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”It’s great that it [some result] is exact, but is it correct?”

Aliosha
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• P.Fonseca, AZ, 2001

• P.Fonseca, AZ; 2006

• V.Fateev, S.Lukyanov, AZ, 2009
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Confinement is rather common phenomenon in 1+1 models

Its mechanism is relatively simple:

ε0 ε0
ε   + ∆ε0

1x 2x

V = ∆ε |x1 − x2|

Confining potential → Tower of “Meson” states (stable & resonances)

May occure due to:

• Adding perturbation which lifts vacuum degeneracy from spon-

taneously broken symmetry; “Quarks” are domain walls.

• Presence of gauge field (abeelian or non-abelian), ∆ε ∼ E.

The two may be related through bosonization (QED2)
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Typical model:

L =
1

2
(∂φ)2 − V (φ)

V      (     )symm  φ +  h V        (     )φasymm
V      (     )symm  φ

∆ε

Confining interaction between the kinks (“quarks”)

1x 2x

ε   + ∆ε0
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Details may depend on specific model, but basic physics is con-

trolled by one (dimensionless) parameter

ξ =
∆ε

m2
q

The “string tension” ∆ε may deepend on h (as well as on other

parameters of the model), but at small h

∆ε ∼ h

In physical system ξ is real and ≥ 0, but it is interesting to study

analytic properties of physical quantities (ε0(ξ), Mn(ξ), etc) as the

functions of complex ξ.

Basic analytic features are expected to be universal, i.e. shared

by all confining interactions in 1+1.
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One is well-known: There is essential singularity at ξ = 0 (Andreev

(1967), Fisher (1964), Langer (1967), Kobzarev, Okun, Voloshin

(1975), Coleman (1977))

Vsymm(φ) + hVasymm(φ)

Analytic continuation to negative h turns vacuum into “false vac-

uum”

V      (     )
symm  

φ +  h V        (     )φ
asymm

V      (     )
symm  

φ  −  h V        (     )φasymm

vacuum

"false vacuum"

“False vacuum” decay:

=mε0(ξ) ∼ (−ξ) e−
π
|ξ| at ξ < 0 .
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ε0disc(      )  ~  i (−    ) exp(       )π/ξξ0

ξ

?

Do we encounter other singularities as we go under the branch

cut?

Proposition:

• There are infinitely many singularities under the branch cut,

accumulating towards ξ = 0.

• The singularities are critical points (Rc diverges), with scaling,

critical exponents, and all that.
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0

ξ

**
*

*
*

*

Generally, physical nature of these singularities is yet to be under-

stood.

Subject of this talk: Evidence for their presence.

Some complex singularities are expected: “Quantum spinodal”

ξ = ξspinodal
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Why infinitely many? Any one of the ”meson” masses Mn(ξ) may

turn to zero at certain (complex) values of ξ.

Simple WKB analysis (generally valid at small ξ): Two quarks

with linear confining interaction,

H = ω(p1) + ω(p2) + ∆ε |x1 − x2|

Periodic motion → Quantization condition:

sinh(2θ) − 2θ = π ξ (n+ 1/2) , n = 0,1,2, ...

Mn = 2mq cosh θn .

10



ξ = |ξ| eiφ
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phase=0.5*pi
phase=pi

Mn = 2mq cosh θn, turns to zero when

θn hits iπ/2

This happens at

ξn =
e
3πi
2

n+ 1/2
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In fact, the leading WKB breaks down when θ gets close to iπ/2.

sinh(2θ) − 2θ = π ξ (n+ 1/2) + ξ2 S1(θ) + ξ3 S2(θ) + ...

where S1(θ), S2(θ), ... have poles at θ = iπ/2.

More elaborated approach is needed.

Two models:

• Ising Field Theory in a magnetic field

• QCD2 at Nc = ∞
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Ising Field Theory

V      (     )
symm  

φ

−>   

Symmetry restoration transition

(Universality class of 2D Ising)

L = −ψ̄ (γ∂)ψ −mq ψ̄ψ − hσ

σ(x)- ”spin field”.

