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QED corrections to hadronic decays on the lattice



outline

• phenomenological relevance of QED radiative corrections

• QED radiative corrections on the lattice:

• a consistent definition of QED on a finite volume
(backup)

• a prescription to define QCD

• extraction of the physical observable from
euclidean correlators

• infrared-safe observable and finite-volume effects

• non-perturbative calculation of the leptonic decay rates
of pseudoscalar mesons at O(α)

• non-perturbative calculation of the radiative leptonic
decay rates of pseudoscalar mesons

• summary & outlooks
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relators described in Ref. [6]. Their numerical determi-
nation is illustrated briefly in Refs. [25, 26] and in detail

in Ref. [27]. The quality of the extraction of �A`=µ
P /�A

(0)
P

is illustrated in the supplemental material.

IV. FINITE VOLUME EFFECTS AT O(↵EM)

The subtraction �0(L)��pt
0 (L) makes the rate IR finite

and cancels the structure-independent FVEs. The point-
like decay rate �pt

0 (L) is given by

�pt
0 (L) = 2

↵em

4⇡
YP (L) �tree

P , (10)

where the factor YP (L) is explicitly given by Eq. (98) of
Ref. [10]. Eq. (8) is therefore replaced by

�AP = �AQCD
P +

X

i

�Ai
P +�A`

P �↵em

4⇡
YP (L) A

(0)
P , (11)

where YP (L) has the form

YP (L) = bIR log(MP L) + b0 +
b1

MP L

+
b2

(MP L)2
+

b3

(MP L)3
+ O(e�MP L) (12)

with the coe�cients bj (j = IR, 0, 1, 2, 3) depending
on the dimensionless ratio m`/MP [10]. The important
point is that the SD FVEs start only at order O(1/L2),
i.e. all the terms up to O(1/L) in Eq. (12) are “univer-
sal” [10]. Being independent of the structure they can be
computed for a point-like charged meson.

The FVE subtraction (11) up to order O(1/L) is il-
lustrated in Fig. 5 for �RK , �R⇡ and �RK⇡ in the inclu-
sive case �E� = �Emax,P

� = MP (1�m2
µ/M2

P )/2, which

corresponds to �Emax,K
� ' 235 MeV and �Emax,⇡

� '
29 MeV, respectively. It can be seen that after subtrac-
tion of the universal terms the residual FVEs are almost
linear in 1/L2 and ⇡ 3 times smaller in the case of �RK⇡.

V. RESULTS FOR THE RATIO �(K`2)/�(⇡`2)

The (inclusive) data for �RK⇡, obtained using Eqs. (7)
and (11-12), are shown in Fig. 6. The “universal” FVEs
are subtracted from the data and the combined chiral,
continuum and infinite volume extrapolations are per-
formed using the following Ansatz:

�RK⇡ = R0 + R�log(mud) + R1mud + R2m
2
ud + Da2

+
K2

L2


1

M2
K

� 1

M2
⇡

�
+

K`
2

L2


1

(EK
` )2

� 1

(E⇡
` )2

�

+ ��pt(�Emax,K
� ) � ��pt(�Emax,⇡

� ) , (13)

where mud is the renormalized u/d quark mass, EP
` =

MP (1 + m2
`/M

2
P )/2 is the lepton energy in the P-meson

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

δR
P

a2 / L2

δR
Kπ

δR
K

δR
πβ = 1.90

M
π
 ~ 320 MeV

M
K
 ~ 580 MeV

A40.40 A40.32
A40.24 A40.20

y = m1 + m2 * M0
ErrorValue

0.00073713-0.00904m1 
0.60454-0.62217m2 

NA3.4005Chisq
NA0.48734R

y = m1 + m2 * M0
ErrorValue

0.000614690.010591m1 
0.52146-1.8029m2 

NA0.23574Chisq
NA0.99028R

y = m1 + m2 * M0
ErrorValue

0.000436210.0015021m1 
0.35336-2.3945m2 

NA5.5006Chisq
NA0.945R

FIG. 5: Results for the corrections �R⇡, �RK and �RK⇡ for the
gauge ensembles A40.20, A40.24, A40.32 and A40.40 sharing the
same lattice spacing, pion and kaon masses, but di↵erent lattice
sizes (see the supplemental material). The universal FVEs, i.e. the
terms up to order O(1/L) in Eq. (12), are subtracted for each
quantity. The lines are linear fits in 1/L2. The maximum photon

energy �E� corresponds to the inclusive case �E� = �Emax,P
� =

MP (1 � m2
µ/M2

P )/2.
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FIG. 6: Results for the correction �RK⇡ (Eqs. (7) and (11))
after the subtraction of both the universal FVEs in Eq. (12) and
the residual FVEs obtained from the fitting function (13). The
dashed lines are the (central) results at each �, while the shaded
area identifies the continuum limit at 1-sigma level. The cross is

the extrapolated value at mphys
ud (MS, 2GeV) = 3.70(17)MeV [18].

The blue dotted lines correspond to the value �0.0112(21) from
Refs. [15, 16] adopted by the PDG [17]. Errors are statistical only.

rest frame, and R0,1,2, D, K2 and K`
2 are free parameters.

In Eq. (13) the chiral coe�cient R� is known [11] and
given by R� = ↵em(2Z/9 � 3)/4⇡ in qQED, where Z is
obtained from the chiral limit of the O(↵em) correction
to M2

⇡± (i.e. �M2
⇡± = 4⇡↵emZf2

0 + O(mud)). In Ref. [5]
we found Z = 0.658 (40).

Using Eq. (13) we have fitted the data for �RK⇡ us-
ing a �2-minimization procedure with an uncorrelated
�2, obtaining values of �2/d.o.f. always around 1.2. The
uncertainties on the fitting parameters do not depend on
the �2-value, because they are obtained using the boot-
strap samplings of Ref. [18] (see section II). This guaran-
tees that all the correlations among the data points and
among the fitting parameters are properly taken into ac-
count. The quality of our fits is illustrated in Fig. 6.

At the physical pion mass in the continuum and
infinite-volume limits we obtain

�Rphys
K⇡ = �0.0122 (10)stat (2)input (8)chir (5)FV E

(4)disc (6)qQED

= �0.0122 (16) , (14)

42

0.01

0.02

0.03

0.04

0.00 0.01 0.02 0.03 0.04 0.05

β = 1.90, L/a = 20

β = 1.90, L/a = 24

β = 1.90, L/a = 32

β = 1.90, L/a = 40

β = 1.95, L/a = 24

β = 1.95, L/a = 32

β = 2.10, L/a = 48

physical point

β = 1.90, L/a = 20 (FVE corr.)

