Soutenance de stage

Le potentiel gravitationnel de la galaxie et la distribution de matière noire

De Meira Théophile

Mougin Jonathan

Sous la tutelle de Bienaymé Olivier

Introduction

Objectif : déterminer la répartition de la matière noire dans la Voie Lactée.

- Exploitation des données de Gaïa.
- Etude d'une population d'étoiles homogènes.
- Tracer de leur profil de densité et de dispersion de vitesse.

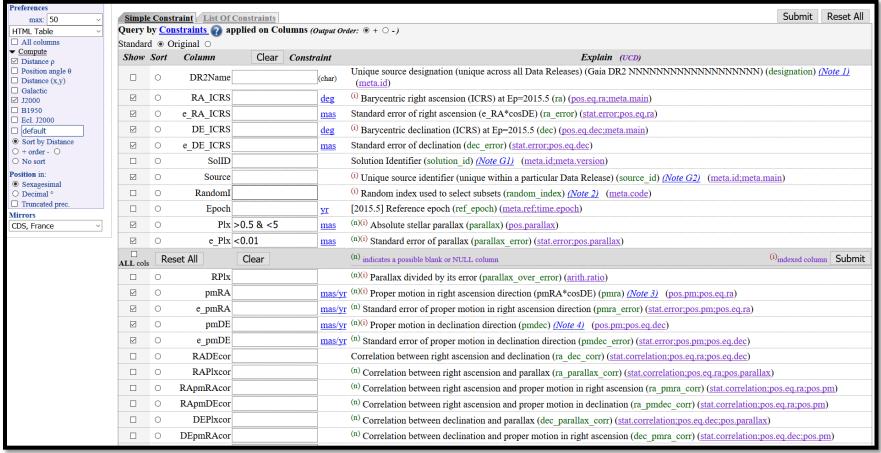
Sélection stellaire

- Le Centre de Données de Strasbourg
- 2) Diagrammes Hertzsprung-Russel
- 3) Sélection de la zone d'étude
- 4) Processus de sélection

II) Etude de la sélection stellaire

- 1) Profil de densité
- 2) Profil de la dispersion de vitesse

III) Théorie de la distribution des étoiles dans la Galaxie


- 1) Equation de Boltzmann et dynamique des étoiles
- 2) Résolution de l'équation de Boltzmann
- 3) Ajustement de la solution à notre cas

IV) Principe du code

- 1) Méthode du maximum de vraisemblance
- 2) Algorithme MCMC
- 3) Convergence de la méthode

V) Résultats

Le Centre de Données de Strasbourg

Catalogue Visier

$$m - M = 5log(D) - 5$$

Diagrammes de Hertzsprung-Russel

- Classification des étoiles par diagramme de Hertzsprung-Russel
- Quelles étoiles nous intéressent ?
- Pourquoi les Red Clump?

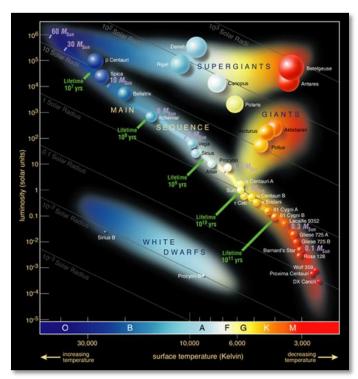
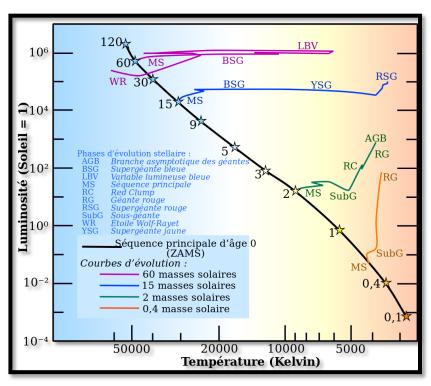
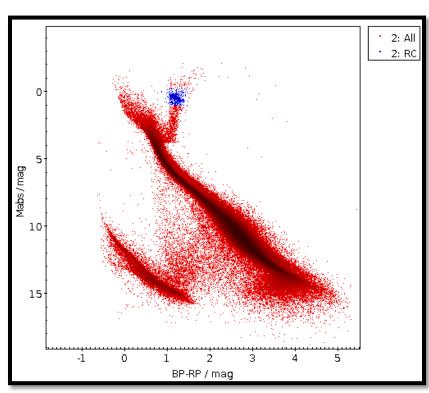



