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QED corrections to hadronic decays on the lattice




outline

® phenomenological relevance of QED radiative corrections

® QED radiative corrections on the lattice:

® a consistent definition of QED on a finite volume

(backup)

® a prescription to define QCD

@ extraction of the physical observable from

euclidean correlators

® infrared-safe observable and finite-volume effects

® non-perturbative calculation of the leptonic decay rates

of pseudoscalar mesons at O («)

® non-perturbative calculation of the radiative leptonic

decay rates of pseudoscalar mesons

® summary & outlooks
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are QED radiative corrections phenomenologically relevant? (slide for lattice colleagues)

FLAG, arXiv:1902.08191
PDG review, j.rosner, s.stone, r.van de water, 2016

freo010__frt fice v.cirigliano et al., Rev.Mod.Phys. 84 (2012)
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® in the case of pions and kaons, QED corrections can be
® from the last FLAG review we have calculated in x-pt by estimating the relevant low-energy
constants
fﬂ-:(: = 130.2(0.8) MeV , §=0.6%,

SQepllr~ — to(y)] =1.8%,

frex =155.7(0.3)MeV, 6 =0.2%,
SorpT[K™ — to(y)] = 1.1%,

f1(0) =0.9706(27) , & =0.3%
sorpT[K — mto(+)] = [0.5,3]%

® at this level of precision QED radiative corrections must be included!



are QED radiative corrections phenomenologically relevant?
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® yes! that's why we are here...

® see the lectures from m.misiak, r.szafron, z.was, t.kitahara and all the talks at this workshop



QED radiative corrections on the lattice

including QED radiative corrections into a non-perturbative
lattice calculation is a very challenging problem!

® QED is a long-range unconfined interaction that needs
to be consistently defined on a finite volume: this is a * o/’.'
very subtle issue that I'll not discuss in this lecture (see
backup slides) ° h D 9 ad 9
Oa 4 < d
® from the numerical point of view it is difficult to QQ oo el Jo d >
disentangle QED radiative corrections from the leading
QCD contributions but, first of all, what is QCD? = = :
9o : & ¢
® as for any other observable on the lattice, QED radiative a0 5 p Qa o
corrections have to be extracted from euclidean
correlators 3
) Q, J
o Q. Q oy
@ finite-volume effects are potentially very large, e.g. of S :O 3 Py Y
O(1/L) in the case of the masses of stable hadrons 9 ) 5 Q 5] 5]
o° ol o
@ in the case of decay rates the problem is much more “. g

involved because of the appearance of infrared
divergences, O(log(L)), at intermediate stages of the
calculation: the infrared problem!



what is QCD?

in order to compare results for QED radiative corrections
we must first agree on what we call QCD. ..

indeed, when electromagnetic interactions are taken into
account the physical theory is QCD+QED

the QCD action is no longer expected to reproduce the
physics and, consequently, its renormalization becomes
prescription dependent

a natural prescription is to use again physical
experimental inputs to set the QCD parameters

another prescription (j.gasser, a.rusetsky and i.scimemi, EPJ
€32 (2003)) consists in imposing the condition that the
renormalized couplings of the full theory and QCD are
the same, say in the M S scheme at pu = 2 GeV

in RM123+SOTON, PRL 120 (2018), arXiv:1904.08731 we
have compared the two approaches and found that the
difference, nowadays, is smaller than the statistical
uncertainties

this will rapidly became an important issue on which we
should find an agreement

Experimental
Inputs

Prescription

QCD+QED

(e:g:m)

Qcp

(0,g0,m0)

Physical Decay Rate

Radiative
Corrections.

Leading Order
Decay Rate




disentangling QED corrections: the RM123 method

RM123, JHEP 1204 (2012)
RM123, PRD 87 (2013)

once QCD has been defined, QED radiative corrections can be calculated directly or by expanding the lattice
path-integral with respect to o ~ (mgq — my)/AQcD

_gfull o) <efsQCD (e—AS O) )

O(gs) = “——rr = = 0(g)) + a0
(e—sTully (e=SQED (c—asyy

the building-blocks for the graphical notation, used as a device to do calculations, are the corrections to the quark
propagator

A—>—F =
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disentangling QED corrections: the RM123 method

RM123, JHEP 1204 (2012)
RM123, PRD 87 (2013)

® once QCD has been defined, QED radiative corrections can be calculated directly or by expanding the lattice
path-integral with respect to o ~ (mg — ma)/AQoD

—sfull 0) <5—SQOD (E—As o) y
O(gs) = — = = 0(@g)) +40
<e—sf i ) { e—SQCD (e=ASY)

® vacuum polarization effects are the numerical issue with our method
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infrared-safe measurable observables