β = 1.90, L/a = 24 (FVE corr.)
β = 1.90, L/a = 32 (FVE corr.)

β = 1.90, L/a = 40 (FVE corr.)

β = 1.95, L/a = 24 (FVE corr.)

β = 1.95, L/a = 32 (FVE corr.)

β = 2.10, L/a = 48 (FVE corr.)

continuum limit

fit at β = 1.90
fit at β = 1.95

fit at β = 2.10

δ 
R π

m
ud

   (GeV)

PDG

π
+ -> µ+

ν[γ]

0.00

0.01

0.02

0.03

0.00 0.01 0.02 0.03 0.04 0.05

β = 1.90, L/a = 20

β = 1.90, L/a = 24

β = 1.90, L/a = 32

β = 1.90, L/a = 40

β = 1.95, L/a = 24

β = 1.95, L/a = 32

β = 2.10, L/a = 48

physical point

β = 1.90, L/a = 20 (FVE corr.)
β = 1.90, L/a = 24 (FVE corr.)
β = 1.90, L/a = 32 (FVE corr.)
β = 1.90, L/a = 40 (FVE corr.)

β = 1.95, L/a = 24 (FVE corr.)
β = 1.95, L/a = 32 (FVE corr.)

β = 2.10, L/a = 48 (FVE corr.)

continuum limit
fit at β = 1.90
fit at β = 1.95
fit at β = 2.10

δ 
R K

m
ud

   (GeV)

PDG

K+ -> µ+
ν[γ]

FIG. 10: Results for the corrections �R⇡ (top panel) and �RK (bottom panel) obtained after the subtraction of the

“universal” FSE terms up to order O(1/L) in Eq. (95) (empty markers). The full markers correspond to the lattice

data corrected by the residual FSEs obtained in the case of the fitting function (98) including the chiral log. The

dashed lines are the (central) results in the infinite volume limit at each value of the lattice spacing, while the shaded

areas identify the results in the continuum limit at the level of one standard deviation. The crosses represent the

values �Rphys
⇡ and �Rphys

K extrapolated at the physical point mphys
ud (MS, 2 GeV) = 3.70 (17) MeV [29]. The blue dotted

lines correspond to the values �Rphys
⇡ = 0.0176 (21) and �Rphys

K = 0.0064 (24), obtained using ChPT [26] and adopted

by the PDG [25].
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are QED radiative corrections phenomenologically relevant? (slide for lattice colleagues)

FLAG, arXiv:1902.08191

PDG review, j.rosner, s.stone, r.van de water, 2016

v.cirigliano et al., Rev.Mod.Phys. 84 (2012)
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• from the last FLAG review we have

f
π± = 130.2(0.8) MeV , δ = 0.6% ,

f
K± = 155.7(0.3) MeV , δ = 0.2% ,

f+(0) = 0.9706(27) , δ = 0.3%

• in the case of pions and kaons, QED corrections can be
calculated in χ-pt by estimating the relevant low-energy
constants

δQEDΓ[π
− → `ν̄(γ)] = 1.8% ,

δQEDΓ[K
− → `ν̄(γ)] = 1.1% ,

δQEDΓ[K → π`ν̄(γ)] = [0.5, 3]%

• at this level of precision QED radiative corrections must be included!



are QED radiative corrections phenomenologically relevant?
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• yes! that’s why we are here. . .

• see the lectures from m.misiak, r.szafron, z.was, t.kitahara and all the talks at this workshop



QED radiative corrections on the lattice

including QED radiative corrections into a non-perturbative
lattice calculation is a very challenging problem!

• QED is a long-range unconfined interaction that needs
to be consistently defined on a finite volume: this is a
very subtle issue that I’ll not discuss in this lecture (see
backup slides)

• from the numerical point of view it is difficult to
disentangle QED radiative corrections from the leading
QCD contributions but, first of all, what is QCD?

• as for any other observable on the lattice, QED radiative
corrections have to be extracted from euclidean
correlators

• finite-volume effects are potentially very large, e.g. of
O(1/L) in the case of the masses of stable hadrons

• in the case of decay rates the problem is much more
involved because of the appearance of infrared
divergences, O(log(L)), at intermediate stages of the
calculation: the infrared problem!



what is QCD?

• in order to compare results for QED radiative corrections
we must first agree on what we call QCD. . .

• indeed, when electromagnetic interactions are taken into
account the physical theory is QCD+QED

• the QCD action is no longer expected to reproduce the
physics and, consequently, its renormalization becomes
prescription dependent

• a natural prescription is to use again physical
experimental inputs to set the QCD parameters

• another prescription (j.gasser, a.rusetsky and i.scimemi, EPJ

C32 (2003)) consists in imposing the condition that the
renormalized couplings of the full theory and QCD are
the same, say in the M̄S scheme at µ = 2 GeV

• in RM123+SOTON, PRL 120 (2018), arXiv:1904.08731 we
have compared the two approaches and found that the
difference, nowadays, is smaller than the statistical
uncertainties

• this will rapidly became an important issue on which we
should find an agreement

Experimental
Inputs

QCD+QED

(e,g,m)
Physical Decay Rate

QCD

(0,g0,m0)
Prescription Leading Order 

Decay Rate

Radiative 
Corrections



disentangling QED corrections: the RM123 method

RM123, JHEP 1204 (2012)

RM123, PRD 87 (2013)

• once QCD has been defined, QED radiative corrections can be calculated directly or by expanding the lattice
path-integral with respect to α ∼ (md −mu)/ΛQCD

O(gs) =

〈
e−S

full
O
〉

〈
e−Sfull

〉 =

〈
e−S

QCD (
e−∆S O

) 〉

〈
e−SQCD

(
e−∆S

) 〉 = O(g
0
s) + ∆O

• the building-blocks for the graphical notation, used as a device to do calculations, are the corrections to the quark
propagator

The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)

G.M. DE DIVITIIS et al. PHYSICAL REVIEW D 00
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10



infrared-safe measurable observables

f.bloch, a.nordsieck, Phys.Rev. 52 (1937)

t.d.lee, m.nauenberg, Phys.Rev. 133 (1964)

p.p.kulish, l.d.faddeev, Theor.Math.Phys. 4 (1970)

• the infrared problem has been analyzed by many
authors over the years

• electrically-charged asymptotic states are not
eigenstates of the photon-number operator

• the perturbative expansion of decay-rates and
cross-sections with respect to e2 is cumbersome
because of the degeneracies