Diagramme HR



Zone des Red Clump sur un diagramme HR

• Diagrammes HR avec les données de Gaïa :

Ensemble des étoiles entre 200 et 2000 pc au Sud du plan Galactique

Ensemble des étoiles entre 200 et 2000 pc au Nord du plan Galactique

Sélection de la zone d'étude

- On souhaite sélectionner les Red Clump dans un cône à une distance entre 200 et 2000 pc du plan galactique sous un angle de 25°.
- Sélection des données sur le catalogue.

	Nord	Sud
Intervalle de distance (pc)	[184,7;1984,7]	[215,3 ; 2015,3]
α (degrés)	[65; 90]	[-65;-90]
Indice de couleur (B-R)	[0,96 ; 1.5]	[0,96 ; 1.5]
Magnitude absolue	[-0,5;1]	[-0,5;1]

Table des critères de sélection

	Nord	Sud
Plx	[0,50385449; 5,14118517]	[0,49620404;4,64468184]
Gmag	[6,205; 12,505]	[6,205; 12,505]
BP-RP	[1;1,5]	[1;1,5]
RV	> -1000	> -1000
GLAT	[65; 90]	[-65 ; -90]

Table des critères brut

• Tri spatial des étoiles récupérées : limite supérieure du cône et distance du Soleil au plan

galactique.

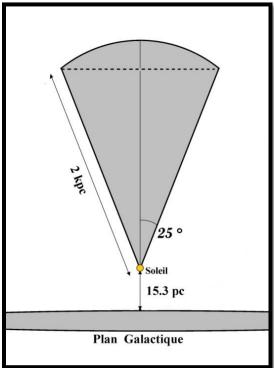


Schéma du cône de sélection

	Nord	Sud
Altitude maximale (pc)	1797,3	-1828,3
Nombre d'étoiles	4824	2644

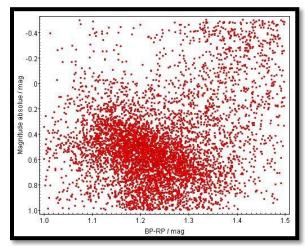


Diagramme HR de la sélection Sud

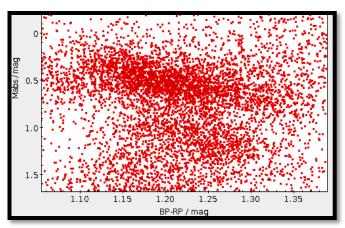


Diagramme HR de la sélection Nord

Sélection stellaire

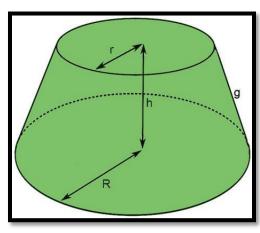
- 1) Le Centre de Données de Strasbourg
- 2) Diagrammes Hertzsprung-Russel
- 3) Sélection de la zone d'étude
- 4) Processus de sélection

II) Etude de la sélection stellaire

- 1) Profil de densité
- 2) Profil de la dispersion de vitesse

III) Théorie de la distribution des étoiles dans la Galaxie

- 1) Equation de Boltzmann et dynamique des étoiles
- 2) Résolution de l'équation de Boltzmann
- 3) Ajustement de la solution à notre cas


IV) Principe du code

- 1) Méthode du maximum de vraisemblance
- 2) Algorithme MCMC
- 3) Convergence de la méthode