L]

the infrared problem has been analyzed by many
authors over the years

electrically-charged asymptotic states are not
eigenstates of the photon-number operator

the perturbative expansion of decay-rates and
cross-sections with respect to e“ is cumbersome
because of the degeneracies

the block & nordsieck approach consists in lifting
the degeneracies by introducing an infrared
regulator, say m.~, and in computing infrared-safe
observables

at any fixed order in 62, infrared-safe observables
are obtained by adding the appropriate number of
photons in the final states and by integrating over
their energy in a finite range, say [0, E]

in this framework, infrared divergences appear at
intermediate stages of the calculations and cancel
in the sum of the so-called virtual and real
contributions

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)
t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)
p.p-kulish, I.d.faddeev, Theor.Math.Phys. 4 (1970)
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euclidean correlators vs analytical continuation

it is always a good idea to address the issue of analytical

continuation by starting from correlators, it is usually

more cumbersome to locate singularities in the

amplitudes in minkowsky time:

the reason is that correlators (Schwinger's functions) C(t) = T(0| --- O(t) O(0)]0)
can always be Wick rotated without any problem . .
e~ it(H —ie) 0|0) + o.t.o.

= (0] ---
euclidean reduction formulae work straightforwardly
only for the lightest states, i.e. the leading exponentials _ 0 o ipOt
appearing in the correlators, because the corresponding A(E) =2E(p E) 0 dte C(t) +oto.
integrals are convergent

problems arise when one is interested in processes
corresponding to non-leading exponentials (notice that in euclidean time:
at finite L the spectrum of H is discrete)

Cr(r) =] - e "7 0J0) +oto.
the first step in a lattice calculation of a new observable
is to understand if the leading exponentials correspond
. oo 0
to the external states for the process of interest A(E) = 72iE(p0 —B) / dr P’ Cp(r) + oto.
0

the lightest state appearing in a correlator is readily
found by using the quantum numbers of the theory (in
p.t. by using the quantum numbers of the full theory)



QED radiative corrections from euclidean correlators

from the spectral decomposition of correlators at O () one

gets expressions that are rather involved but their structure is

easy to understand and somehow illuminating

Ct) = e tF®) /(jﬂ; AT (q)

d3q
(2m)3

Area1<q> e tHEMP—a)+Ey(q)]

when the spatial momentum g of the photon goes to zero we
have

lg| — 0
E(p —q) + Ey(q) — E(p)

lal

A'uﬁ*t (q) — C'u'i'rt —cIn log il

real la|

Areal +crg log —
m

(q) = c

for each charged particle emitting a photon one has the
exponential corresponding to the charged particle itself
as an external state (the virtual photon contribution)

but also the exponential corresponding to the external
states with the photon on-shell (the real photon
contribution)

since

lgl ++/ M2+ |p — q|? /M2 + |p|?

with an infrared regulator the blue exponentials are
sub-leading and, if one is interested in the virtual
contribution, there is no problem of analytical
continuation



QED radiative corrections from euclidean correlators

in the case of the 0(52) QED radiative corrections to the leptonic decays of pseudoscalar mesons

since as we have seen

at fixed total momentum and with an infrared regulator the
la| + \/M2 +|p—-ql2 > \/M2 + Ip|? pseudoscalar meson is the lightest state in QED+QCD with
the given quantum numbers

here there is a problem of analytical continuation! but this therefore, no problems of analytical continuation arise in
diagram can be factorized and the leptonic part can be the self-energy diagrams and in the diagram in which the
computed analytically real photon is emitted from the meson!

notice that this is true for a pion but also in the case of
flavoured pseudoscalar mesons such as K, B, D!



QED radiative corrections from euclidean correlators

® problems of analytical continuation do arise in the case of
semileptonic decays because of electromagnetic final state
interactions

® the internal meson-lepton pair, and eventually
multi-hadrons-lepton internal states, can be lighter than the
external meson-lepton state

® this is a big issue, particularly in the case of B decays because
of the presence of many kinematically-allowed multi-hadron
states




QED radiative corrections from euclidean correlators

problems of analytical continuation do arise in the case of
semileptonic decays because of electromagnetic final state
interactions

the internal meson-lepton pair, and eventually B
multi-hadrons-lepton internal states, can be lighter than the
external meson-lepton state

this is a big issue, particularly in the case of B decays because
of the presence of many kinematically-allowed multi-hadron
states

the problem does not arise at the point (on the boundary of the
allowed phase-space)

0.9
2 2 2
sv =(pB —Pv)” = (Pp +pe)” = (mp + my) 08
0.7
in this particular kinematical configuration, by calling ; 06 I
sp = (pg — pp)?, the calculation of the QED radiative
corrections to the double-differential decay rate dI'/dspds, 05
might be feasible!
04 b,

05 055 06 065 07 075 08 085 09 095



lattice claculation of the O («) QED radiative corrections to P — £i(7y)

RM123+SOTON collaboration: m.di carlo, d.giusti, v.lubicz, g.martinelli, c.t.sachrajda, f.sanfilippo, s.simula, c.tarantino, n.t.

iZfEdgf C)Qf

® |I'm now going to describe in some details the non-perturbative lattice calculation of the O(a) QED radiative corrections
to the decay rates P — £i(7y)

® both the theoretical and numerical results discussed below are the outcome of a big effort of the RM123+SOTON
collaboration started in 2015



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

® |et's consider the infrared-safe observable: at O () this is obtained by considering the real contributions with a single
photon in the final state

D(E)=To+e” lim {Ty(L)+Tr(L, B)}

® the finite-volume calculation of the real contribution is the issue: momenta are quantized!