• the block & nordsieck approach consists in lifting
the degeneracies by introducing an infrared
regulator, say mγ , and in computing infrared-safe
observables

• at any fixed order in e2, infrared-safe observables
are obtained by adding the appropriate number of
photons in the final states and by integrating over
their energy in a finite range, say [0, E]

• in this framework, infrared divergences appear at
intermediate stages of the calculations and cancel
in the sum of the so-called virtual and real
contributions

∫
2 b.p.s

×

∫
3 b.p.s

×

(p + k)
2

+m
2
P = 2p · k + k

2 ∼ 2p · k ,

∫
d4k

(2π)4

1

(k2 +m2
γ) (2p · k) (2p` · k)

∼ cIR log

(
mP

mγ

)
,

cIR

{
log

(
mP

mγ

)
+ log

(
mγ

E

)}
= cIR log

(
mP

E

)



euclidean correlators vs analytical continuation

• it is always a good idea to address the issue of analytical
continuation by starting from correlators, it is usually
more cumbersome to locate singularities in the
amplitudes

• the reason is that correlators (Schwinger’s functions)
can always be Wick rotated without any problem

• euclidean reduction formulae work straightforwardly
only for the lightest states, i.e. the leading exponentials
appearing in the correlators, because the corresponding
integrals are convergent

• problems arise when one is interested in processes
corresponding to non-leading exponentials (notice that
at finite L the spectrum of H is discrete)

• the first step in a lattice calculation of a new observable
is to understand if the leading exponentials correspond
to the external states for the process of interest

• the lightest state appearing in a correlator is readily
found by using the quantum numbers of the theory (in
p.t. by using the quantum numbers of the full theory)

in minkowsky time:

C(t) = T〈0| · · · Ō(t)O(0)|0〉

= 〈0| · · · e−it(H−iε) O|0〉 + o.t.o.

A(E) = 2E(p
0 − E)

∫ ∞
0

dt e
ip0t

C(t) + o.t.o.

in euclidean time:

CE(τ) = 〈0| · · · e−τH O|0〉 + o.t.o.

A(E) = −2iE(p
0 − E)

∫ ∞
0

dτ e
p0τ

CE(τ) + o.t.o.



QED radiative corrections from euclidean correlators

from the spectral decomposition of correlators at O(α) one
gets expressions that are rather involved but their structure is
easy to understand and somehow illuminating

C(t) = e
−tE(p)

∫
d4q

(2π)4
A
virt

(q)

+

∫
d3q

(2π)3
A
real

(q) e
−t[E(p−q)+Eγ (q)]

+ · · ·

when the spatial momentum q of the photon goes to zero we
have

|q| 7→ 0

E(p− q) + Eγ(q) 7→ E(p)

A
virt

(q) 7→ c
virt − cIR log

|q|
m

A
real

(q) 7→ c
real

+ cIR log
|q|
m

for each charged particle emitting a photon one has the
exponential corresponding to the charged particle itself
as an external state (the virtual photon contribution)

but also the exponential corresponding to the external
states with the photon on-shell (the real photon
contribution)

since

|q| +
√
M2 + |p− q|2 ≥

√
M2 + |p|2

with an infrared regulator the blue exponentials are
sub-leading and, if one is interested in the virtual
contribution, there is no problem of analytical
continuation



QED radiative corrections from euclidean correlators

in the case of the O(e2) QED radiative corrections to the leptonic decays of pseudoscalar mesons

since as we have seen

|q| +
√
M2 + |p− q|2 ≥

√
M2 + |p|2

here there is a problem of analytical continuation! but this
diagram can be factorized and the leptonic part can be
computed analytically

at fixed total momentum and with an infrared regulator the
pseudoscalar meson is the lightest state in QED+QCD with
the given quantum numbers

therefore, no problems of analytical continuation arise in
the self-energy diagrams and in the diagram in which the
real photon is emitted from the meson!

notice that this is true for a pion but also in the case of
flavoured pseudoscalar mesons such as K,B,D!



QED radiative corrections from euclidean correlators

• problems of analytical continuation do arise in the case of
semileptonic decays because of electromagnetic final state
interactions

• the internal meson-lepton pair, and eventually
multi-hadrons-lepton internal states, can be lighter than the
external meson-lepton state

• this is a big issue, particularly in the case of B decays because
of the presence of many kinematically-allowed multi-hadron
states

• the problem does not arise at the point (on the boundary of the
allowed phase-space)

sν = (pB − pν)
2

= (pD + p`)
2

= (mD +m`)
2

• in this particular kinematical configuration, by calling
sD = (pB − pD)2, the calculation of the QED radiative
corrections to the double-differential decay rate dΓ/dsDdsν
might be feasible!

B0

D+

�−

ν̄�
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Figure 2: The physical phase-space is the region contained in the closed curve. The point (x?⇡ , x?` ) is the only
point where the energy of the internal pion-lepton pair is always larger than the energy of the external pion-lepton
pair. The point is on the boundary of the phase space at the intersection of the two green lines.

2. The energy of the internal pion-lepton pair

In our calculation it would be extremely useful to work at the kinematical points where the
condition

p
m2
⇡ + (k + p⇡)2 +

q
m2
` + (k � p`)2 �

p
m2
⇡ + p2

⇡ +
q

m2
` + p2

` (2.1)

is satisfied for any value of k. In appendix A I show that this is possible only if

m`p⇡ = m⇡p` . (2.2)

By fixing this condition we have

p⇡ = m⇡q , p` = m`q , q =

 s
1 +

p2
`

m2
`

,
p`
m`

!
, q2 = 1 . (2.3)



lattice claculation of the O(α) QED radiative corrections to P 7→ `ν̄(γ)

RM123+SOTON collaboration: m.di carlo, d.giusti, v.lubicz, g.martinelli, c.t.sachrajda, f.sanfilippo, s.simula, c.tarantino, n.t.
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including QED radiative corrections into a non-perturbative lattice calculation is a very challenging problem!

• QED is a long-range unconfined interaction that needs to be consistently defined on a finite volume: this is a very subtle
issue that I’ll not discuss in this talk (see backup slides);

• finite volume e↵ects are potentially very large, e.g. of O(1/L) in the case of the masses of stable hadrons

• in the case of decay rates the problem is much more involved because of the appearance of infrared divergences at
intermediate stages of the calculation: the infrared problem!

