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Outline

This lecture is a short introduction to method of regions and SCET with
the emphasis on some applications to QED in flavour physics

» Two aspects of QED corrections

Methods of regions: basics

Methods of regions: power-enhancement in B, — ptp~
Soft-Collinear Effective Field Theory (SCET)

Hadronic matrix elements
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Sudakov resummation



QED corrections



QED in Flavor physics

QED effects can be divided into two classes of effects:

» Ultra-soft photons (sometimes simply called soft photons)
Based on eikonal approximation, well understood, under the
assumption that AFE < Aqcp

» Non-universal corrections
Hard, hard-collinear, collinear, and soft

Both effects are important - even with strong cut on real photons AFE,
the virtual corrections can resolve the structure of the meson!

Virtual photons can couple to initial and final state and may have
wave-lengths smaller than the typical meson size ~ 1/Aqcp

We refer to photons with energy k ~ Aqcp as soft
Photons with momentum k& ~ AFE are ultra-soft



Ultra-soft photons

» Numerically important, but very easy to compute

» Based on eikonal approximation: spin universal k
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Note k¥ < p*,m
» General all-order solution is well known
[see eg. S. Weinberg, The Quantum theory of fields. Vol. 1:

Foundations]
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Note that A should be at most Aqcp or m
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» Should be included in experimental analysis, but not interesting from
theory perspective. It is important to avoid double counting



Virtual corrections above ultra-soft scale

There are several kinematical and dynamical scales relevant to By — putpu™

>
>

>

To compute corrections: ezpand the amplitude in \? =

mp — the hard scale given by kinematics

my ~ mp — heavy quark mass — expansion parameter for the b quark
HQET

Aqep — soft scale, typical momentum of the quarks in the meson (or
inverse radius of the meson)

my ~ Aqcp — collinear scale, muon mass acts as a regulator for
collinear divergences

mu AQCD
m my

We need a more systematic approach than eikonal (soft) cxpanmon‘
Different logarithms appear

m mp mp
In —&; In—; In

AE my, Aqep’

Mixed QED-QCD logs are important! Expansion parameter is = x log?
rather than just &

How to go beyond ultra-soft photon approximation in a
systematic way? We need the method of regions



Method of Regions
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Method of regions and Effective Field Theory

Method of regions can be applied to expand diagrams and it is useful to
set-up the effective field theory
Advantages:
» systematic expansion allows for a good control of the theory accuracy
» resulting expressions are simpler than in the full theory
» allows for factorization and resummation of the large logarithms

» allows to exploit perturbative QCD and uniquely define
non-perturbative objects
Appropriate EFT is SCET @ HQET: needs energetic modes in the
low-energy EFT — EFT cannot be obtained by integrating out complete
fields but only certain modes — needs different fields to describe different
modes and resulting theory is a non-local QFT



Simple example

Consider a simple (euclidean) integral
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Simple example

Consider a simple (euclidean) integral
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Simple example

Consider a simple (euclidean) integral
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Use (n is assumed to be odd)
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Simple example

Consider a simple (euclidean) integral
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Expansion in ¢/m
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Expansion in ¢/m
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Expansion in ¢/m
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Expansion in ¢/m
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Scaleless contribution
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Scaleless contribution
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Scaleless contribution
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Scaleless integrals vanish in dimensional regularization!



Regions and scaling

Expanded integrals have homogeneous scaling
Region I: k ~ ¢
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Region II: k ~ m
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Recovering the full result

Reminder
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How to apply this technique to leptonic, decay of- By?



QED corrections for By — pt ™ : regions
and origin of power-enhancement
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By — ptp~

In the SM the process is
» loop suppressed (FCNC)

_ G%.a? 4m?2
Br(Bs = ptu”) = L fp g miy [V Vil 1 - 2 x
64 s mp,

[see talk by Christoph for more comprehensive discussion]




By — ptp~
In the SM the process is
» loop suppressed (FCNC)

» helicity suppressed (scalar meson decaying into energetic muons, vector
interaction)
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Br(Bs - puTupT) = 643 fe.mB.mE Vit Vil (/1 — —5— X - C1o
mp, 3

[see talk by Christoph for more comprehensive discussion]



