

de physique et ingénierie

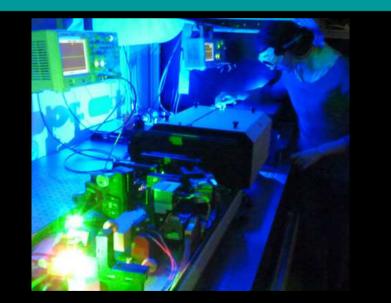
Université de Strasbourg

1

High resolution imaging of ultracold potassium atoms for quantum simulation

<u>Tutor :</u> Shannon Whitlock

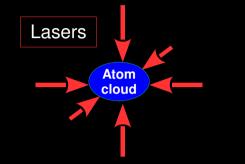
<u>Lab group:</u> Sayali Shevate Yibo Wang Tobias Wintermantel Graham Lochead



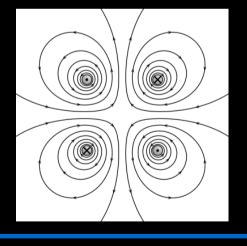
Exotic Quantum Matter group

<u>Magneto-optical trap (MOT)</u>

1 – (sub)Doppler cooling ~15µK



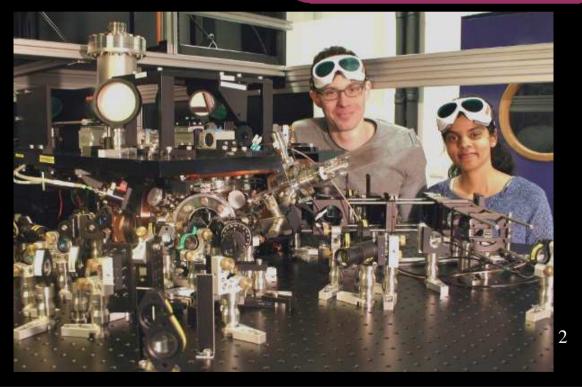
2 – Quadrupolar magnetic field ↔ magnetic trapping



- \rightarrow Use for neutral atoms (no Coulomb interaction)
- \rightarrow Potassium :
- $^{39}\text{K}\text{=}$ boson and $^{40}\text{K}\text{=}$ fermion
- 1 valence electron \leftrightarrow H

<u>Rydberg states</u>

- R ~n²a₀
- High dipolar momemtum
- ↔ strong VdW interactions
- \rightarrow Quantum simulation
- (magnetism, quantum dynamics)



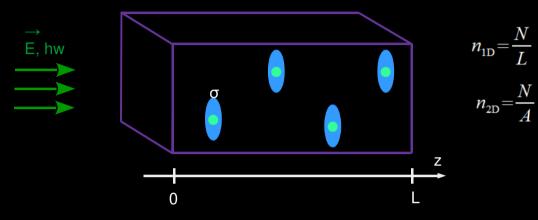
Absorption imaging

Basic idea: Illuminate the atoms with resonant laser light and measure the shadow



Theoretical model

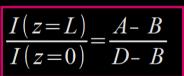
Task 1: Calibrate the atom number contained in an array of 9 microtraps



Experiment :

Loi de Beer-Lambert :

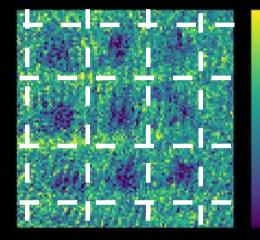
 $OD = \alpha n_{1D}L$



=e

 $-\sigma n_{2D}$

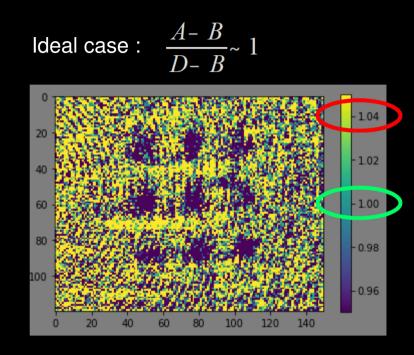
 $N = \frac{-A}{\sigma} \sum_{i,j} \ln\left(\frac{A-B}{D-B}\right)$