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

let's consider the infrared-safe observable: at O () this is obtained by considering the real contributions with a single
photon in the final state

D(E)=To+e” lim {Ty(L)+Tr(L, B)}

the finite-volume calculation of the real contribution is the issue: momenta are quantized!
for this reason, by relying on the universality of infrared divergences, we have rewritten the previous formula as

=0

I(E) =Tg+ €2 Jim {7y (L) —IPH(L) + T2H(L) + T (L, E) — T2 (L, E) +T (L, E)

where F")/tR are evaluated in the point-like effective theory: these have the same infrared behaviour of 'y



the RM1234+SOTON method

RM123+SOTON, PRD 91 (2015)

let's consider the infrared-safe observable: at O () this is obtained by considering the real contributions with a single
photon in the final state

D(E)=To+e” lim {Ty(L)+Tr(L, B)}

the finite-volume calculation of the real contribution is the issue: momenta are quantized!
for this reason, by relying on the universality of infrared divergences, we have rewritten the previous formula as

=0

I(E) =Tg+ €2 Jim STy (L) —IPH(L) + T2H(L) + T (L, E) — T2 (L, E) +T (L, E)

where F")/tR are evaluated in the point-like effective theory: these have the same infrared behaviour of 'y
therefore, the different terms can be separated and eventually evaluated with different infrared regulators

2 . SD 2 . t t 2 . SD
I'(E)=Tp+e LIB}}X: Ty (L) +e ml;nl)o {FI‘)/ (m~) + F% (M, E')} +e m,l,},n—1>0FR (m~, E)



the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

® infrared divergences can be computed in the so called point-like effective theory

Ly = o, {7Di + mi} op + {QiGFVcKM fpDuoh vty + h.c.} . Dy =0, —ieA,



the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

® infrared divergences can be computed in the so called point-like effective theory

Ly = o, {7Di + m?g} op + {2iGFVcKM fpDuoh vty + h.c.} . Dy =0, —ieA,

® properly matched effective field theories have, by definition, the same infrared structure of the fundamental theory: at

leading order the matching is obtained by using I'g

G3 Ve | 3 2 my

et —pg = _EPOKMI TP Pm3r2(1_7«2) , re = £
0 PTL [

87 mp



the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

infrared divergences can be computed in the so called point-like effective theory

Ly = o, {7Di + mi} op + {2iGFVcKM fpDuoh vty + h.c.} . Dy =0, —ieA,

properly matched effective field theories have, by definition, the same infrared structure of the fundamental theory: at
leading order the matching is obtained by using I'g

2 2 02
_GrlVekmMm|"fp 3 2 2\2 me
= ——mpr; (1 =1} >

ry, = —%
87 ¢

t
ret =1,
mp

structure-dependent terms can also be understood in the effective field theory language by adding to the lagrangian all
the operators that are compatible with the symmetries of the full- theory, e.g.

= E
Oy (z) = Fy fuupaDu,Cf)P Fuplyov , Fup =0,A, —0vA,, subleading in  —L

Mo

by exploiting the full set of constraints coming from the Wls and from the e.o.m one can rigorously show that in the
expansion around vanishing photon energies both the leading (infrared divergent) and the next-to-leading terms are
universal: fixed from the amplitude without QED!

by using this remarkable result (an application of Low's theorem, see also backup) we managed to perform an analytical
calculation of the leading O(1/L) finite volume effects, see below



the master formula

® we are now going to look a bit more in details to the different terms entering our master formula

2 . t t 2 . SD 2 . SD
T'(E)=T¢g +e ml}/rio{l"@ (mw)+F%(m7,E)}+e Ll:rlocl"v (L) +e mlﬁl{riol"R (m~, E)



the point-like result: TPt (E)

RM123+SOTON, PRD 91 (2015)

concerning the perturbative point-like calculation in infinite volume, we have generalized the results obtained in the early
days of quantum field theory by berman 58, kinoshita 59

pt 2 . t t
rPY(E) =e i {1‘{’/ (my) + T2 (my, E)}

2 2

e m 2 — 107

=Tg —cm 3 log TP + log(r?) — 4log(r2E) + 722 log(v‘?)
4am miy 1—ry

1

2 2
log(rg) log(ry) — 4
- L—ry

1412 +75 2
—21 5 T‘2L|2(1—r£)—3

3+r2E76'r?+47'E(71+r3) TE(47TE747”3)

log(1 — rp) + log(r)