Spontaneous magnetization at h = 0,

σ̄ = 〈σ 〉 =
(

21/12 e−1/8A3/2
)

m
1/8
q

At small h

∆ε = 2h σ̄

13



η =
1

ξ8/15
=

mq

h8/15

����

8π/15

4π/15

η

YL

YL = ”Quantum spinodal” ⇒ 2D CFT with c = −22/5
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Mass spectrum of IFT (numerical)
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Mass spectrum M_n(eta) in IFT

η =
1

ξ8/15
=

mq

h8/15
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Magnetic field h → Confining interaction between the ”quarks”

∆ε = 2σ̄ h+O(h3)

Meson states

| Mn, P 〉 =

∫

dp

2π
Ψn(P, p) a

†
P+pa

†
P−p | 0 〉 + ...

Weak coupling (small h):

Keeping some multi-quark terms, as needed for Lorentz invariance

⇒ Bethe-Salpeter equation

Rapidity variables:

P+ + p+ = mq e
β+θ , P+ − p+ = mq e

β−θ

Lorentz invariance: Ψn depends only on θ.
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Bethe-Salpeter equation
[

m2
q − M2

n

4 cosh2 θ

]

Ψn(θ) = ∆ε
∫ ∞

−∞
G(θ|θ′)Ψn(θ

′)
dθ′

2π

The kernel

G(θ|θ′) = 2
cosh(θ − θ′)
sinh2(θ − θ′)

+
1

4

sinh θ

cosh2 θ

sinh θ′

cosh2 θ′

has second-order pole at θ = θ′ → Confining interaction.

⇒ Tower of eigenvalues Mn(η), n = 1,2,3, ...
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Real η = mq/|h|8/15
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Analysis of the BS equation shows infinite set of singularities

(square-root) at complex η ( ≡ at complex ξ = η−
15
8 ):

����

8π/15

4π/15

η

YL

0

ξ

**
*

*
*

*

E.g.

M
(BS)
1 (η) ∼ (η − ηYL)1/2 in BS approximation

M1(η) ∼ (η − ηYL)5/12 in full theory
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In IFT the BS equation is an approximation (uncontrolled at finite

η), as it ignores multi-meson states.

Q: Do the complex singularities exist in full theory?

Physics is similar to QCD2. At Nc = ∞ the BS approximation is

exact (’t Hooft, 1974)

Q’: Do similar singularities exist in ’t Hooft’s model of mesons?
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t’ Hooft’s model: QCD2

L =
Nc

4g2
tr

(

F2
)

− ψ̄ (γD+mq)ψ , Dµ = ∂µ +Aµ

At Nc = ∞ the Bethe-Salpeter equation is exact.
[

α

x
+

α

1 − x

]

ϕ(x) −
∫ 1

0
dy

ϕ(y)

(y − x)2
= 2π2 λ ϕ(x) ,

α =
πm2

q

g2
− 1 , M2 = 2πg2 λ .

Spectral problem for λ: {λn(α)}.

Analytic properties of λn(α) at complex α? Singular points?
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Singularity at α = −1. Chiral limit mq → 0:

M2
π ∼ mq g → λ0(α) ∼

√

α+ 1

Critical point. At finite Nc

Nc WZW[Gflavor] + µ tr
[

Gflavor +G
†
flavor

]

For Gflavor = U(Nf)

µ ∼ m
1

1−∆
q g

1−2∆
1−∆ , ∆ =

NfNc + 1

2Nc(Nf +Nc)
∼

Nf

2Nc

[Gepner, 1985; Affleck, 1986]

Other (complex) singularities?
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Rapidity form: x = 1
2 (1 + tanh θ)

[

2α− π2 λ

cosh2 θ

]

Ψ(θ) =

∫ ∞

−∞
G(θ − θ′)Ψ(θ) dθ

G(θ − θ′) =
1

sinh2(θ − θ′)

has second-order pole at θ = θ′.