V) Résultats

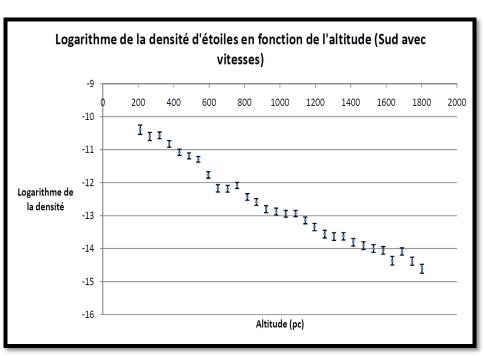
Profil de densité

• Principe du tracé : on découpe le cône en sections de même hauteur et on compte le nombre d'étoiles par section.

Tronc de cône

$$V = \frac{h\pi}{3}(r^2 + R^2 + rR)$$

Volume du tronc de cône


$$\rho(z) = \frac{N_{section}}{V_{section}}$$

Calcul de la densité

$$\Delta \rho = \frac{\sqrt{N_{section}}}{V_{section}}$$

Incertitude sur la densité

Tracer des densités des deux parts du plan galactique.

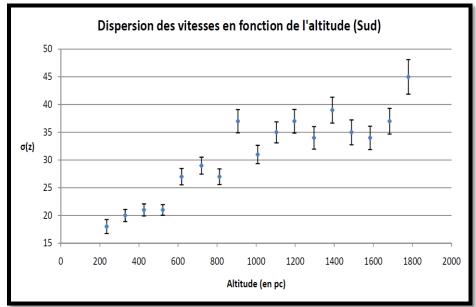
ln(density) = f(z)200 600 800 1000 1200 1400 1600 1800 2000 IIII In(dens) -13 -14 -15

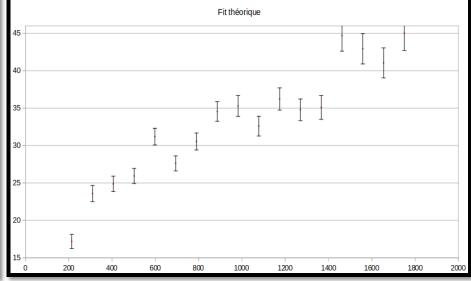
Densité d'étoiles au Sud de la Galaxie

Densité d'étoiles au Nord de la Galaxie

Profil de la dispersion de vitesse

• Principe du tracé : on découpe le cône en sections de même hauteur et on calcule la dispersion de vitesses de chaque section.


$$\sigma(z) = \sqrt{\frac{1}{N_{section}} \sum_{i=1}^{N_{section}} (w_i - \overline{w})^2}$$


Formule de la dispersion

$$\Delta \sigma = \frac{\sigma}{\sqrt{2N_{section}}}$$

Dispersion en fonction de z

Incertitude sur la dispersion

Dispersion des vitesses pour le Sud

Dispersion des vitesses pour le Nord

Sélection stellaire

- 1) Le Centre de Données de Strasbourg
- 2) Diagrammes Hertzsprung-Russel
- 3) Sélection de la zone d'étude
- 4) Processus de sélection

II) Etude de la sélection stellaire

- 1) Profil de densité
- 2) Profil de la dispersion de vitesse

III) Théorie de la distribution des étoiles dans la Galaxie

- 1) Equation de Boltzmann et dynamique des étoiles
- 2) Résolution de l'équation de Boltzmann
- 3) Ajustement de la solution à notre cas

IV) Principe du code

- 1) Méthode du maximum de vraisemblance
- 2) Algorithme MCMC
- 3) Convergence de la méthode

V) Résultats

<u>Equation de Boltzmann et dynamique des étoiles</u>

• Etoiles assimilées à des particules dans un gaz

$$rac{\mathrm{d}f}{\mathrm{d}t} \, = \, rac{\partial f}{\partial t} \, + \, \mathbf{u} \cdot
abla_{\mathbf{r}} f \, + \, rac{\mathbf{F}}{m} \cdot
abla_{\mathbf{u}} f$$