By — ptp~
In the SM the process is
» loop suppressed (FCNC)
» helicity suppressed (scalar meson decaying into energetic muons, vector
interaction)
» purely leptonic final state allows for a precise SM prediction, QCD
contained in the meson decay constant [z,
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[see talk by Christoph for more comprehensive discussion]



By — ptp~
In the SM the process is
» loop suppressed (FCNC)
» helicity suppressed (scalar meson decaying into energetic muons, vector
interaction)
» purely leptonic final state allows for a precise SM prediction, QCD
contained in the meson decay constant [z,
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Let use use method of regions to compute
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[see talk by Christoph for more comprehensive discussion]



Kinematics

The two-body decay Bs(pg) — £(p¢)€(p;) implies lepton energies
E, = E; = mp/2
Auxiliary light-cone vectors

ni = (170707 1) n’i = (1,0,0,—1
n?,_:n2_=0 Ny -n_ =

n_* n
Pt = (n+p)7 +pl + (n_p)——

P’ =nipn_p+pi



Kinematics

The two-body decay Bs(pg) — £(p¢)€(p;) implies lepton energies

E,=E; =mp/2
Auxiliary light-cone vectors

ni = (170707 1) n’i = (1,0,0,—1)
n?,_:n2_=0 ny-n_ =2
n_* nyt
P = (nip) = + 0 + (np) =~
p*=nipn_p+pl
Partonic level:
b(py) +q(la) — £(pe) + E(py)
P = mpv + 1y Iy ~ Aqep lq ~ Agep
m% 1
N4Pe ~ Mp n—pe~ — Do ~ My
mp
2
my 1
nprNmb n+p2~7 pZNmZ
mpy



Regions

Unlike in the previous example, the loop integrals are not spherically
symmetric — different components can have different scaling!

Agop |, mu

Scaling parameter A2 = - o

k= (nyk,ki,n_k)

mode H relative scaling absolute scaling virtuality k2
hard (1,1,1) (mp, My, M) mi
hard-collinear (1, A, /\2) (me, \/mbTQCD, Aqcp) myAqep
anti-hard-collinear (A%, 1) (Aqep, /muAqen, ms) myAqep
collinear (1, M2 21 (M, My, M2, /M) m?
anticollinear (A% 221 (m3, /M, My, ) m;,
soft (A%, 0%, 07) (Aqep, Aqep, Aqep) Adop

Note: collinear+soft = hard-collinear!



Q9 operator insertion

b(py) U(pp)
Cy
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d
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Regions
» hard-collinear
» collinear

» soft (no power enhancement)
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Simplifications and expansions for collinear and hard-collinear regions

We choose p;- = 0 and use equation of motion

@ (pe) 7" (+p, +me)=(pg) (7K +2pf)
E(lq) ’Y“ (_lq - k + mq): v (lq) (_'Y“'% - 2l}qu)



Simplifications and expansions for collinear and hard-collinear regions

We choose p;- = 0 and use equation of motion

@ (pe) 7" (+p, +me)=(pg) (7K +2pf)
v (lg) " (_lq —k+ an): v (lq) (_'Y“% - 2“;)

Expansion of the spinor

7ﬁ’+ me
_ _ 14t e
W) = (o) [14 55
Projection property of collinear spinor
ECT/L—‘ =0 ﬂc%'JL_ =,
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Simplifications and expansions for collinear and hard-collinear regions

We choose p;- = 0 and use equation of motion

@ (pg) " (K +p, +me)=(vp) (7"k + 20}
v (lg) 7" (_lq —k+ an): v (lg) (_'Y“% - 2“;)
Expansion of the spinor

W) = ) [ 1+ 5

Projection property of collinear spinor

_ e _ b
uc7:0 Ue +4

= Ue

Dirac matrices
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Simplifications and expansions for collinear and hard-collinear regions

We choose p;- = 0 and use equation of motion

@ (pe) 7" (+p, +me)=(pg) (7K +2pf)
v (lg) " (_lq —k+ an): v (lq) (_'Y“% - 2“;)

Expansion of the spinor
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Projection property of collinear spinor
_ O
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Dirac matrices
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Expansions of the numerator

For the power-enhanced parts, numerators in both regions are the same



Expansions of the numerator

For the power-enhanced parts, numerators in both regions are the same

Lepton part — we are looking for terms with an odd number of 7
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Expansions of the numerator

