HAWC software

et

L ey i ot
o

i

RS

A ¥

SR - e el
eﬂ% (Umvers;ty, M

What is HAWC software? (simplified)

 AERIE: Analysis and Event Reconstruction Integrated Environment (initially by Jim
Braun, John Pretz, Segev BenZvi?), implemented in C++, used e.g. for

DAQ

Geant4 simulation

Online and offline event reconstructions
Simulation event weighting

Map making (event and background map)

Data format: XCDF, eXplicity Compacted Data Format, (initially by Jim Braun,
Segev BenZyvi) simple and efficient storage of data at desired precision,
implemented in C++.

Source analyses use 3ML, Multi Mission Maximum Likelihood (initially by
Giacomo Vianello, . Michael Burgess) python framework.

Package manager APE, Auger Package Environment (initially Lukas Nellen,
Segev BenZvi)

https://github.com/jimbraun/XCDF
https://github.com/threeML
http://www.apple.com

What is HAWC software? (simplified)

 AERIE: Analysis and Event Reconstruction Integrated Environment (initially by Jim
Braun, John Pretz, Segev BenZvi?), implemented in C++, used e.g. for

DAQ

Geant4 simulation

Online and offline event reconstructions
- Simulation event weighting

Map making (event and background map)

Data format: XCDF, eXplicity Compacted Data Format, (initially by Jim Braun,
Segev BenZyvi) simple and efficient storage of data at desired precision,
implemented in C++.

Source analyses use 3ML, Multi Mission Maximum Likelihood (initially by
Giacomo Vianello, . Michael Burgess) python framework.

Package manager APE, Auger Package Environment (initially Lukas Nellen,
Segev BenZvi)

Useful to simulate future detector:
- | Simple point source sensitivity

More complex cases (extended sources, nearby sources, etc.)

https://github.com/jimbraun/XCDF
https://github.com/threeML
http://www.apple.com

AERIE Intro

»

Introduction

The HAWC software, called the Analysis and Event Reconstruction Integrated Environment (AERIE)
provides a framework intended for processing of HAWC events and for subsequent analysis.

The software is structured as a set of interdependent C++ projects glued together by a central core or
“framework.” The core provides a run loop for analyzing batches of data, hooks for physicists to plug in
their own algorithms, data classes to store simulated and reconstructed data, and libraries to handle
common tasks such as geometry, astronomical coordinates, or time conversions. Other projects are
provided to handle specialized tasks like disk 1/0, track reconstruction, and map making.

The AERIE run loop can be driven with C++ “main” programs or python scripts. Templates for running
popular applications can be found in the examples folders inside various projects.

Software Components

There are several major components to AERIE:

1. The HAWCNest Framework - A central object that registers and initializes services. It does not edit
data.

2. The Data Structures - An in-memory representation of the data that can be edited by services.

3. Services - User code which can be used to edit data in a processing loop (“modules”) or provide
stand-alone calculations, like random number generation or astronomical transformations.

4. MainLoop - A special service that defines the flow of control for data processing.

5. Applications - A suite of programs used for basic analysis of HAWC data, like map-making or
estimation of energy spectra.

Beginning users will typically be most interested in applications. Intermediate users will be interested in
data structures and data I/O. Advanced users write their own services and, for specialized tasks, edit the
HAWCNest framework.

-
AWC

High Altitude Water Cherenkov

Gamma-Ray Observatory

Introduction
= Software Components

AERIE Offline/Online Software

Downloading AERIE

Show Source

Go

HAWCN est i llUStratio n offlineH-/:;:::zrunc::;short.cc X

nest.Service=StdRNGService=("random")
nest.Service<=StdAstroService=>("astroService");

. . pe 8 (1isMC) {
¢ ”IUStrated here for (a- Slmpllfled nest.Service<ConfigDirDetectorService=("det")

View Of) the Ofﬂ|ne reconstruction. nest.Service<ChargeCalibrationService=("chargeCalibrator")

nest.Service<TimingCalibrationService=("timingCalibrator")
nest.Service<Reader=("reader")
nest.Service<TriggeredInputSelector=("selector")
nest.Service<Calibrator>("calibrator")

{
nest.Service<StdDetectorService=("det")
nest.Service<Reader=("reader")
nest.Service<HAWCSimInputSelector=("eventSource")
NestIniConfig(nest,mc_params);

* We do use all these algorithms,
and more.

— = = D
N

* Modular: Can add/remove/swap
services.