(1—r2)2 (1—r2)2
rgp(—22 + 3rg + 28r7) 1472
- 5 -4 5 Li2(rg) ¢
2(177‘2)2 1—rf
where
2E my

TE = ) e



the structure dependent real contribution: F%D(E)

RM123+SOTON, PRD 91 (2015)

Ry[K= gy
Ryl potn] '
00000 = AE(MeV)
50 Sto0_ 150 200 250

2.x107 I~

-0.0005 T~
0 D ABMeV) -
5 10 [ 20 3 30

—2.x107 00010
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00015

® concerning the real structure dependent contributions, the relevant hadronic quantity is

o H ) = () [ dte T IO @) R )1P) . k=0

that can be expressed in terms of (two if €* - k = 0) hadronic form—factors (see below)

® by using the xpt results (v.cirigliano and i.rosell, PRL 99 (2007)) for these quantities, we have estimated the structure
dependent real contribution to be, nowadays, phenomenologically irrelevant for P = {7, K} and £ = p

. I(E)—T
SD - ot 0
ry (E) _ml’lymo{FR(m,y,E) Tn (m,y,E)} < 0.00272



the structure dependent real contribution: F%D(E)

RM123+SOTON, PRD 91 (2015)
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® concerning the real structure dependent contributions, the relevant hadronic quantity is

o H ) = () [ dte e Tl @) T )1P) . k=0

that can be expressed in terms of (two if £¢* - k = 0) hadronic form—factors (see below)

® in the last part of the lecture | will show the preliminary results of a fully non-perturbative calculation of the structure
dependent real contribution: these confirm the phenomenological analysis for P = {7, K} and open the possibility of
calculating D(S> +— Lo~y and B — Lo~y



analytical calculation of F[C,t (L)

® we performed an analytical calculation of l—‘e,t(ll) RM123+SOTON, PRD 95 (2017), arXiv:1612.00199

FP.’(L) — F({(L) c 1

A% Vv 2 2 1
— =c log(L"“m + + —F 40 <—>
To CIR g( p) co ( L) L2

where

CIR =

;{(uﬁnog(r?) +1} 7

82 (lf'rg)

1 m3 (2 — 6r7)log(r7) + (1 + r7)log?(rf) 5 ¢c(0) — 2¢c(By)
0= g y2les | o |+ -,

2
myy, 1—7’Z 2 2

2(1 4 r2)
e = 17%3(0) peae LG
and we have shown that ¢y, co and cy are universal, i.e. they are the same in the point-like and in the full theories!
this means that in F‘aD (L) =Ty (L) — 1"{’,1 (L) we subtract exactly, together with the infrared divergence, the

leading O(1/L) terms and we have O(1/L?) finite size effects

® notice: the lepton wave-function contribution, F{}(L), does not
contribute to I‘aD (L) X



non-perturbative calculation of Fé;D (L)

RM123+SOTON, PRL 120 (2018), arXiv:1904.08731
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® we have performed the lattice calculation by using the previously mentioned RM123 method, i.e. by expanding the
lattice path-integral with respect to @ and the up-down quark mass difference

® by using this method we managed to obtain excellent numerical signals for the correlators corresponding to the
diagrams shown in the figure and for the associated counter-terms



non-perturbative calculation of Fé;D (L)

RM123+SOTON, PRL 120 (2018), arXiv:1904.08731

0012
' 1 ‘ 0009 [ - E
55 I
. g " . . . - - T ey
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B P 0.003 | | . 1
® O~O o P e
u u ] ! < ¢ !
‘ o | 1
= " - 0 10 20 30 40 50
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® we have performed the lattice calculation by using the previously mentioned RM123 method, i.e. by expanding the
lattice path-integral with respect to @ and the up-down quark mass difference

® by using this method we managed to obtain excellent numerical signals for the correlators corresponding to the
diagrams shown in the figure and for the associated counter-terms

® we have not computed the contributions corresponding to charged sea-quarks; this is the so called electroquenched
approximation: although we have estimated the associated uncertainty, there is certainly room for improvement here. ..



our result for DK™ — pv, (9)]/T[r™ = pou(y)]

® by defining

Ip(B) =T% {1+ 8Rp(E)} ,

SRKk. =0RK(ER™) — SR (ETT)
® our result is

SRK

= —0.0122(10)%t (2)t*" (8)X(5) X (4)@ (6) 19 F P

= —0.0122(16)

® this can (given the caveat concerning the definition of
QCD) be compared with the result currently quoted by
the PDG and obtained in v.cirigliano and h.neufeld, PLB 700
(2011)

SRy = —0.0112(21)

RM123+SOTON, PRL 120 (2018), arXiv:1904.08731
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our result for T[K ™ — pwy,(v)] and T[n ™ — piy, (v)]

RM123+SOTON, PRL 120 (2018), arXiv:1904.08731

® by defining

003 5 5190, L7a- 20 7/ continuum it |
0 Op-190,L/a= --fitat p=1.90
Tp(E) =T% {1+ 5Rp(E)} , - e
O p=195L/a=24 W = 1.95, L/a = 24 (FVE corr.) X physical point
O p=195L/a=32 @ = 1.95,L/a = 32 (FVE corr.)
o O p=210,L/a=48 @ (=210, L/a=
< 001 |