For the power-enhanced parts, numerators in both regions are the same

Lepton part — we are looking for terms with an odd number of 7
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Quark Part — we take the leading part
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Expansions of the numerator

For the power-enhanced parts, numerators in both regions are the same

Lepton part — we are looking for terms with an odd number of 7

7’ ho
i’y”/) /"T’Y ve (py)

nype 2
__m”“rk* @7&; BV
i Ue (pe) =5 7L 71ve (Pg)
mgn_‘_kf v
= —————1c (pe) V[ V1 ve (pp)
N4-pe

my

@ (pe) (YK + 2p) v v (pg) = Ue (pe)

Quark Part — we take the leading part
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v (lg) (V'K +215) v Pru(pe) = —ni k0 () viL — Pru(py)
Let us define
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Cy diagram — expansion: hard-collinear region
Denominators expansion

(lg+ k) —m2 =k> +npkn_l, + ...
(pe+k)> —mi =k +n_knypo+...

Note that both denominators have hard-collinear virtuality ~ \?m;



Cy diagram — expansion: hard-collinear region
Denominators expansion

(lg+ k) —m2 =k> +npkn_l, + ...
(pe + k)2 —mi=k>+n_knipe+...
Note that both denominators have hard-collinear virtuality ~ \”m;

d’k (nyk)® 1 1 1
om)E nape k2 k2 4+ nikn I, k2 +nipn_k
(2m) q

47To¢QngmeT/



Cy diagram — expansion: hard-collinear region
Denominators expansion

(Ig + k)2 - mi = k? +nikn_lg+ ...
(pe + k) —mi = k> +n_knype + ...

Note that both denominators have hard-collinear virtuality ~ \”m;
d%k (nyk)? 1 1 1
4 T 7
maQeQsme / (2m)® nype k2 k*+nikn_ly k* +nipim_k

Counting d%k = Ldnikdn_kd* ki ~ 1 x A? x \?

dk (nik)? 1 1 P P
~ A A A A=
/ (2m)* k2 K4 nikn_lg k2 4+ nypm_k x x x




Cy diagram — expansion: hard-collinear region
Denominators expansion

(g + k)* — mi =k +nikn_l,+...
(pe+ k) —mi =k +n_knipi+...

Note that both denominators have hard-collinear virtuality ~ \”m;
dk k)? 1 1 1
47ro¢QgQ5meT/ 5 (n4k) 575 3
(2m)* n4pe k? E* +nikn_lg k> + nopin_k

Counting d%k = Ldnikdn_kd* ki ~ 1 x A? x \?

/ dk (nik)? 1 1

(2m)* k2 K4 nikn_lg k2 4+ nypm_k

)

PATXATIx A I x A2 0

/ dk (nik)? 1 1
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Cy diagram — expansion: collinear region
The only difference to the hard-collinear case is the expansion of the
denominators

(lg + k) —m2 =nikn_l,+ ...
(pe + k)2 — ml2 k24 2pek

Note that the quark propagator has hard-collinear virtuality but the lepton
is collinear!



Cy diagram — expansion: collinear region
The only difference to the hard-collinear case is the expansion of the
denominators
(lg + k) —m2 =nikn_l,+ ...
(pe + k)* —mi = k> + 2pek

Note that the quark propagator has hard-collinear virtuality but the lepton
is collinear!

dk (nek)* 11 1
(2m)t nipe k2 nipkn_ly k? + 2pek

47T0(Q4QsmgT/



Cy diagram — expansion: collinear region
The only difference to the hard-collinear case is the expansion of the
denominators
(lg + k) —m2 =nikn_l,+ ...
(pe + k)* —mi = k> + 2pek

Note that the quark propagator has hard-collinear virtuality but the lepton
is collinear!

dk (nek)* 11 1
(2m)t nipe k2 nipkn_ly k? + 2pek

47T0(Q4QsmgT/

Counting

d 2
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Cy diagram — expansion: collinear region
The only difference to the hard-collinear case is the expansion of the

denominators
(lg + k) —m2 =nikn_l,+ ...
(pe + k)" = mi = k* + 2pek

Note that the quark propagator has hard-collinear virtuality but the lepton
is collinear!