Equation de Boltzmann

- •Ne se rencontrent pas
- Régime stationnaire
- Coordonnées et vitesses selon l'axe perpendiculaire au plan galactique

$$w\frac{\partial f(z,w)}{\partial z} - \frac{\partial \Phi(z)}{\partial z} \frac{\partial f(z,w)}{\partial w} = 0$$

Equation de Boltzmann stationnaire sans collisions

Résolution de l'équation de Boltzmann

$$f(z,w) = \frac{\rho_0}{\sqrt{2\pi}\sigma} exp\left(-\frac{E}{\sigma^2}\right)$$

Solution isotherme de l'équation de Boltzmann

$$E = \frac{1}{2}w^2 + \Phi(z)$$

Energie d'une étoile

$$\Phi(z) = 2\pi G \left(\Sigma_D(\sqrt{z^2 + D^2} - D) + \rho_{DM} z^2 \right)$$

Fonction ajustée à notre cas

$$f(z,w) = \frac{c_1}{\sqrt{2\pi}\sigma_1} exp\left(-\frac{E}{\sigma_1^2}\right) + \frac{1-c_1}{\sqrt{2\pi}\sigma_2} exp\left(-\frac{E}{\sigma_2^2}\right)$$

Fonction de distribution

• On s'intéresse à deux quantités :

$$n(z) = \int_{-\infty}^{\infty} f(z, w) \Omega z^2 dz = z^2 \Omega \left(c_1 exp \left(-\frac{\Phi(z)}{\sigma_1^2} \right) + (1 - c_1) exp \left(-\frac{\Phi(z)}{\sigma_2^2} \right) \right)$$

Nombre d'étoiles en fonction de l'altitude

$$\rho(z) = \frac{n(z)}{\Omega z^2}$$

Densité d'étoiles

$$n(z)\sigma(z)^{2} = \int_{-\infty}^{\infty} w^{2}f(z,w)\Omega z^{2}dz = z^{2}\Omega\left(c_{1}\sigma_{1}^{2}exp\left(-\frac{\Phi(z)}{\sigma_{1}^{2}}\right) + (1-c_{1})\sigma_{2}^{2}exp\left(-\frac{\Phi(z)}{\sigma_{2}^{2}}\right)\right)$$

Sélection stellaire

- 1) Le Centre de Données de Strasbourg
- 2) Diagrammes Hertzsprung-Russel
- 3) Sélection de la zone d'étude
- 4) Processus de sélection

II) Etude de la sélection stellaire

- 1) Profil de densité
- 2) Profil de la dispersion de vitesse

III) Théorie de la distribution des étoiles dans la Galaxie

- 1) Equation de Boltzmann et dynamique des étoiles
- 2) Résolution de l'équation de Boltzmann
- 3) Ajustement de la solution à notre cas

IV) Principe du code

- 1) Méthode du maximum de vraisemblance
- 2) Algorithme MCMC
- 3) Convergence de la méthode

V) Résultats

Méthode du maximum de vraisemblance

<u>But</u>: ajuster les paramètres des équations de la densité d'étoiles et de la dispersion des vitesses pour coller aux courbes expérimentales.

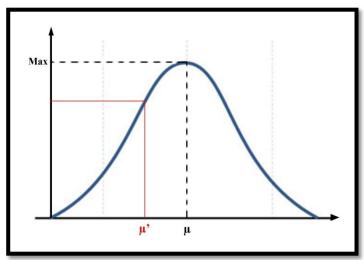
• Fabriquer des probabilités :

$$p_n(z) = \frac{n(z)}{N}$$
$$p_{\sigma}(z) = \frac{\sigma(z)}{W}$$

Probabilités utilisées

$$N = \int_{z_{min}}^{z_{max}} n(z)dz$$

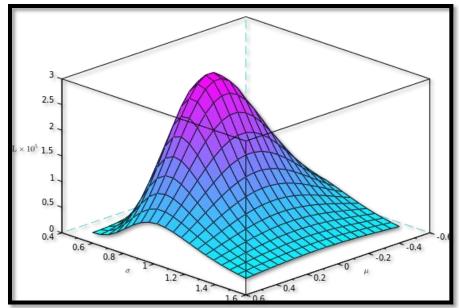
$$W = \int_{z_{min}}^{z_{max}} \sigma(z)dz$$