.Service<SFCF>("coreFitGuess")
.Service<GaussPlaneFit>("planeFitGuess")
.Service<PropagationPlaneCut>("propagationPlaneCutGuess")

- Modules include:

- DAQ simulation, to make MC . Service<SFCF>("coreFit")
. ¥ .Service<GaussPlaneFit>("gaussPlaneFit")
eventS IOOk Ilke real data 8 .Service<PINCCalculator=("pincCalc")
. . . X .Service<NeuralNetEnergyEstimator=("nnEneCalc")
- Shower fitters (code, direction) .Service<LatDist>("LatDist")

.Service<ZenithAlignment>("zenithAlign")

- Gamma/Hadron separation

.Service<BinaryWriter=("writer")

¢ Enel‘gy EStimatorS .Service<DynamicSerializer>(serializerName)

nest.Service<SequentialMainLoop=("mainloop")
nest.Configure();

MainLoop& main = GetService<MainLoop=("mainloop");
main.Execute();

nest.Finish();

Example of reconstructed data format

+ Compact version (used for production)

Rec data, MC truth, Weight,

Type i sweets.oneWgt Floating rec.LDFChi2 Floating Point . Comments:

sweets.IWgt Floating rec.GamCoreAge Floating Point
rec.status Unsigned Integer sweets.TWgt Floating rec.GamCoreAmp Floating Point 5 XCDF version 3.0.1
rec.version Unsigned Integer sweets.BWgt Floating rec.GamCoreChi2 Floating Point
rec.eventID Unsigned Integer rec. LogNNEnergyV2 Floating rec.GamCorePackInt Floating Point 5 EMaxMC=2e+06)
rec.runID Unsigned Integer rec. logGPV2 Floating rec.mPFnHits Floating Point ThetaMinMC=0
rec.timeSliceID Unsigned Integer rec.zenithAngle Floating rec.mPFnPlanes Floating Point ThetaMaxMC=65|
rec.trigger_flags Unsigned Integer rec.azimuthAngle Floating rec.mPFp@nAssign Floating Point ThrowAreaMC=3.14159e+12
rec.event_flags Unsigned Integer rec.dec Floating rec.mPFp@Weight Floating Point INEventsMC=100000
rec.gtc_flags Unsigned Integer rec.ra Floating rec.mPFp@toangleFit Floating Point SpectralIndex=-2|
rec.gpsSec Unsigned Integer rec.planeChi2 Floating rec.mPFplnAssign Floating Point
rec.gpsNanosec Unsigned Integer rec.coreX Floating o rec.mPFplWeight Floating Point
rec.nChTot Unsigned Integer rec.coreY Floating . rec.mPFpltoangleFit Floating Point
rec.nChAvail Unsigned Integer rec. logCoreAmplitude Floating 5 rec.PINC Floating Point
rec.nHitTot Unsigned Integer rec.coreFitUnc Floating o rec.disMax Floating Point
rec.nHit Unsigned Integer rec.SFCFChi2 Floating rec.TankLHR Floating Point
rec.nHitSP10 Unsigned Integer rec. LogNNEnergy Floating rec.LHLatDistFitXmax Floating Point
rec.nHitSP20 Unsigned Integer . fAnnulusCharge@ Floating rec.LHLatDistFitEnergy Floating Point ! i .zenithAngle
rec.nTankTot Unsigned Integer . fAnnulusChargel Floating rec.LHLatDistFitMinLikelihood Floating Point ! i .azimuthAngle
rec.nTankAvail Unsigned Integer . fAnnulusCharge2 Floating rec.LHLatDistFitGoF Floating Point ! i .dec
rec.nTankHitTot Unsigned Integer . fAnnulusCharge3 Floating rec.LHXcog Floating Point ! i .ra
rec.nTankHit Unsigned Integer . fAnnulusCharge4 Floating rec.LHYcog Floating Point . ! .coreX
rec.windowHits Unsigned Integer . fAnnulusCharge5 Floating rec.LHLatDistFitZeroMinLikelihood Floating Point 5 ! .coreY
rec.angleFitStatus Unsigned Integer . fAnnulusCharge6 Floating rec.LHLatDistFitHitMinLikelihood Floating Point ! .coreFitUnc
rec.planeNDOF Unsigned Integer . fAnnulusCharge7 Floating mc.radiusWeight Floating Point ! .CxPE4@SPTime
rec.SFCFNDOF Unsigned Integer . fAnnulusCharge8 Floating mc.eventWeight Floating Point ! .coreX
rec.corefFitStatus Unsigned Integer .protonlheEnergy Floating mc.coreX Floating Point ! .coreY
rec.CxPE40PMT Unsigned Integer rec.protonlhelLLH Floating mc.coreY Floating Point . ! .coreR
rec.CxPE40XnCh Unsigned Integer rec.gammalheEnergy Floating mc.coreR Floating Point 5 ! .zenithAngle
rec.coreFiduScale Unsigned Integer rec.gammalhelLLH Floating mc.zenithAngle Floating Point n d .azimuthAngle
rec.LHLatDistFitNHitTanksMA Unsigned Integer rec.chargeFiduScale50 Floating mc.azimuthAngle Floating Point . ! .delCore
rec.LHLatDistFitNHitTanksOR Unsigned Integer rec.chargeFiduScale70 Floating mc.delCore Floating Point ! .delAngle
rec.LHLatDistFitNGoodTanksMA Unsigned Integer rec.chargeFiduScale90 Floating mc.delAngle Floating Point
rec.LHLatDistFitNZeroTanksMA Unsigned Integer rec. logMaxPE Floating mc. logEnergy Floating Point