• I’m now going to describe in some details the non-perturbative lattice calculation of the O(α) QED radiative corrections
to the decay rates P 7→ `ν̄(γ)

• both the theoretical and numerical results discussed below are the outcome of a big effort of the RM123+SOTON

collaboration started in 2015



the RM123+SOTON method

RM123+SOTON, PRD 91 (2015)

• let’s consider the infrared-safe observable: at O(α) this is obtained by considering the real contributions with a single
photon in the final state

Γ(E) = Γ0 + e
2

lim
L→∞

{ΓV (L) + ΓR(L,E)}

• the finite-volume calculation of the real contribution is the issue: momenta are quantized!

• for this reason, by relying on the universality of infrared divergences, we have rewritten the previous formula as

Γ(E) = Γ0 + e
2

lim
L→∞





ΓV (L)

=0︷ ︸︸ ︷
−Γ

pt
V

(L) + Γ
pt
V

(L) + Γ
pt
R

(L,E)− Γ
pt
R

(L,E) +ΓR(L,E)





where Γ
pt
V,R

are evaluated in the point-like effective theory: these have the same infrared behaviour of ΓV,R

• therefore, the different terms can be separated and eventually evaluated with different infrared regulators

Γ(E) = Γ0 + e
2

lim
L→∞

Γ
SD
V (L) + e

2
lim

mγ→0

{
Γ
pt
V

(mγ) + Γ
pt
R

(mγ , E)
}

+ e
2

lim
mγ→0

Γ
SD
R (mγ , E)
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the point-like effective theory

RM123+SOTON, PRD 91 (2015), PRD 95 (2017), arXiv:1612.00199

• infrared divergences can be computed in the so called point-like effective theory

Lpt = φ
†
P

{
−D2

µ +m
2
P

}
φP +

{
2iGF VCKM fPDµφ

†
P

¯̀γ
µ
ν + h.c.

}
, Dµ = ∂µ − ieAµ

• properly matched effective field theories have, by definition, the same infrared structure of the fundamental theory: at
leading order the matching is obtained by using Γ0

Γ
pt
0 = Γ0 =

G2
F |VCKM |2f2

P

8π
m

3
P r

2
`

(
1− r2`

)2
, r` =

m`

mP

• structure-dependent terms can also be understood in the effective field theory language by adding to the lagrangian all
the operators that are compatible with the symmetries of the full- theory, e.g.

OV (x) = FV ε
µνρσ

DµφP Fνρ ¯̀γσν , Fνρ = ∂νAρ − ∂νAρ , subleading in
Eγ

mπ

• by exploiting the full set of constraints coming from the WIs and from the e.o.m one can rigorously show that in the
expansion around vanishing photon energies both the leading (infrared divergent) and the next-to-leading terms are
universal: fixed from the amplitude without QED!

• by using this remarkable result (an application of Low’s theorem, see also backup) we managed to perform an analytical
calculation of the leading O(1/L) finite volume effects, see below
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the master formula

• we are now going to look a bit more in details to the different terms entering our master formula

Γ(E) = Γ0 + e
2

lim
mγ→0

{
Γ
pt
V

(mγ) + Γ
pt
R

(mγ , E)
}

+ e
2

lim
L→∞

Γ
SD
V (L) + e

2
lim

mγ→0
Γ
SD
R (mγ , E)



the point-like result: Γpt(E)

RM123+SOTON, PRD 91 (2015)

• concerning the perturbative point-like calculation in infinite volume, we have generalized the results obtained in the early
days of quantum field theory by berman 58, kinoshita 59

Γ
pt

(E) = e
2

lim
mγ→∞

{
Γ
pt
V

(mγ) + Γ
pt
R

(mγ , E)
}

= Γ0
αem

4π

{
3 log

(
m2
P

m2
W

)
+ log(r

2
` )− 4 log(r

2
E) +

2− 10r2`

1− r2
`

log(r
2
` )

−2
1 + r2`

1− r2
`

log(r
2
E) log(r

2
` )− 4

1 + r2`

1− r2
`

Li2(1− r2` )− 3

+
3 + r2E − 6r2` + 4rE(−1 + r2` )

(1− r2
`
)2

log(1− rE) +
rE(4− rE − 4r2` )

(1− r2
`
)2

log(r
2
` )

−
rE(−22 + 3rE + 28r2` )

2(1− r2
`
)2

− 4
1 + r2`

1− r2
`

Li2(rE)

}
,

where

rE =
2E

mP
, r` =

m`

mP
.



the structure dependent real contribution: ΓSDR (E)

RM123+SOTON, PRD 91 (2015)
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FIG. 12: Point-like (pt), structure-dependent (SD) and interference (INT) contributions to the

decay π → ℓνγ. The first (second) row corresponds to ℓ = e (ℓ = µ).

for a range of values of xγ will prove to be very useful as a check of the range of validity

of the point-like approximation. As stressed in the main body of the paper, such a lattice

calculation, starting from Euclidean correlators is indeed possible. A new feature in the case

of B-decays in particular, one which is a consequence of the heavy-quark symmetry, is that

the B∗ and B are almost degenerate (m∗
B − mB ≃ 45 MeV). The radiation of a relatively

soft photon can therefore cause the transition from a B-meson to an internal B∗ close to its

mass-shell. Lattice calculations of the form factors would allow us to investigate the effect

this small hyperfine splitting has on the size of the structure dependent terms as a function

of ∆E.

In the absence of lattice calculations of the form factors, we note the phenomenological

analysis of Ref. [37], based on the extreme assumption of the single pole dominance, B∗ for

FV and B1(5721) for FA (in reality many other virtual states contribute to the form factors):

FV (xγ) ≃ CV

xγ − 1 + m2
B⋆/m2

B

, FA(xγ) ≃ CA

xγ − 1 + m2
B1(5721)/m

2
B

, (B17)

with CV = 0.24 and CA = 0.20. The corresponding ratios R1 are shown in Figure 14, from

which it can be seen that under this assumption the structure-dependent contributions to
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FIG. 13: Point-like (pt), structure-dependent (SD) and interference (INT) contributions to the

decay K → ℓνγ. The first (second) row corresponds to ℓ = e (ℓ = µ).
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FIG. 14: Structure-dependent (SD) and interference (INT) contributions to R1 for the decays

B → ℓνγ. Going from left to right, the plots correspond to ℓ = e, ℓ = µ and ℓ = τ respectively.