Constantes de normalisation

$$ln(L) = \sum_{i=1}^{z_{exp}} [ln(p_n(z_i)) + ln(p_{\sigma}(z_i))]$$

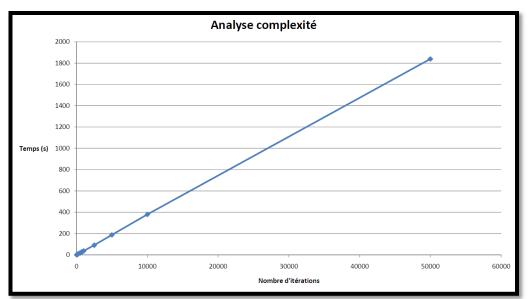
Logarithme de la vraisemblance

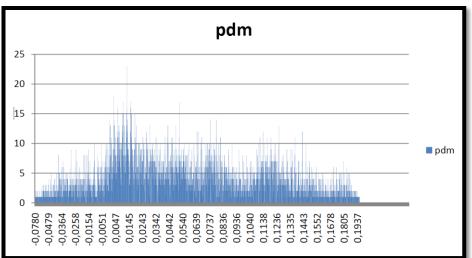
Algorithme MCMC


• Faire varier les paramètres à ajuster : MCMC tirage gaussien.

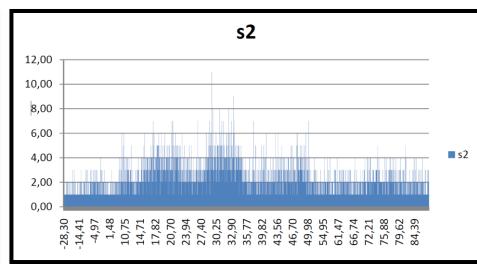
Principe du tirage gaussien

- Calculer la vraisemblance avec les nouveaux paramètres.
- On retient ou non ces nouveaux paramètres :
 - ➤ Oui si la vraisemblance est supérieure à la précédente
 - ➤ Avec une certaine probabilité sinon


• On cherche le maximum de la vraisemblance et on trouve les paramètres associés.


Exemple de maximum de vraisemblance à deux paramètres

• Dans notre cas : espace des phases à 5 dimensions.


Convergence de la méthode :

Temps d'exécution en fonction du nombre d'itérations

Histogramme d'apparition pour la densité

Histogramme d'apparition pour σ 2

Sélection stellaire

- 1) Le Centre de Données de Strasbourg
- 2) Diagrammes Hertzsprung-Russel
- 3) Sélection de la zone d'étude
- 4) Processus de sélection

II) Etude de la sélection stellaire

- 1) Profil de densité
- 2) Profil de la dispersion de vitesse

III) Théorie de la distribution des étoiles dans la Galaxie

- 1) Equation de Boltzmann et dynamique des étoiles
- 2) Résolution de l'équation de Boltzmann
- 3) Ajustement de la solution à notre cas

IV) Principe du code

- 1) Méthode du maximum de vraisemblance
- 2) Algorithme MCMC
- 3) Convergence de la méthode

V) Résultats

- Paramètres initiaux : proches des résultats connus.
- 10 000 itérations.