rec.LHLatDistFitNZeroTanksOR Unsigned Integer rec. LogNPE Floating mc. logGroundEnergy Floating Point

S O O O O O O O O O O O O O O O O O o o e

mc.corsikaParticleId Unsigned Integer rec.CxPE40 Floating mc . Xmax Floating Point

mc.coreFiduScale Unsigned Integer rec.CxPE4@SPTime Floating
mc.status Unsigned Integer rec.LDFAge Floating Entries: 6956565

mc.prescale Signed Integer rec.LDFAmp Floating

Extended version contains this plus vectors of hits and a lot more info.

Simulation intro

»

HAWC Simulation

The HAWC simulation occurs in three stages:

1. CORSIKA simulations of cosmic rays and gamma rays.

2. HAWCSim GEANT4-based simulations of the response of the tanks to CORSIKA particles at ground
level.

3. AERIE Reconstruction of simulated events which produce signals in the HAWC tanks.

A library of showers produced with CORSIKA, HAWCSim, and AERIE is maintained at UMD. The simulation
is being continuously generated and updated, and the best place to track the current list of files you
should use for analysis is given in the Monte Carlo Products wiki page.

CORSIKA Air Showers

CORSIKA is a simulation code that tracks the nuclear and electromagnetic interactions which occur in
extensive air showers. In HAWC we generate air showers produced by gamma rays, protons, and the
heavier nuclei 4He, 12C, 160, 20Ne, 24Mg, 28Si, and >6Fe.

CORSIKA data at UMD can be found in the directory

SHAWCROOT/sim/corsika

The details of the directory structure are described here.

The files are in a binary format which can be read using the code and scripts in the AERIE |/O project.

HAWCSiIim Tank Simulations

hawcsim is a part of AERIE that is built if the particle tracking code GEANT4 has been detected on your
system. (GEANT4 and its associated interaction tables can be installed with ape; see Building with APE.)

HAWCSim will propagate particles at ground level from CORSIKA into a model of the HAWC tanks,
calculate the Cherenkov photons produced when the particles enter the water in the tanks, and convert

-
AWC

High Altitude Water Cherenkov

Gamma-Ray Observatory

HAWC Simulation
= CORSIKA Air Showers
s HAWCSim Tank Simulations
m Reconstructed Showers

HAWC Data

CMake Build System

Show Source

Go

Analysis workflow - Data, I/l

Experimental data:
300 large WCDs (7m diameter, 4.5m tall, 200 m3 water):
* 3x8" PMTs (24 kHz rate @ ~0.3 PE)
Ix10" high QE PMT (40 kHz rate @ ~0.3 PE)
* 345 small WCDs (1.55m diameter, |.4m tall, 2.5 m3 water)
Ix8" PMTs (6 kHz rate @ ~? PE)
Main array trigger:
* ~30 hits within 500 ns window.
- When trigger, record all hits within 2.4 us window (time, ToT)
- =>12TB/day.

Reconstruction:

- Calibration
Hit selection (remove ambiguous hits, afterpulse, etc.)
+ Core fit
* Angle fit (need to know the core for shower curvature)
- Gamma/Hadron separation variables

Energy estimators

* Choice of minimal output or extended output (with every hit)

Analysis workflow - Data, I/l

Make event and background maps

- Classify reconstructed events in analysis bins (event size, energy, apply
Gamma/Hadron cut). 9 for published analyses, ~30 for incoming
publications (add energy estimators).

Using direct integration, method from Milagro days, for precise
background estimate in high background bins.

Likelihood source analysis:
* Within aerie for (all sky) maps.

Moved to python framework (Multi Mission Maximum Likelihood, 3ML)
for source analyses.

https://github.com/threeML

Analysis workflow - Simulation

Corsika shower. Save particles at 4100m asl.
HAWCSim (based on Geant4)

Inject particles right above HAWC (10 or 50m)

Propagation and light emission with Geant4 (with all WCD physics)
Record PEs hitting the PMTs (energy, position)

Reconstruction:

DAQSim: Modular DAQ simulation package, with simulation of PMT response,
electronics, calibration, channel status, noise model, etc.

