i)+Q(\nu-2 i)-2 Q(\nu)=U(\nu) Q(\nu)
$$

for

$$
Q(\nu)=\left[\alpha \sinh \frac{\pi \nu}{2}+\frac{\pi \nu}{2} \cosh \frac{\pi \nu}{2}\right] \Phi(\nu)
$$

with

$$
U(\nu)=2 \pi^{2} \lambda\left[\alpha+\frac{\pi \nu}{2} \operatorname{coth} \frac{\pi \nu}{2}\right]^{-1}
$$

Baxter's TQ equation (with $T(\nu)=2+U(\nu)$)
Analytic results for $\lambda_{n}(\alpha)$

1. Systematic large- n expansions of $\lambda_{n}(\alpha)$:

$$
\begin{aligned}
n= & 2 \lambda-\frac{2 \alpha}{\pi^{2}} \log (2 \lambda)-C_{0}(\alpha)+\frac{\alpha^{2}}{\pi^{4} \lambda}+\frac{C_{2}(\alpha)}{\lambda^{2}}+ \\
& \frac{1}{\lambda^{3}}\left[C_{3}(\alpha)-\frac{(-)^{n}(1+\alpha)}{\pi^{6}}\left(\log \left(2 \pi \lambda \mathrm{e}^{\gamma_{E}}\right)+C_{3}^{\prime}(\alpha)\right)\right]+\ldots
\end{aligned}
$$

where

$$
\begin{aligned}
C_{0}(\alpha)= & \frac{3}{4}+\frac{2 \alpha}{\pi^{2}} \log \left(4 \pi \mathrm{e}^{\gamma_{E}}\right)- \\
& \frac{\alpha^{2}}{2 \pi^{2}} \int_{-\infty}^{\infty} \frac{\mathrm{d} t}{t} \frac{\sinh (t)(\sinh (2 t)-2 t)}{\cosh ^{2}(t)(\alpha \sinh (t)+t \cosh (t))}, \\
C_{2}(\alpha)= & \frac{1}{2 \pi^{6}}\left[\alpha^{3}+(-1)^{n} \pi^{2}(1+\alpha)\right], \\
C_{3}(\alpha)= & \frac{1}{12 \pi^{8}}\left[5 \alpha^{4}+\pi^{2}(1+\alpha)^{2}\right], \\
C_{3}^{\prime}(\alpha)= & -\frac{1+3 \alpha}{3}+\frac{\alpha}{8} \int_{-\infty}^{\infty} \mathrm{d} t \frac{\sinh (2 t)-2 t}{t \sinh (t)(\alpha \sinh (t)+t \cosh (t))} .
\end{aligned}
$$

['t Hooft, 1974; Brauer, Spence, Weis, 1979; Fateev, Lukyanov, AZ, 2009]
2. Exact sum rules:

$$
G_{+}^{(s)}(\alpha)=\sum_{m=0}^{\infty} \frac{1}{\lambda_{2 m}^{s}(\alpha)}, \quad G_{-}^{(s)}(\alpha)=\sum_{m=0}^{\infty} \frac{1}{\lambda_{2 m+1}^{s}(\alpha)}
$$

E.g.

$$
\begin{aligned}
& G_{ \pm}^{(1)}(\alpha)=\log (8 \pi)-2 \pm 1- \\
& \quad \frac{\alpha}{4} \int_{-\infty}^{\infty} \frac{\mathrm{d} t}{t} \frac{\sinh (t)(\sinh (2 t) \pm 2 t)}{\cosh ^{2}(t)(\alpha \sinh (t)+t \cosh (t))} .
\end{aligned}
$$

$$
G_{+}^{(s)}(\alpha) \sim\left(\alpha-\alpha_{k}\right)^{-s / 2}, \quad G_{-}^{(s)}(\alpha) \sim\left(\alpha-\alpha_{k}\right)^{1 / 2}
$$

α_{k} are critical points: $M_{2 k}^{2}\left(\alpha_{k}\right) \sim \sqrt{\alpha-\alpha_{k}}$.

Speculation: $N_{c}<\infty$,

$$
M_{2 k}^{2}(\alpha) \sim\left(\alpha-\alpha_{k}\right)^{\beta_{k}}
$$

with critical exponents

$$
\beta_{k}=\frac{1}{2}+\frac{b_{k}}{N_{c}}+\ldots
$$

α_{k} are likely to become non-trivial (non-unitary) CFT.

Q: What kind of criticality α_{k} correspond to?

Requires study of finite $N_{c} \mathrm{QCD}_{2}$.

Summary:

- $N_{c}=\infty$ QCD $_{2}$ has infinitely many critical points at complex $\alpha=m_{q}^{2} / g^{2}-1$
- This phenomenon seems to be common for confining theories in $1+1$ (e.g. IFT in a magnetic field).

Questions:

- What these critical points try to tell us about basic mechanism of confinement?
- Are similar singularities present in 4D?
- What would Aliosha say?