d%k (nyk)? 1 1 1
4 smeT —
raQeQsm / (2m)t nipe k2 nipkn_ly k? + 2pek

Counting

2

ddk ('I’L+k)2 1 1 1 8 —4 92 —4 .
— ~ AT XA A AT =
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/(ddk (nik)® 1 1 i nipe {7171+ln (mﬁi)}
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Cy diagram — result

Add both regions

2
PG Wo ML VD B I S Wy (TR T N [ S W (72
4 2n_lq € 12 ¢ 12

20,0, |1 - ((Ptanpe
47 2n_1

>

>

2
—lg my

Poles cancel — collinear contribution is UV-divergent but IR finite;
hard-collinear is IR divergent but UV finite

We get a logarithm of the ratio of hard-collinear scale to the collinear
scale

Explicit dependence on the soft quark momentum — correction is
sensitive to the structure of the meson

my

2n_lq
hard-collinear quark propagator

Factor is responsible for power-enhancement, comes from the

How to deal with n_[;? We need an EFT



SCET approach to QED corrections
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Tower of EFTs
SM
Weak EFT
SCET; ® HQEFT

SCETy; @ HQEFT

m¥ — 00

mi — oo

mbAQCD — o0

EFT approach to systematically
integrate-out different scales

» Operatorial definitions allow to

separate non-perturbative input
from perturbative corrections
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Weak EFT
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EFT approach to systematically
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separate non-perturbative input
from perturbative corrections

» Renormalization Group
technique can be used to perform
resummation



Tower of EFTs
SM
Weak EFT
SCET; ® HQEFT

SCETy; @ HQEFT

EFT approach to systematically
9 integrate-out different scales
my — 00 . .
» Operatorial definitions allow to
separate non-perturbative input

from perturbative corrections

» Renormalization Group
5 technique can be used to perform
my — 00 resummation
» Objects have well-defined
counting in A and their
computation is typically simpler
than in the full theory
mbAQCD — o0



Tower of EFTs
SM
EFT approach to systematically
integrate-out different scales
ak EFT

my — o0 . .
» Operatorial definitions allow to

separate non-perturbative input
Wealk from perturbative corrections
» Renormalization Group

5 technique can be used to perform
my — 00 resummation

» Objects have well-defined
SCET; ® HQEFT counting in A and their
computation is typically simpler
than in the full theory

myAQep = 90 » It is more intuitive than the full
theory

SCETy; @ HQEFT



Short and long-distance contributions: SCETY

Hard modes have typical fluctuations at distances ~ 1/my, < 1/4/mpAqcp
typical size of fluctuations of the hard-collinear modes

They modify Wilson coefficients of the SCET operators

i
7\’LN1 /\L \
& Ve Naco > SCETT

Qilson CeefL:cient
Clnsp,N-p,)

Note that n4pne ~ nypn thus SCETy; is non-local along n direction



Short and long-distance contributions: SCETy
Hard-collinear modes have typical fluctuations at distances

~1/y/mpyAqep < 1/Aqep typical size of fluctuations of the soft and

collinear modes

They modify Wilson coefficients of the SCET1; operators

hur‘é‘;‘ collincar

mo “13

(\SCE L L

maTthing, coe/Licient
Clnp n_L(‘)Q‘ #

Note that n_ps ~ n_pn. thus SCET1 soft sector is non-local along n_

direction



Short and long-distance contributions: SCETy
Hard-collinear modes have typical fluctuations at distances

~1/y/mpyAqep < 1/Aqep typical size of fluctuations of the soft and
collinear modes

They modify Wilson coefficients of the SCET1 operators

7
ho.ro\ cdllinear B-t
\Vla 0 e/rd-ft’c
> P avor

Ase
L

SCETq
rmﬂ'dmn(k co#tc(m‘t'

Clnap,, nup,,n-Ly)

Note that n_ps ~ n_pn. thus SCET1 soft sector is non-local along n_

direction



What is SCET?
SCET is an EFT which describes energetic particle. Here we need SCET}

and SCETH
n nap
» Each mode has its own field, e.g. so | | cotier | hard- \m;(
in SCET; we have hard-collinear 4 w%“r L;"e i:&m-
and soft modes
anti -
» Modes are separated in virtuality X f‘f#{ ";;(,‘jwr
in SCET; but not in SCETy L
» Lagrangian has expansion in A of ‘Q;Ii.j} ) Collinear
such that it reproduces T
expansion by regions
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L= £<CO) +L9 4 - only soft fields mediate interactions between
collinear and anticollinear sectors
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Decoupling transformation — physical picture
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Hard-collinear modes and soft modes do not interact at leading power in A
expansion — soft radiation is described by soft Wilson lines