- Then the same reconstruction as for data.
- Weighting (SWEETS: Software for Weighting Events and Event-like Things and Stuff):
Remove simulation bias (injection spectrum, zenith distribution, etc.)

* Weight for template source (whole source transit a declination, or burst at a zenith)
for a spectrum. Or weight for isotropic hadrons (using Cream measurements).

Detector response:
Event rate for reference source, as a function of energy.
Background rate (but we usually use data for that)
PSF, etc.

Sensitivity study:

Use 3ML to add sources on top of background maps (from data) and estimate
sensitivity. Can re-weight to arbitrary spectrum, model point or extended sources.
10

Sensitivity

B I |]
| —e —e— HAWC, 3.5yr

s : HAWC + OR, 5.0yr
—&— Total

1

= 10"

LN\ lllllll

10712

[llilll|

L1 1118

E2 x Flux Sensitivity (erg cm? s

—

|
—_
w

Differential flux sensitivity
llll 1 1 Illllll 1 1 IllllII 1 1 lllllll

10 1 10 10
Energy ER (TeV)

I Illlll|
| lllllll

-
(@)
N

* Ingredients:

» Source characteristics: spectrum, declination, morphology.
- Reconstructed gamma ray characteristics: selection cuts, PSFs, etc.
- Hadronic background rate. Can be simulated, or inferred from data.

- For astart, 0 = S/\/E in an optimal round bin can work.Then combine
several analysis bins. Other extreme if needed, full PSF information, multiple
extended sources and Poisson likelihood can be used (3ML). Or something in
between.

* We need to make/share the tools to reproduce HAWC sensitivity easily (not
just for SGSO).

11

Want to simulate another detector?

 (Corsika output another altitude. Also different geomagnetic field?)

HAWCSim:

+ Add the Geant4 detector unit definition to aerie/trunk/src/hawcsim/src/
Tank.cc (was done recently for outriggers). Define a new detector unit
type (now: enum TankType {MainTank=1, OutriggerTank=2})

Update the XML survey file (position and type of detectors)

Reconstruction:

If you replace HAWC's WCD by another detector units, changes can be
minimal. If you want multiple stream of hits (like we did for adding
outriggers), need a bit more changes. Can look at the corresponding

commits.

Can keep most algorithms, re-tune a few.

12

https://private.hawc-observatory.org/trac/svn/changeset/45026/workspaces/aerie/trunk/src/hawcsim/src/Tank.cc
https://private.hawc-observatory.org/trac/svn/changeset/45026/workspaces/aerie/trunk/src/hawcsim/src/Tank.cc

Where things are

Currently:
Codebase: private, svn, self hosted.
Documentation: private, self hosted, wiki + document database

Data:
Private, computing clusters (University of Maryland, Universidad
Nacional Autonoma de Mexico).

Some public data, for published results. Plans to release more.

Plan:

Move to Git soon (weeks). Q} git GitHub AV‘

- Testing workflows with GitHub and GitLab now.The latter
corresponds better to what we are looking for, but more risky?

Make AERIE public (months?). Probably write a paper like Auger's offline
paper. Share the code privately before that?

Document.
- What else would be useful? Corsika? Background maps? Internal notes?

13

https://arxiv.org/abs/0707.1652
https://arxiv.org/abs/0707.1652

Documentation

Some documentation:

Sphinx, auto-generated, currently hosted internally. Should host it publicly
(e.g. readthedocs).

Internal notes (e.g. event weighting, map-making, DAQ simulation).

- As always, there's room for improvement. Needed:

End to end analysis. From Corsika to sensitivity computation. Enough to
reproduce HAWC's sensitivity and branch off of it.

People will probably be available for help (e.g. Slack), probably easier/faster
than waiting for full documentation.

I'll put some of it in the next slides, but there are holes.

14

http://hawclava.umd.edu/docs/aerie-docs/
https://private.hawc-observatory.org/hawc.umd.edu/internal/docdb.php

Dependencies

Required: boost root xerces xcdf healpix-cxx photospline fftw.
Optional: geant4 mysql zeromq cppzmg.

- We typically use the Auger Package Environment to install them. Requests
password for downloading dependencies, but can be lifted (all are open

source except AERIE).

- A bit painful to install Geant4 right now, but should fix it soon.

Should we try conda!?

15

http://www.apple.com

Summary

- AERIE is a well though framework.
Modular, should be easy to adapt to another detector

* We are adding outriggers, so this is an example of "different detector”
already

- Various modules available

- We are working on making it public

16