® our result are

gLl

o,
K-> w'vly]
004 005

SRk (ER®) = 0.0024(10)

SR (E®*) = 0.0153(19)

004 5 Ts0 e 7 emmami ]
o190
—~fempe19s
) . . . 008 A 5= 150, U 40 (Ve com) —~featp-210
® this can (given the caveat concerning the definition of Op-195ue-24 5= 195, Ua - 24 (VE o) X shysical pont
. O p=195La=32 @ (1 =1.95,L/a= 32 (FVE comr)
QCD) be compared with the result currently quoted by o O 5-210U0- 18 @ 6210, /0 = 48 (FVE cor)
“ o002
the PDG B o
G i g,
max oot L, k4 oo Y
SRK (ER®™) = 0.0064(24) T ] s ®
000 oor o o
m  (GeV)

SR, (EX®*) = 0.0176(21)



non-perturbative lattice calculation of P +— ¢y~

| now move to the discussion of the non-perturbative
lattice calculation of the radiative leptonic decay rates
for the processes P +— (g~

as we have seen, in the region of small (soft) photon
energies these are needed to properly define the
measurable infrared—safe purely leptonic decay rates
P — Lug(7y)

in the region of experimentally detectable (hard) photon
energies these represent important probes of the internal
structure of mesons

in the case of light pseuudoscalar mesons one can rely on
chiral perturbation theory but the low—energy constants
that enter these calculations are model dependent

in the case of heavy-light mesons nothing is known from
first-principles about these quantities

the RM123+SOTON collaboration:

g.martinelli, University of Rome La Sapienza
f. ti, University of Rome La
m.di carlo, University of Rome La

g-m.de divitiis, University of Rome Tor Vergata
a.desiderio, University of Rome Tor Vergata
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non-perturbative lattice calculation of P +— ¢y~

® the non-perturbative information needed to compute the

radiative decay-rates is encoded into the decay constant of the
meson and into two form-factors

) [ dty e T0li 01k, )| P() =

) chavB
EL(k){ —iFy Ps

mp

. kgl — pH e
+ [FA+ mpfp] (p-kg P )

p-k mp

mpfp p"p®
4+ 2P
p-k mp

® these can be expressed as functions of ., (and of mp)

2p -k

Fav(zy), 0<zy= -
P

® the infrared divergent contribution (in red) is universal: it is
proportional to the amplitude with no photons (fp)



non-perturbative lattice calculation of P — (0,

® the non-perturbative information needed to compute the
radiative decay-rates is encoded into the decay constant of the
meson and into two form-factors

K meson
oo k = 300 MeV

°

o,
o
006 2906c000000sesseeessstcsenns,
290000,
o,
e,

(k) [ty eV Tl 013k, I P@) =

chavBy P
r . YPpB
a(’c){*va* T T T S R
mp t/a
mpfp] (p- kg™ — p'k®)

+ [FA+
p-k

mpfp ptp®

p-k mp

® by using the RM123 method we managed to get excellent
numerical signals for the correlators from which F 4y, can

extracted

|
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mp

be

D meson
k = 300 MeV
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non-perturbative lattice calculation of P — (0,

® the non-perturbative information needed to compute the
radiative decay-rates is encoded into the decay constant of the

meson and into two form-factors 0 ”
meson
oots k = 300 MeV
4. ik . .
) [ dty et VIOl ik, WIPE) =
o0os
) guavﬂkwpﬁ g,
e e
mp t/a
m s kgt — pH k™
" [FA+ P.fP] (p-kg P ) o
p-k mp 00 D meson
002 k =300 MeV
; " o oarfe_ i
mpfp p'p 5 o5,
£ oot o, 1 ﬁ
p-k mp } 01 ° %mmﬂ%@%%ﬁﬂﬁ %%%HH

® by using the RM123 method we managed to get excellent o s 1 15 2 2 % 3 4w 45 0

numerical signals for the correlators from which F 4y, can be
extracted



non-perturbative lattice calculation of P — (0,

a = 0.0619 fm

2fp 't 2fp
Rpa=Fas+——, Ry = ——,
mPI—Y mp

® remarkably we are able to cover the full kinematical range 0 < z,, <1



non-perturbative lattice calculation of P — (0,

0.3 0.2
My = 11.7 MeV Mua = 11.7 MeV
a = 0.0619 fm 0.15 a =0.0619 fm

0.1
& oos #@%@@9@ weomo o
0
-0.05
0.2 0.1
0 0.5 1 15 0 05 1 15

® in the case of light mesons (the plots correspond to the K') the structure-dependent form factors are very small and in
agreement with chiral perturbation theory