Factorization of the amplitude:
[hard — collinear] x [anti — hard — collinear]| x [soft]



Wilson lines and soft decoupling transformation

Soft Wilson line
0

Yei(z) = exp {ie Q¢ / dsnzAs(x + sng)

— o0

allows to remove LP soft interactions.
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Wilson lines and soft decoupling transformation
Soft Wilson line

Yei(z) = exp {ie Q¢ /0 dsnzAs(z + snﬁ}

allows to remove LP soft interactions. How does the decoupling work?

0
n_0Ye+(x) = n_dexp {i@ Qg/ dsn_A.(x+ sn,)]

0 0
= exp {ing/ ds:z,.{‘(x—i—snn_)] ing/ dsn_0n_A.(x 4+ sn-)

0
= exp {ie Q,g/ dsn_A(x+ sn,)] eQen_ A (x)

o = Yer(z-)éc

fon-Déc = oV (x-)n-DYey (x-)éc
=Y (2 ) [n-0 —ieQen_Ac —ieQen A (z-)] Yei (v )ic
= (oY (@ )Ves (w-) [n-0 — ieQen—Ac] Eo



Wilson lines and soft decoupling transformation
Soft Wilson line
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SCET] operators

We have seen that hard-collinear quark leads to power-enhancement
Hence, we match weak EFT operators on SCET operator with
hard-collinear quark field

O = (@7 Prb) Y (Fyut)

O3(5,1) = gpuw [Xe:(s14) 71 Pr ho(0)] [ (tn4) 7 £5(0)]

Matching equation

Qo = / dsdtHo(s,t)Ob(s,t)
At leading order
Ho (5,8) = 6(5) 6 (1

Note that hard-collinear and hard-anticollinear field interact only through
soft interaction which can be removed at leading power through decoupling
transformation



SCET] diagrams
Computing following loops we can reproduce the result obtained by
expansion by regions

t b t

" ‘ "

Soft-collinear power-suppressed interaction in SCETI

c) —qW*uDLé iDL Weg

M. Beneke, M. Garny, R. Szafron, J. Wang, JHEP 1811 (2018) 112 contains Feynman

rules for SCET]

Quark propagator




SCETH

Hard-collinear modes are integrated-out — soft and collinear modes do not
interact (because pc + ps ~ Pnc)

Ta(w) = [a.(on >Y(vn-,0)%PLhu(0)] [£:(0)(4mePr) (0)]

T8 w0 = [1. (00 ¥ (o 0) = P, 0)] [(0) 2 A1 (tn) Pr)=(0)

In practice it is more convenient to work with Fourier-transformed operator

‘.7iA1 (w) — /(217:- ei;u v iAl('U),

» Matching coefficient depend on w which is just n_ [, in the expansion
by regions!

» Soft Wilson lines appear after decoupling soft photons from
the leptons
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Evaluate matrix element in SCET}
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Note that the quark current is the same as in the collinear region. The rest
of the diagram can be reproduced by taking the collinear matrix element



Matching SCET} on SCET;

Evaluate matrix element in SCET}
(A W) )T [ da7 {05 ) L) @} b 0 (1))

which gives

~ [ (p) v (pp) | | (L) (1eQq) ¢, (p)% —' Prun (py)
[ ]|: 2 n_l,

On the other hand, the same matrix element for SCETr operator gives
) - 1 — . / 7"7 M
~ 8w 1) [ () o (pe)] [00) Ge) £ () 5 Prun (ps)

Thus matching coefficient is

Q 1

w A2

Note that the quark current is the same as in the collinear region. The rest
of the diagram can be reproduced by taking the collinear matrix element

We turned n_I[; into w. Where are the hadronic effects?