Yet more convenient form

Ψ(θ) =

∫ ∞

−∞
dν

2π
eiνθ Φ(ν)

[

α+
πν

2
coth

πν

2

]

Φ(ν) =
πλ

2

∫ ∞

−∞
dν′ S(ν − ν′)Φ(ν′)

S(ν) =
πν

2 sinh πν
2
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• Φ(ν) is meromorphic function of ν, with poles at

νl + 2iN , −νl − 2iN ,

with N = 0,1,2, ..., and νl - roots of

α+
πν

2
coth

πν

2
= 0

with =mνl ≥ 0 at real α > −1
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• At complex α the pole −ν0 can wander into the upper half-plane,

and at special αk it hits another pole there.

3i

i

−i

−3i

ν
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• This gives rise to singularities (square-root branching points of

λn(α)) at

αk = −1

2
[1 + cosh(πνk)]

sinh(πνk) − πνk = 0 , <e νk ≤ 0

-20
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Singular points in alpha-plane, under the branch cut
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η =
√

α+ 1 ∼ mq/g = 1/
√

ξ

-3

-2

-1

 0

 1

 2

 3

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5

Singular points in the plabe of sqrt(alpha+1)

Proposition: ηk are critical points:

λ2k(α) ∼
√

η − ηk
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The operator

Ŝ : Φ(ν) →
∫ ∞

−∞
dν′ S(ν − ν′)Φ(ν′)

is inverse to a finite-difference operator ⇒ Finite difference equa-

tion

Q(ν + 2i) +Q(ν − 2i) − 2Q(ν) = U(ν)Q(ν)

for

Q(ν) =

[

α sinh
πν

2
+
πν

2
cosh

πν

2

]

Φ(ν)

with

U(ν) = 2π2 λ

[

α+
πν

2
coth

πν

2

]−1

Baxter’s TQ equation (with T(ν) = 2 + U(ν))

Analytic results for λn(α)
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1. Systematic large-n expansions of λn(α):

n = 2λ− 2α

π2
log(2λ) − C0(α) +

α2

π4λ
+
C2(α)

λ2
+

1

λ3

[

C3(α) −
(−)n (1 + α)

π6

(

log
(

2πλeγE
)

+ C′
3(α)

)

]

+ ...

where

C0(α) =
3

4
+

2α

π2
log

(

4πeγE
)

−

α2

2π2

∫ ∞

−∞
dt

t

sinh(t) ( sinh(2t) − 2t)

cosh2(t)
(

α sinh(t) + t cosh(t)
) ,

C2(α) =
1

2π6

[

α3 + (−1)n π2 (1 + α)

]

,

C3(α) =
1

12π8

[

5α4 + π2 (1 + α)2
]

,

C′
3(α) = −1 + 3α

3
+
α

8

∫ ∞

−∞
dt

sinh(2t) − 2t

t sinh(t)
(

α sinh(t) + t cosh(t)
) .

[’t Hooft, 1974; Brauer, Spence, Weis, 1979; Fateev, Lukyanov,

AZ, 2009]
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2. Exact sum rules:

G
(s)
+ (α) =

∞
∑

m=0

1

λs2m(α)
, G

(s)
− (α) =

∞
∑

m=0

1

λs2m+1(α)

E.g.

G
(1)
± (α) = log(8π) − 2 ± 1 −

α

4

∫ ∞

−∞
dt

t

sinh(t) (sinh(2t) ± 2t)

cosh2(t) (α sinh(t) + t cosh(t) )
.

G
(s)
+ (α) ∼ (α− αk)

−s/2 , G
(s)
− (α) ∼ (α− αk)

1/2

αk are critical points: M2
2k(αk) ∼ √

α− αk.
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Speculation: Nc <∞,

M2
2k(α) ∼ (α− αk)

βk

with critical exponents

βk =
1

2
+

bk
Nc

+ ...

αk are likely to become non-trivial (non-unitary) CFT.

Q: What kind of criticality αk correspond to?

Requires study of finite Nc QCD2.
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Summary:

• Nc = ∞ QCD2 has infinitely many critical points at complex

α = m2
q/g

2 − 1

• This phenomenon seems to be common for confining theories

in 1+1 (e.g. IFT in a magnetic field).

Questions:

• What these critical points try to tell us about basic mechanism

of confinement?

• Are similar singularities present in 4D?

• What would Aliosha say?
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