B → eνeγ for Eγ ≃ 20 MeV can be very large, but are small for B → µνµγ and B → τντγ .
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• concerning the real structure dependent contributions, the relevant hadronic quantity is

7→ H
ν

(k, p) = ε
∗
µ(k)

∫
d
4
x e
ikx

T 〈0|jµ(x) J
ν
W (0)|P 〉 , k

2
= 0

that can be expressed in terms of (two if ε∗ · k = 0) hadronic form–factors (see below)

• by using the χpt results (v.cirigliano and i.rosell, PRL 99 (2007)) for these quantities, we have estimated the structure
dependent real contribution to be, nowadays, phenomenologically irrelevant for P = {π,K} and ` = µ

Γ
SD
R (E) = lim

mγ→0

{
ΓR(mγ , E)− Γ

pt
R

(mγ , E)
}
< 0.002

Γ(E)− Γ0

e2



the structure dependent real contribution: ΓSDR (E)

RM123+SOTON, PRD 91 (2015)
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FIG. 12: Point-like (pt), structure-dependent (SD) and interference (INT) contributions to the

decay π → ℓνγ. The first (second) row corresponds to ℓ = e (ℓ = µ).

for a range of values of xγ will prove to be very useful as a check of the range of validity

of the point-like approximation. As stressed in the main body of the paper, such a lattice

calculation, starting from Euclidean correlators is indeed possible. A new feature in the case

of B-decays in particular, one which is a consequence of the heavy-quark symmetry, is that

the B∗ and B are almost degenerate (m∗
B − mB ≃ 45 MeV). The radiation of a relatively

soft photon can therefore cause the transition from a B-meson to an internal B∗ close to its

mass-shell. Lattice calculations of the form factors would allow us to investigate the effect

this small hyperfine splitting has on the size of the structure dependent terms as a function

of ∆E.

In the absence of lattice calculations of the form factors, we note the phenomenological

analysis of Ref. [37], based on the extreme assumption of the single pole dominance, B∗ for

FV and B1(5721) for FA (in reality many other virtual states contribute to the form factors):

FV (xγ) ≃ CV

xγ − 1 + m2
B⋆/m2

B

, FA(xγ) ≃ CA

xγ − 1 + m2
B1(5721)/m

2
B

, (B17)

with CV = 0.24 and CA = 0.20. The corresponding ratios R1 are shown in Figure 14, from

which it can be seen that under this assumption the structure-dependent contributions to
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B → eνeγ for Eγ ≃ 20 MeV can be very large, but are small for B → µνµγ and B → τντγ .
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• concerning the real structure dependent contributions, the relevant hadronic quantity is

7→ H
ν

(k, p) = ε
∗
µ(k)

∫
d
4
x e
ikx

T 〈0|jµ(x) J
ν
W (0)|P 〉 , k

2
= 0

that can be expressed in terms of (two if ε∗ · k = 0) hadronic form–factors (see below)

• in the last part of the lecture I will show the preliminary results of a fully non-perturbative calculation of the structure
dependent real contribution: these confirm the phenomenological analysis for P = {π,K} and open the possibility of
calculating D(s) 7→ `ν̄γ and B 7→ `ν̄γ



analytical calculation of Γ
pt
V

(L)

RM123+SOTON, PRD 95 (2017), arXiv:1612.00199• we performed an analytical calculation of Γ
pt
V

(L)

Γ
pt
V

(L)− Γ``V (L)

Γ0

= cIR log(L
2
m

2
P ) + c0 +

c1

(mPL)
+ O

(
1

L2

)

where

cIR =
1

8π2

{
(1 + r2` ) log(r2` )

(1− r2
`
)

+ 1

}
,

c0 =
1

16π2

{
2 log

(
m2
P

m2
W

)
+

(2− 6r2` ) log(r2` ) + (1 + r2` ) log2(r2` )

1− r2
`

−
5

2

}
+
ζC(0)− 2ζC(β`)

2
,

c1 = −
2(1 + r2` )

1− r2
`

ζB(0) +
8r2`

1− r4
`

ζB(β`)

and we have shown that cIR, c0 and c1 are universal, i.e. they are the same in the point-like and in the full theories!

this means that in ΓSDV (L) = ΓV (L)− Γ
pt
V

(L) we subtract exactly, together with the infrared divergence, the

leading O(1/L) terms and we have O(1/L2) finite size effects

• notice: the lepton wave-function contribution, Γ``V (L), does not

contribute to ΓSDV (L) ×



non-perturbative calculation of ΓSDV (L)

RM123+SOTON, PRL 120 (2018), arXiv:1904.08731
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FIG. 5: Connected diagrams contributing at O(α) contribution to the amplitude for the decay

π+ → ℓ+νl.

Having determined A0 and hence the amplitude ūνℓ α(pνℓ
)(M0)αβ vℓ β(pℓ), the O(α0) con-

tribution to the decay width is readily obtained

Γtree
0 (π+ → ℓ+νℓ) =

G2
F |Vud|2f 2

π

8π
mπ m2

ℓ

(
1 − m2

ℓ

m2
π

)2

. (20)

In this equation we use the label tree to denote the absence of electromagnetic effects since

the subscript 0 here indicates that there are no photons in the final state.

B. Calculation at O(α)

We now consider the one-photon exchange contributions to the decay π+ → ℓ+νℓ and

show the corresponding six connected diagrams in Fig. 5 and the disconnected diagrams in

Fig. 6. By “disconnected” here we mean that there is a sea-quark loop connected, as usual,

to the remainder of the diagram by a photon and/or gluons (the presence of the gluons is

implicit in the diagrams). The photon propagator in these diagrams in the Feynman gauge

and in infinite (Euclidean) volume is given by

δµν∆(x1, x2) = δµν

∫
d4k

(2π)4

eik·(x1−x2)

k2
. (21)

In a finite volume the momentum integration is replaced by a summation over the mo-

menta which are allowed by the boundary conditions. For periodic boundary conditions,

we can neglect the contributions from the zero-mode k = 0 since a very soft photon does
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FIG. 7: Results for the ratio �Rµ
P (t), given by Eq. (22), in the case of kaon and pion decays to muons for the gauge

ensemble D30.48. The vertical dashed lines indicate the time region used for the extraction of the amplitude ratio

�Aµ
P /A

(0)
P . Errors are statistical only.