8m Lg+ L m
FX = M , FX = TP , Lo + L1g ~ 0.0017 (arXiv:1405.6488)
fp Arcfp

® remarkably we are able to cover the full kinematical range 0 < z, <1



non-perturbative lattice calculation of P — (0,

6 7
) My = 11.7 MeV Mg = 11.7 MeV/
5¢ g a = 0.0619 fm 6 a = 0.0619 fm
e 5
¢ ]
Q - 4

in the case of heavy mesons (the plot on the left corresponds to the K while the one on the right to the D) we again
obtain the correct infrared divergence

2fp )t 2fp
Ry =Fy+———, RE = =,
mp T~ mp T

® and we are able to cover the kinematical range 0 < =, < 0.4



non-perturbative lattice calculation of P — (0,

® in the case of heavy mesons there is a strong enhancement
of the structure-dependent form factors 0.6

Myq = 8.76 MeV

05 a =0.0619 fm

® this can be understood by using the argument of d.becirevic,
b.haas and e.kou, PLB 681 (2009)

0 0.1 0.2 0.3 0.4

® in between the electromagnetic and the weak currents
propagate internal states that give contributions to the
form-factors proportional to

myq = 8.76 MeV'
a=0.0619 fm

o, P ={r, K} 02

O(mn/mp), P ={D,B}



non-perturbative lattice calculation of P — (0,

a.portelli at latticel9
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® we are not alone in the world:
® the RBC/UKQCD collaboration started a project to compute
radiative corrections to P +— £y (y) and the real-photon
decay P +— £y, physical results will be available soon
® we are finalizing the phenomenological analysis of our data on

P — £Dp~y, a paper on the subject will be available very soon!
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summary

_ FEG2019 Frs fi=
* FLAG average for N=241+1
T
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® QED radiative corrections are phenomenologically relevant || e ormtn
for many observables and have to be taken into account, Eﬁ%’ﬁﬁ?iﬁi%ﬁ o
possibly with the required non-perturbative accuracy X wLc o
[ ReGoRac Tox P
B i oo ol
MILE 0o
e 63 —
® in fact, if the precision is already at the percent level is useless e EE?S‘E%EZ@SN =
. : . . o ) =
to improve the accuracy of lattice calculations without QED = wcor —
~ FLAG averoge for
i v
z £
120 125 130 150 155 160 MeV
® including QED radiative corrections in a lattice simulation is a
very hard problem because of q q q Q Q
Y Phd
. - > 9 ]
e soft divergences and, more generally, large finite volume o a o o )
effects >¢
. . % > g P of
® non-perturbative corrections have to be extracted from p
euclidean correlators 5 3 5
@ it is highly non trivial to probe electrically charged states 20 gng
in a local finite-volume formulation of the theory




summary

T - -
the RM123+SOTON collaboration developed a method to R %o & .
calculate QED radiative corrections to I'[P — £i(7y)]

000 o0 00z

with this method a log(L) divergence is turned into a 1/L?> oas
finite volume effect

oonbomnol

the RM1234+SOTON collaboration provided the first © oo
non-perturbative results for the QED radiative corrections to B
DK — pou(v)] and Tln = py (7))

and is going to provide soon phenomenologically relevant
results for the radiative leptonic decays of 7, K and D(S)
mesons

s = 11.7 MeV
6 a=0.0619 fm
5

other collaborations started their work on the subject and this
will rapidly become a very active field of research 3

0 01 02 03 04



outlooks

the calculation of the QED corrections to (radiative) leptonic
decays in the case of B mesons doesn’t present any
conceptual issue

cutoff effects are the problem there but strategies to cope with
b-physics on the lattice exist and can be applied

the problem is more challenging in the case of semileptonic
decays because, for generic kinematical configurations, the
physical observable cannot be extracted from euclidean
correlators by the leading exponential contributions

nevertheless, the RM1234+SOTON method can be extended
to the case of semileptonic decays, we have already analyzed
the problem in great detail

the infrared divergence is again proportional to the leading
order decay rate (obvious) and the O(1/L) corrections are
again universal although, as expected from Low's theorem,
their evaluation requires the knowledge of the derivatives of
the form-factors f1 (sp) with respect to

2
sp = (p —PD)

B




backup material




non-perturbative renormalization

® notice that I'y/ (L) and FT\)}‘(L) are ultraviolet divergent in the Fermi theory

® the divergence can be reabsorbed into a renormalization of G i, both in the full theory and in the point-like effective
theory

® we have analyzed the renormalization of the four-fermion weak operator on the lattice in details and calculated
non-perturbatively the renormalization constants in the RI-MOM scheme

® we have then matched the non-perturbative results to the so-called W-regularization at O () (a.sirlin, NPB 196 (1982);
e.braaten and c.s.li PRD 42 (1990))

1 1 1 GrVekm o mz W-re
— Y — - ———, Hy = ——"""2<14+ —log—= 0 g,
2 k2 K24 my, w vz B

5
W-re; latt
0, "8 =3~ 21,0/ (a)
i=1
® indeed, this is the scheme conventionally used to extract G i from the muon decay

2 5 2
L _CGemu [ 8me [Hg(%_wz)}
T 19273 m?2 27 4

m




power-law finite volume effects

® power-law finite volume effects arise when internal states can go on-shell, e.g.