Hadronic matrix elements and double
logarithmic resummation

Aqep

DA 35741



Factorization of the amplitude in SCET;

The full amplitude is a convolution of a matching coefficient ~ 1/w with the
matrix element of SCET1 operator
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(logarithmic) moments of LCDA
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Factorization of the amplitude in SCET;

The full amplitude is a convolution of a matching coefficient ~ 1/w with the
matrix element of SCET1 operator

A~ / W 0217 () [Ba(r)

= (| [collinear] |0)(¢z| [anticollinear] [0) / —<0} [soft] (w) |Bq(p))

In QCD we define the B-meson light-cone distribution amplitude (LCDA)
¢+ (w) which is a universal, non-perturbative object
defined as a non-local soft matrix element

<0‘§s(vn_)Y(vn_,O)7L;y5 hv(O) ‘Eq(p)> = —iqumBq /Ooodw e_iwvgb_._ (w)

Neglecting QED corrections of LCDA, the amplitude is proportional to
(logarithmic) moments of LCDA

A~ d?w¢+(w)

This is justified for power-enhanced corrections since they are already «
suppressed. What if we want to go beyond leading order in « or consider
non—enhanced corrections?



Hadronic matrix element

Soft matrix element

(0fg, (vn-)Y (vn—, 0}t 75 ho (0) |Ba(p))
ol 0)

E*ingmBq/ dwe ™ d . (w)
0

> @ (w) is the B-meson light-cone distribution amplitude generalized to
QED for Bs — Y0~ Cy contribution

» Wilson lines are process dependent, consequence of soft
photon decoupling

» Y (vn_,0) is a gauge link generalized to QED. It ensures gauge
invariance and is constructed from soft Wilson lines

» We also need to define new, process dependent decay constant

(0], (0)7"y5 7 (0) |Ba(p))

(0] 10)

Factor <0| |0> is introduced to properly subtract IR divergences.

_ "
=iFp,mp,v",



Hadronic matrix element process dependence
If we consider By — vy or Bs — vU

(0]g,(vn-)Y (vn—,0)h_~s hy(0)| By(p)) = —L?gquq /Ooodw e oY ()

no extra Wilson lines appear

For charged meson decay, we would define

0|q" Un,);vn,,o ho(0)Y4(0) | B oo .

< |qs( ) ( )Vi_’YS ( ) +( ) } (p)> = _,L-Lg/\;:umBu/ dweﬂ“’v@_j,f(w),
0]y, (0)Y ] (0)|0) 0

where Y, (0) carries total charge of the quarks.

At leading logarithmic accuracy we can still resum the QED logs without
knowing QED corrections to the LCDA

d = s /
71 [FB, (1) Py (w, )] = _f;Bq/ dw' T%(w,w") @4 (W)
np 0

I (w,w') = {_rsm % —5 (Z—;Cp + ‘Z: Qi)} S(w —w')

—4[E20r + 5 Qu(Qu + Q)| Flw,w)



Cusp anomalous dimension and resummation

For non-enhanced amplitude perform tree-level matching on SCET}
operator

Om = my [§,(0) Pr hy(0)] [€c(0) 5 £(0)],
with matching coefficient

Hon(1y) = A 2C0(ue)
me

and then we match on SCET operator

TA = m, [qs(o)Pth(o)} [ij,] (0) [Zc(o)vs 13;(0)]

which has the same Wilson coefficient
SCET operators typically have cusp anomalous dimension

d . ma,
T H (1) = Tenepln "2 Hp 1)




Resummation

The RGE at LL reads

d 7056m 2 ’Ian
dlnMHm(u)— —2Q¢In . Hm (1)

Similar cusp anomalous dimension appear also for power-enhanced
operators

Qem p
o) = () exp |22 Qi 2 |

He

This can be combined with ultra-soft photon correction (evolved to the
collinear scale!), at the level of the decay width to give

2
2aem S
_ L (2AEN\T 7 (1“” m2 )
(B, — pi)(AE) =T [B, — pi] (m ) Ba
Bq



Summary

» Mesons are not point-like, eikonal approximation is not enough because
there can be large virtual corrections. We need to include QED
corrections which depend on the structure of the meson.

» Method of regions allows to identify relevant physical degrees of
freedom and determine that size of the corrections

» EFT is needed to properly define hadronic matrix elements, and allow
to perform resummation (both QED and QCD)

» Method of regions and EFT approach allow to quantify the error
related to yet unevaluated corrections