• we have performed the lattice calculation by using the previously mentioned RM123 method, i.e. by expanding the
lattice path-integral with respect to α and the up-down quark mass difference

• by using this method we managed to obtain excellent numerical signals for the correlators corresponding to the
diagrams shown in the figure and for the associated counter-terms

• we have not computed the contributions corresponding to charged sea-quarks; this is the so called electroquenched
approximation: although we have estimated the associated uncertainty, there is certainly room for improvement here. . .



non-perturbative calculation of ΓSDV (L)

RM123+SOTON, PRL 120 (2018), arXiv:1904.08731

14

νℓ

ℓ+u

d

π+

q

(a)

νℓ

ℓ+u

d

π+

q

(b)

νℓ

ℓ+u

d

π+

q

(c)

νℓ

ℓ+u

d

π+

q

(d)

νℓ

ℓ+u

d

π+

q1 q2

(e)

FIG. 6: Disconnected diagrams contributing at O(α) contribution to the amplitude for the decay

π+ → ℓ+νl. The curly line represents the photon and a sum over quark flavours q, q1 and q2 is to

be performed.

not resolve the structure of the pion and its effects cancel in Γ0 − Γpt
0 in Eq. (3). Although

we evaluate Γ0 + Γ1(∆E) (see Eq. (2)) in perturbation theory directly in infinite volume,

we note that the same cancellation would happen if one were to compute Γ1(∆E) also in a

finite volume. Moreover from a spectral analysis we conclude that such a cancellation also

occurs in the Euclidean correlators from which the different contributions to the decay rates

are extracted. For this reason in the following Γ0 and Γpt
0 are evaluated separately but using

the following expression for the photon propagator in finite volume:

δµν∆(x1, x2) = δµν
1

L4

∑

k= 2π
L

n; k ̸=0

eik·(x1−x2)

4
∑

ρ sin2 kρ

2

, (22)

where all quantities are in lattice units and the expression corresponds to the simplest lattice

discretisation. k, n, x1 and x2 are four component vectors and for illustration we have taken

the temporal and spatial extents of the lattice to be the same (L).

For other quantities, the presence of zero momentum excitations of the photon field is a

subtle issue that has to be handled with some care. In the case of the hadron spectrum the

problem has been studied in [22] and, more recently in [3, 4], where it has been shown, at

O(α), that the quenching of zero momentum modes corresponds in the infinite-volume limit

to the removal of sets of measure zero from the functional integral and that finite volume
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• we have performed the lattice calculation by using the previously mentioned RM123 method, i.e. by expanding the
lattice path-integral with respect to α and the up-down quark mass difference

• by using this method we managed to obtain excellent numerical signals for the correlators corresponding to the
diagrams shown in the figure and for the associated counter-terms

• we have not computed the contributions corresponding to charged sea-quarks; this is the so called electroquenched
approximation: although we have estimated the associated uncertainty, there is certainly room for improvement here. . .



our result for Γ[K− → µν̄µ(γ)]/Γ[π− → µν̄µ(γ)]

RM123+SOTON, PRL 120 (2018), arXiv:1904.08731

• by defining

ΓP (E) = Γ
0
P {1 + δRP (E)} ,

δRKπ = δRK(E
max
K )− δRπ(E

max
π )

• our result is

δRKπ

= −0.0122(10)
st

(2)
tun

(8)
χ

(5)
L

(4)
a

(6)
qQED

= −0.0122(16)

• this can (given the caveat concerning the definition of
QCD) be compared with the result currently quoted by
the PDG and obtained in v.cirigliano and h.neufeld, PLB 700

(2011)

δRKπ = −0.0112(21)

4

relators described in Ref. [6]. Their numerical determi-
nation is illustrated briefly in Refs. [25, 26] and in detail

in Ref. [27]. The quality of the extraction of �A`=µ
P /�A

(0)
P

is illustrated in the supplemental material.

IV. FINITE VOLUME EFFECTS AT O(↵EM)

The subtraction �0(L)��pt
0 (L) makes the rate IR finite

and cancels the structure-independent FVEs. The point-
like decay rate �pt

0 (L) is given by

�pt
0 (L) = 2

↵em

4⇡
YP (L) �tree

P , (10)

where the factor YP (L) is explicitly given by Eq. (98) of
Ref. [10]. Eq. (8) is therefore replaced by

�AP = �AQCD
P +

X

i

�Ai
P +�A`

P �↵em

4⇡
YP (L) A

(0)
P , (11)

where YP (L) has the form

YP (L) = bIR log(MP L) + b0 +
b1

MP L

+
b2

(MP L)2
+

b3

(MP L)3
+ O(e�MP L) (12)

with the coe�cients bj (j = IR, 0, 1, 2, 3) depending
on the dimensionless ratio m`/MP [10]. The important
point is that the SD FVEs start only at order O(1/L2),
i.e. all the terms up to O(1/L) in Eq. (12) are “univer-
sal” [10]. Being independent of the structure they can be
computed for a point-like charged meson.

The FVE subtraction (11) up to order O(1/L) is il-
lustrated in Fig. 5 for �RK , �R⇡ and �RK⇡ in the inclu-
sive case �E� = �Emax,P

� = MP (1�m2
µ/M2

P )/2, which

corresponds to �Emax,K
� ' 235 MeV and �Emax,⇡

� '
29 MeV, respectively. It can be seen that after subtrac-
tion of the universal terms the residual FVEs are almost
linear in 1/L2 and ⇡ 3 times smaller in the case of �RK⇡.

V. RESULTS FOR THE RATIO �(K`2)/�(⇡`2)

The (inclusive) data for �RK⇡, obtained using Eqs. (7)
and (11-12), are shown in Fig. 6. The “universal” FVEs
are subtracted from the data and the combined chiral,
continuum and infinite volume extrapolations are per-
formed using the following Ansatz:

�RK⇡ = R0 + R�log(mud) + R1mud + R2m
2
ud + Da2

+
K2

L2


1

M2
K

� 1

M2
⇡

�
+

K`
2

L2


1

(EK
` )2

� 1

(E⇡
` )2

�

+ ��pt(�Emax,K
� ) � ��pt(�Emax,⇡

� ) , (13)

where mud is the renormalized u/d quark mass, EP
` =

MP (1 + m2
`/M

2
P )/2 is the lepton energy in the P-meson
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FIG. 5: Results for the corrections �R⇡, �RK and �RK⇡ for the
gauge ensembles A40.20, A40.24, A40.32 and A40.40 sharing the
same lattice spacing, pion and kaon masses, but di↵erent lattice
sizes (see the supplemental material). The universal FVEs, i.e. the
terms up to order O(1/L) in Eq. (12), are subtracted for each
quantity. The lines are linear fits in 1/L2. The maximum photon

energy �E� corresponds to the inclusive case �E� = �Emax,P
� =

MP (1 � m2
µ/M2

P )/2.
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dashed lines are the (central) results at each �, while the shaded
area identifies the continuum limit at 1-sigma level. The cross is
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rest frame, and R0,1,2, D, K2 and K`
2 are free parameters.

In Eq. (13) the chiral coe�cient R� is known [11] and
given by R� = ↵em(2Z/9 � 3)/4⇡ in qQED, where Z is
obtained from the chiral limit of the O(↵em) correction
to M2

⇡± (i.e. �M2
⇡± = 4⇡↵emZf2

0 + O(mud)). In Ref. [5]
we found Z = 0.658 (40).