2ntn + 6
L

AO(p, L) = O(p, L) — O(p, >0)

1 a3k dk°
“\mX- s ) [ S tem



power-law finite volume effects

® power-law finite volume effects arise when internal states can go on-shell, e.g.

2 + 6
L

AO(p, L) = O(p, L) — O(p, o0) 6. e

dk°
:< - /(%)3)/ S fow.k)
_ go(p) + O(k)
- <L3 Z / (27r)3> { (k- p)© }

s a >0,




power-law finite volume effects

® power-law finite volume effects arise when internal states can go on-shell, e.g

2tn + 6

=—7 a>0,

AO(p, L) = O(p, L) — O(p, o0) °. e

dk°
- <L3 2 - /(27&) /;fO(p’k)
go(p) + O(k)
(L3 Z / (27r)3> { (k-p)“ }

_ 90(®)¢(p. 6) +o< 1 ) ’

L3—« Li—«a




power-law finite volume effects

® power-law finite volume effects arise when internal states can go on-shell, e.g.

2ntn + 6
L

AO(p,L) = O(p, L) — O(p, o) -
dk®

- LSZ /(27r)3 /;m(p’k)

~ g0 (p) + O(k)

- <L5Z /(2,,)3>{ (k- p)® }

_ go(p‘)f(p-ﬁ) +O( 1 ) 7

L3—« L4i—«a

s a>0,

d3n 1
£(p, 0) = {Z / @3 } @ p1 0 D)7



universality of infrared divergences

LR

~ 1
2p-k+k2

® the key point of our method is the universality of infrared divergences

® to see how this works, let's consider the contribution to the decay rate coming from the diagrams shown in the figure

d*k 1 Lau(k)
Fge = 1 H (k, p) T2 LQ
(27) k2 2py -k +k

® infrared divergences (and power-law finite volume effects) come from the singularity at k2 = 0 of the integrand

® the tensor L, is a regular function, it contains the numerator of the lepton propagator and the appropriate

normalization factors

Eau(k) = ‘Cau(kxpyxpe) =0(1)



universality of infrared divergences

® the hadronic tensor is a QCD quantity

HO (k,p) =i /d% BT 0] IG (0) §# () | P)

® it satisfies the WIs coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p™ ,

® and, given the kinematics of the process, it is singular only at the
single-meson pole



universality of infrared divergences

the hadronic tensor is a QCD quantity
HOM(k,p) =i /d4z BT 0] IG (0) §# () | P)

it satisfies the Wls coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p™ ,

and, given the kinematics of the process, it is singular only at the
single-meson pole

the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WiIs of the full
theory

(p+ k)™ (2p + k)" }

HMM (k,p) = f S —
ot (k,p) =fp 2 h 12

Hgp(k,p) = H* (k,p) — Hpl'(k,p) ,  ku Hpf'(k,p) = —fpp®,  kuHgh(k,p) =0



universality of infrared divergences

® the hadronic tensor is a QCD quantity
HOM(k,p) =i /d% BT 0] IG (0) §# () | P)

® it satisfies the WIs coming from QED gauge invariance, e.g.

ky H*"(k,p) = —fp p™ ,

® and, given the kinematics of the process, it is singular only at the
single-meson pole

® the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WiIs of the full
theory

(p+ k) (2p + k)M
2p - k 4 k2 ’

HOM (b, p) = fp {o‘ -
Hgp(k,p) = H* (k,p) — Hpl'(k,p) ,  ku Hpf'(k,p) = —fpp®,  kuHgh(k,p) =0

® the structure dependent contributions are regular and, since there is no constant two-index tensor orthogonal to k,

HZ(k,p) = (p- k8™ —k“p!) Fa + " ppko Fy + -+ = O(k)



universality of leading finite volume effects

® at O(ez) with massive charged particles, singularities arise only at

k2 = (+ilk)2 + k%2 =0
® the blobs on the right are QCD vertexes, e.g.

A(p + k)T (p, k)A(p) =

i) [ dteatye™ R0 P () " )P O)0) |

Aw) = N) [ a'ye PVl PW) PTO)0) |

N7 (p) = (P(®)|PT(0)|0)]?,

® gauge WIs constrain the first two terms in the expansion, e.g.

kuTH(p, k) = A" (p+ k) — A7 (p) ,

I (p, k) = 2p* + kM + O(k?)

(a)

>

(b) (e)




universality of leading finite volume effects

® at O(ez) with massive charged particles, singularities arise only at

k2 = (Lilk])2 + k2 =0 ’ 3<

® the blobs on the right are QCD vertexes, e.g.