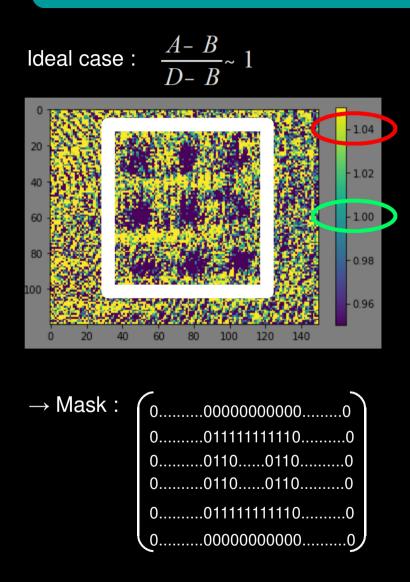
 \rightarrow N~ 100 particles

 \rightarrow Depends a lot on the background

<u>Offset</u>



<u>Offset</u>



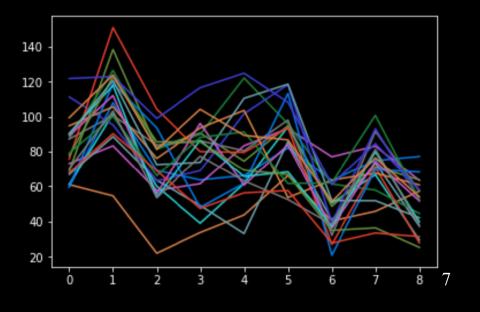
around sites \rightarrow avoid fluctuations

$$\bar{A} = \sum_{ij} A_{ij} mask_{ij}$$

$$\bar{D} = \sum_{ij} D_{ij} mask_{ij}$$

$$\bar{\overline{B}} = offset = 1,02$$

$$A \to \frac{A}{offset} \equiv I$$



Correlations

Task 2: Analyze the atom number fluctuations. Are they Poisson distributed var(N)~N ?

Correlations between sites \rightarrow

$$N_{ij}^{\exp} = N_{ij}^{true} + N_{ij}^{corr}$$

If
$$N_{ij}^{true} \sim Poisson \rightarrow Var(N_{ij}^{true}) = \langle N_{ij}^{true} \rangle_j$$

Covariance matrix

$$Cov(N_{ij}^{exp}, N_{kj}^{exp}) = \langle N_{ij}^{exp} N_{kj}^{exp} \rangle_{j} - \langle N_{ij}^{exp} \rangle_{j} \langle N_{kj}^{exp} \rangle_{j}$$
$$O\hat{u} : \langle X_{ij} \rangle_{j} = \frac{1}{21} \sum_{j=1}^{21} X_{ij} \equiv \bar{X}_{i}$$

 $Cov(N_{ij}^{exp}, N_{kj}^{exp}) = Cov(N_{ij}^{true}, N_{kj}^{true}) + \langle (N_{j}^{corr})^{2} \rangle$

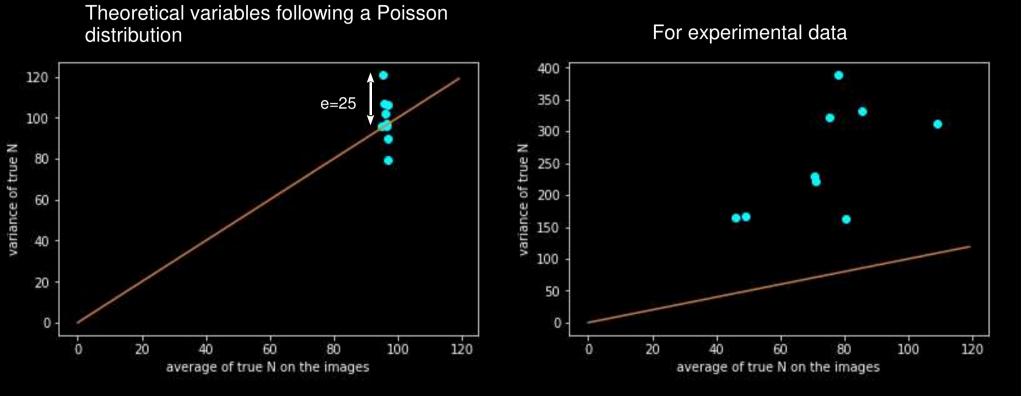
$$i \neq k \rightarrow Cov(N_{ij}^{exp}, N_{kj}^{exp}) = (\overline{N_{j}^{corr}})^{2}$$
$$i = k \rightarrow Cov(N_{ij}^{exp}, N_{ij}^{exp}) = Var(N_{ij}^{true}) + (\overline{N_{j}^{corr}})^{2}$$

8

Correlations

Correlations

```
Var(N_{ij}^{true}) = f(\bar{N}_{j})
```



Conclusion \rightarrow fluctuations of errors > fluctuation particle number

10

Conclusion

With just one image :

- Determine the number of particles in the cavity
- Determine the influence of fluctuations
- Correction of correlation and environmental errors

Next :

- Machine / measurement errors
- Improve precision of the analysis (manually \rightarrow mathematically)