$$c_1 = 0.5$$

$$\sigma_1 = 20km/s$$

$$\sigma_2 = 40km/s$$

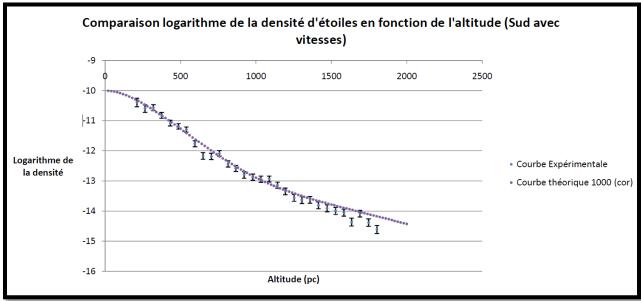
$$\Sigma_D = 40M_{\odot}.pc^{-2}$$

$$\rho_{DM} = 0.01M_{\odot}.pc^{-3}$$

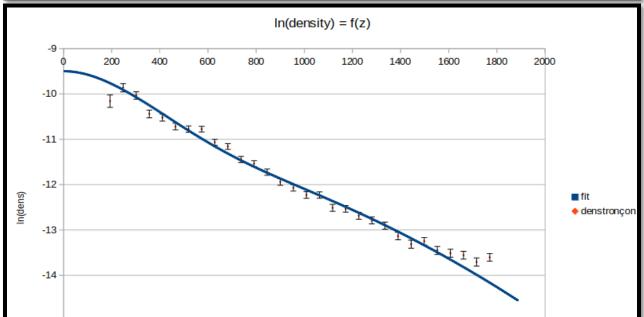
Paramètres initiaux

Paramètre	Variation moyenne
C ₁	+- 0.02
σ1	+- 2
σ2	+- 2
ΣD	+- 5
ρdm	+- 0.001

Table de la variation moyenne de chaque paramètre

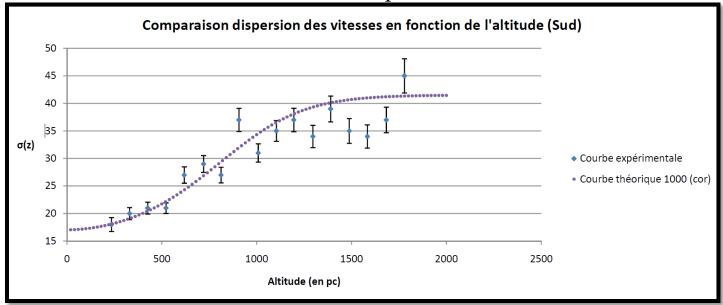

$$c_1 = 0.928475 \pm 1.9933$$

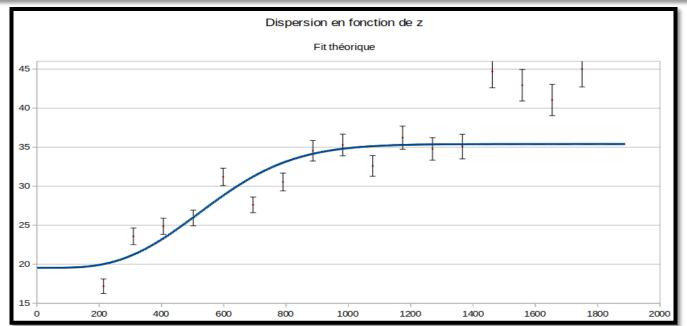
 $\sigma_1 = 19.4274 \pm 33.2578 km/s$
 $\sigma_2 = 46.986 \pm 25.9004 km/s$
 $\Sigma_D = 50.7511 \pm 34.9755 M_{\odot}.pc^{-2}$
 $\rho_{DM} = 0.0139585 \pm 0.0587198 M_{\odot}.pc^{-3}$

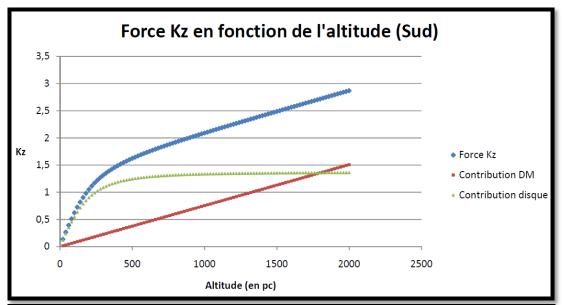

Paramètres finaux (Sud)