A+ T (p, A M) = o1 _8_@<
(e)

®)

= —<

Aw) = N) [ a'ye VTP PTO)0) | w “

N7 p) = [(P(@) [ PT(0)]0)? 4%<
(53] (9)

® gauge WIs constrain the first two terms in the expansion, e.g.

i) [ dteatye™ PRIl PW)I* @) P O)0) |

the first two terms in 1/ L are universall!

frv =g} @ =P +0 ()

kuTH(p, k) = A7 o+ k) — AT N(p)

T*(p, k) = 2p" + k" + O(k?)



QED on a finite volume: how?

® jt js impossible to have a net electric charge in a periodic box!

® classically, this is a consequence of Gauss's law

. (1 _
S:/Lad Z{ZFWFW+¢f ('yuDlJ:-}—mf) r

Oy, Fo(w) — ieqpipyop(w) =0
N ——————
By (z) ep(x)

1
Q:LB d3:cp(ac) = 2/113 deBkEk(m):O

® this is well known in the field of classical simulations, charged molecules are usually studied by adding an appropriate
number of “counter-ions” to have a neutral system

® notice: if the volume is not large enough these counter-ions affect the low-energy dynamics of the system



QED on a finite volume: how?

® jt is impossible to have a net electric charge in a periodic box! @

® at the quantum level, Gauss's law becomes the generator of local gauge @

transformations

/ DYDP DA, e
pbc in space
— (@]~ TH DPociLs 3z a(z) [0y B —ep| () ) @
pbc in space
Pg
[H, 0 B () — ep(x)] = 0 @

® 3 physical state is invariant under local gauge transformations and necessarily neutral

(=}

1
2 3
PE=Py W= Pol¥) . Q¥ = ~{ [ a%0 0B (@)} 1W)pnys



QED on a finite volume: how?

it is impossible to have a net electric charge in a periodic box!

one may think to overcome this problem by gauge fixing and to extract, say,
the electron mass from the correlator

(¥(x) $(0))

notice that after gauge fixing the theory is still invariant under global gauge
transformations (electric charge is conserved)

moreover, large gauge transformations survive gauge fixing (n € Z4)

T Tpnp
W) e TR T gy

2mny,
Ly

Ap(z) = Ap(z) +

® as a consequence the correlator vanishes unless the two operators are in the same point,

ﬂ.izu St

$(@) $(0) = L (2) $(0) , (W@ BO) =0, z#0



quenching the zero modes

® in order to study charged particles in a periodic box it has been suggested long
ago (duncan et al. 96) to quench (a set of) the zero momentum modes of the gauge
field, for example

— " ' 4 2\ -5
(= -/Pbc in space DYDY DAL 1;[6 {/TL3 ¢ AM(VL)} © ©

® by using this procedure one is also quenching large gauge transformations that are
no longer a symmetry and charged particles can propagate

® the assumption is that the induced modifications on the infrared dynamics of the
theory should disappear once the infinite volume limit is taken

® the point to note is that the resulting finite volume theory, although it may admit an hamiltonian description, is non-local
m.hayakawa, s.uno Prog.Theor.Phys. 120 (2008)

4
QEDy, : H5{/, d3;rA,,(t,z)} — Doy, (t) e~ I8 & T an® Ault2)
it JL3 pbc in space



local theory on the finite volume: QCD+QEDc

b.lucini, a.patella, a.ramos, n.t, JHEP 1602(2016)

® consider C* boundary conditions (first suggested by wise and polley 91)

Vy(x+ Lk) = C™'9F (x)

Py(z+ Lk) = —¢] (2)C

Ap(z+ Lk) = —Ay(z) , U,(z + Lk) = U;(z) ,

® the gauge field is anti-periodic (|p|in = 7/L): no zero modes by construction!

® this means no large gauge transformations and

[ 3 _ 1 3
Q—/L3d @p(z) = e/de @ 0, By, (2) # 0

® 3 fully gauge invariant formulation is possible: for example the electrostatic potential is unique with anti-periodic
boundary conditions

0,0, 0(x) = 65 (x), ®(x+ Lk) = —d(x)



quenching the zero modes: induced systematics at O ()

® at O(a) the systematics associated with the quenching of the zero modes can be understood; this is what we did in the
applications described so far; for example,

1/a dk® 1 =6 ¢
- = Z/ o ) Ly ()

19 () = [ e e T 1 @) Ty 01P@) |

1
L’“’(k):f) A AFu
YT (b + B+

® the ultraviolet behaviour of this object can be understood by taking

OH¥(0) 1 1 1/a dk% 1 — &5, o
o v i s
x) Ji (0) ~ ——2 H*Y (k) ~ =, ~ / i
3@ Ty (0) ~ = (k) ~ P i
® in the local theory the diagram has a logarithmic divergence (absent with a propagating W) that renormalizes G i

® the effect of the zero-modes subtraction is a term

1 1/a dik° a®
L3 / (ks T L3

i.e. no new ultraviolet divergences but tricky interplay between cutoff and finite volume effects!