Using Eq. (13) we have fitted the data for �RK⇡ us-
ing a �2-minimization procedure with an uncorrelated
�2, obtaining values of �2/d.o.f. always around 1.2. The
uncertainties on the fitting parameters do not depend on
the �2-value, because they are obtained using the boot-
strap samplings of Ref. [18] (see section II). This guaran-
tees that all the correlations among the data points and
among the fitting parameters are properly taken into ac-
count. The quality of our fits is illustrated in Fig. 6.

At the physical pion mass in the continuum and
infinite-volume limits we obtain

�Rphys
K⇡ = �0.0122 (10)stat (2)input (8)chir (5)FV E

(4)disc (6)qQED

= �0.0122 (16) , (14)

4

relators described in Ref. [6]. Their numerical determi-
nation is illustrated briefly in Refs. [25, 26] and in detail

in Ref. [27]. The quality of the extraction of �A`=µ
P /�A

(0)
P

is illustrated in the supplemental material.
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0 (L) is given by
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with the coe�cients bj (j = IR, 0, 1, 2, 3) depending
on the dimensionless ratio m`/MP [10]. The important
point is that the SD FVEs start only at order O(1/L2),
i.e. all the terms up to O(1/L) in Eq. (12) are “univer-
sal” [10]. Being independent of the structure they can be
computed for a point-like charged meson.

The FVE subtraction (11) up to order O(1/L) is il-
lustrated in Fig. 5 for �RK , �R⇡ and �RK⇡ in the inclu-
sive case �E� = �Emax,P

� = MP (1�m2
µ/M2

P )/2, which

corresponds to �Emax,K
� ' 235 MeV and �Emax,⇡

� '
29 MeV, respectively. It can be seen that after subtrac-
tion of the universal terms the residual FVEs are almost
linear in 1/L2 and ⇡ 3 times smaller in the case of �RK⇡.
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The (inclusive) data for �RK⇡, obtained using Eqs. (7)
and (11-12), are shown in Fig. 6. The “universal” FVEs
are subtracted from the data and the combined chiral,
continuum and infinite volume extrapolations are per-
formed using the following Ansatz:
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� 1

M2
⇡

�
+
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2

L2


1

(EK
` )2

� 1

(E⇡
` )2

�

+ ��pt(�Emax,K
� ) � ��pt(�Emax,⇡

� ) , (13)

where mud is the renormalized u/d quark mass, EP
` =

MP (1 + m2
`/M

2
P )/2 is the lepton energy in the P-meson
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FIG. 5: Results for the corrections �R⇡, �RK and �RK⇡ for the
gauge ensembles A40.20, A40.24, A40.32 and A40.40 sharing the
same lattice spacing, pion and kaon masses, but di↵erent lattice
sizes (see the supplemental material). The universal FVEs, i.e. the
terms up to order O(1/L) in Eq. (12), are subtracted for each
quantity. The lines are linear fits in 1/L2. The maximum photon

energy �E� corresponds to the inclusive case �E� = �Emax,P
� =

MP (1 � m2
µ/M2

P )/2.
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FIG. 6: Results for the correction �RK⇡ (Eqs. (7) and (11))
after the subtraction of both the universal FVEs in Eq. (12) and
the residual FVEs obtained from the fitting function (13). The
dashed lines are the (central) results at each �, while the shaded
area identifies the continuum limit at 1-sigma level. The cross is

the extrapolated value at mphys
ud (MS, 2GeV) = 3.70(17)MeV [18].

The blue dotted lines correspond to the value �0.0112(21) from
Refs. [15, 16] adopted by the PDG [17]. Errors are statistical only.

rest frame, and R0,1,2, D, K2 and K`
2 are free parameters.

In Eq. (13) the chiral coe�cient R� is known [11] and
given by R� = ↵em(2Z/9 � 3)/4⇡ in qQED, where Z is
obtained from the chiral limit of the O(↵em) correction
to M2

⇡± (i.e. �M2
⇡± = 4⇡↵emZf2

0 + O(mud)). In Ref. [5]
we found Z = 0.658 (40).

Using Eq. (13) we have fitted the data for �RK⇡ us-
ing a �2-minimization procedure with an uncorrelated
�2, obtaining values of �2/d.o.f. always around 1.2. The
uncertainties on the fitting parameters do not depend on
the �2-value, because they are obtained using the boot-
strap samplings of Ref. [18] (see section II). This guaran-
tees that all the correlations among the data points and
among the fitting parameters are properly taken into ac-
count. The quality of our fits is illustrated in Fig. 6.

At the physical pion mass in the continuum and
infinite-volume limits we obtain

�Rphys
K⇡ = �0.0122 (10)stat (2)input (8)chir (5)FV E

(4)disc (6)qQED

= �0.0122 (16) , (14)
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• by defining

ΓP (E) = Γ
0
P {1 + δRP (E)} ,

• our result are

δRK(E
max
K ) = 0.0024(10)

δRπ(E
max
π ) = 0.0153(19)

• this can (given the caveat concerning the definition of
QCD) be compared with the result currently quoted by
the PDG

δRK(E
max
K ) = 0.0064(24)

δRπ(E
max
π ) = 0.0176(21)
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FIG. 10: Results for the corrections �R⇡ (top panel) and �RK (bottom panel) obtained after the subtraction of the

“universal” FSE terms up to order O(1/L) in Eq. (95) (empty markers). The full markers correspond to the lattice
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K extrapolated at the physical point mphys
ud (MS, 2 GeV) = 3.70 (17) MeV [29]. The blue dotted

lines correspond to the values �Rphys
⇡ = 0.0176 (21) and �Rphys

K = 0.0064 (24), obtained using ChPT [26] and adopted

by the PDG [25].
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non-perturbative lattice calculation of P 7→ `ν̄`γ

• I now move to the discussion of the non-perturbative
lattice calculation of the radiative leptonic decay rates
for the processes P 7→ `ν̄`γ

• as we have seen, in the region of small (soft) photon
energies these are needed to properly define the
measurable infrared–safe purely leptonic decay rates
P 7→ `ν̄`(γ)

• in the region of experimentally detectable (hard) photon
energies these represent important probes of the internal
structure of mesons

• in the case of light pseuudoscalar mesons one can rely on
chiral perturbation theory but the low–energy constants
that enter these calculations are model dependent

• in the case of heavy–light mesons nothing is known from
first-principles about these quantities