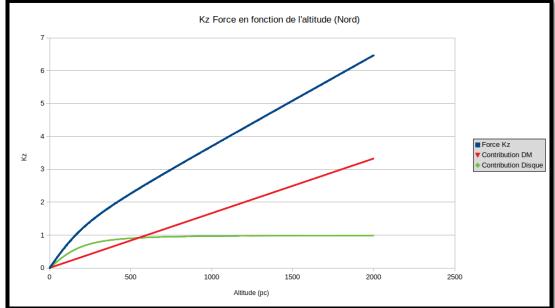
$$c_1 = 0.676721 \pm 3.36288$$

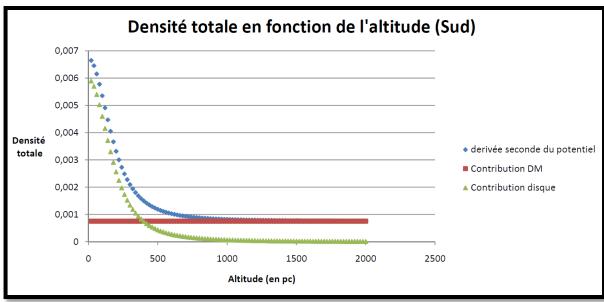
 $\sigma_1 = 20.5847 \pm 5.53046 km/s$
 $\sigma_2 = 36.8196 \pm 4.52071 km/s$
 $\Sigma_D = 36.7669 \pm 5.30889 M_{\odot}.pc^{-2}$
 $\rho_{DM} = 0.0307531 \pm 0.0717769 M_{\odot}.pc^{-3}$

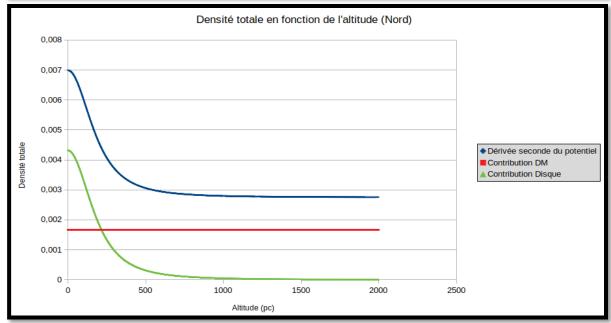

Paramètres finaux (Nord)


• Tracer des courbes de densité.




• Tracer des courbes de dispersion des vitesses.


• Force de rappel vers le plan galactique



$$K_z = \frac{\partial \Phi}{\partial z}$$

• Densité totale de matière.

$$\rho_{tot} = \frac{\partial^2 \Phi}{\partial z^2}$$

Conclusion

- •Forme de potentiel avec répartition de matière noire homogène.
- •Confirmé par l'ajustement numérique des courbes de densité et de dispersion de vitesse.
 - •Valeurs finales pour la densité de matière noire cohérentes avec valeurs connues.
 - •Apparition de dissymétries entre le Nord et le Sud de la Voie Lactée.
 - •Voie Lactée non stationnaire.
 - •Optimisation des programmes.
 - •Attente de publications avec les données de Gaïa.

Sources

- •O.Bienaymé et al.Weighing the local dark matter with RAVE red clumps stars.EDP Sciences, 2014. 13 pages.
- •Wikipedia.Red_Clump[en ligne].consultée le 01/04/2019 https://fr.wikipedia.org/wiki/Red_clump
- •Wikipedia.Diagramme_de_Hertzsprung-Russell[en ligne].consultée le 01/04/2019 https://fr.wikipedia.org/wiki/Diagramme_de_Hertzsprung-Russell
- •Wikipedia.Indice_de_couleur[en ligne].consultée le 02/04/2019 https://fr.wikipedia.org/wiki/Indice_de_couleur
- •Wikipedia.Equation_de_Boltzmann[en ligne].consultée le 22/03/2019 https://fr.wikipedia.org/wiki/%C3%89quation_de_Boltzmann