2πθ0
L

2πθt
L

2πθs
L

the RM123+SOTON collaboration:

g.martinelli, University of Rome La Sapienza
f.mazzetti, University of Rome La Sapienza
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a.desiderio, University of Rome Tor Vergata
r.frezzotti, University of Rome Tor Vergata

m.garofalo, INFN of Rome Tor Vergata

d.giusti, University of Roma Tre
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non-perturbative lattice calculation of P 7→ `ν̄`γ

• the non-perturbative information needed to compute the
radiative decay-rates is encoded into the decay constant of the
meson and into two form-factors

ε
r
µ(k)

∫
d
4
y e
ik·y

T〈0|jαW (0)j
µ
em(y)|P (p)〉 =

ε
r
µ(k)

{
− iFV

εµαγβkγpβ

mP

+

[
FA +

mP fP

p · k

]
(p · k gµα − pµkα)

mP

+
mP fP

p · k
pµpα

mP

}

• these can be expressed as functions of xγ (and of mP )

FA,V (xγ) , 0 ≤ xγ =
2p · k
m2
P

≤ 1

• the infrared divergent contribution (in red) is universal: it is
proportional to the amplitude with no photons (fP )
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• by using the RM123 method we managed to get excellent
numerical signals for the correlators from which FA,V can be
extracted
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non-perturbative lattice calculation of P 7→ `ν̄`γ
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• in the case of light mesons (the plots correspond to the K) the structure-dependent form factors are very small

RA = FA +
2fP

mP xγ
, R

pt
A

=
2fP

mP xγ
,

• remarkably we are able to cover the full kinematical range 0 ≤ xγ ≤ 1
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• in the case of light mesons (the plots correspond to the K) the structure-dependent form factors are very small and in
agreement with chiral perturbation theory

F
χ
A

=
8mP (L9 + L10)

fP
, F

χ
V

=
mP

4π2fP
, L9 + L10 ' 0.0017 (arXiv:1405.6488)

• remarkably we are able to cover the full kinematical range 0 ≤ xγ ≤ 1
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• in the case of heavy mesons (the plot on the left corresponds to the K while the one on the right to the Ds) we again
obtain the correct infrared divergence

RA = FA +
2fP

mP xγ
, R

pt
A

=
2fP

mP xγ
,

• and we are able to cover the kinematical range 0 ≤ xγ ≤ 0.4



non-perturbative lattice calculation of P 7→ `ν̄`γ

• in the case of heavy mesons there is a strong enhancement
of the structure-dependent form factors

• this can be understood by using the argument of d.becirevic,

b.haas and e.kou, PLB 681 (2009)

cn
2p·k+m2

n−m2
P

• in between the electromagnetic and the weak currents
propagate internal states that give contributions to the
form-factors proportional to

1

xγ +
m2
n−m2

P
m2
P

m2
n −m2

P

m2
P

=





O(1) , P = {π,K}

O(mπ/mP ) , P = {D,B}
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Non-factorisable corrections
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Radiative leptonic decays on the lattice Stefan Meinel
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Figure 4: The Ds and K decay constants extracted from Tµn at pg = (0,0,1) 2p
L , as a function of the summa-

tion range T , for two different meson-field insertion times. For the Ds, the horizontal line shows the physical
value from Ref. [21]. For the K, the horizontal line shows the value computed on the same ensemble with
the standard method in Ref. [18].
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Figure 5: The D+
s ! `+ng and K� ! `�n̄g form factors as a function of the photon energy. The results

shown here were obtained with T/a = 8 and tK/Ds/a = �12. Only the statistical uncertainties are given.

on the lattice; even though they involve a nonlocal matrix element, the use of imaginary time
poses no difficulty in this case. The early results shown here for D+

s ! `+ng and K� ! `�n̄g
cover photon energies from approximately 0.5 to 1 GeV. For K� ! `�n̄g we need to reach lower
photon energies to compare with experiment; this can be achieved by using moving frames (i.e.,
nonzero pK) and/or a larger volume. To study the B(s) radiative leptonic decays with the domain-
wall action for the heavy quark, we will need to extrapolate in the mass. We are also considering
calculations directly at the physical b-quark mass using the “relativistic heavy-quark action” [22],
but, because this action is only on-shell improved, additional steps are likely needed to remove
unphysical behavior occurring when the electromagnetic and weak currents get close to each other.

Acknowledgments: We thank the RBC and UKQCD Collaborations for providing the gauge-field
configurations. C.K. and S.M. are supported by the US DOE, Office of Science, Office of HEP
under award number DE-SC0009913. S.M. is also supported by the RIKEN BNL Research Center.
A.S. and C.L. are supported in part by US DOE Contract No. DESC0012704(BNL). During a part
of this work, C.L. was also supported by a DOE Office of Science Early Career Award. This work
used resources at TACC that are part of XSEDE, supported by NSF grant number ACI-1548562.
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• we are not alone in the world:

• the RBC/UKQCD collaboration started a project to compute
radiative corrections to P 7→ `ν̄`(γ) and the real-photon
decay P 7→ `ν̄`γ, physical results will be available soon

• we are finalizing the phenomenological analysis of our data on
P 7→ `ν̄`γ, a paper on the subject will be available very soon!
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summary

• QED radiative corrections are phenomenologically relevant
for many observables and have to be taken into account,
possibly with the required non-perturbative accuracy

• in fact, if the precision is already at the percent level is useless
to improve the accuracy of lattice calculations without QED

• including QED radiative corrections in a lattice simulation is a
very hard problem because of

• soft divergences and, more generally, large finite volume
effects

• non-perturbative corrections have to be extracted from
euclidean correlators

• it is highly non trivial to probe electrically charged states
in a local finite-volume formulation of the theory
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summary

• the RM123+SOTON collaboration developed a method to
calculate QED radiative corrections to Γ[P → `ν̄(γ)]

• with this method a log(L) divergence is turned into a 1/L2

finite volume effect

• the RM123+SOTON collaboration provided the first
non-perturbative results for the QED radiative corrections to
Γ[K → µν̄µ(γ)] and Γ[π → µν̄µ(γ)]

• and is going to provide soon phenomenologically relevant
results for the radiative leptonic decays of π, K and D(s)
mesons

• other collaborations started their work on the subject and this
will rapidly become a very active field of research
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FIG. 10: Results for the corrections �R⇡ (top panel) and �RK (bottom panel) obtained after the subtraction of the

“universal” FSE terms up to order O(1/L) in Eq. (95) (empty markers). The full markers correspond to the lattice

data corrected by the residual FSEs obtained in the case of the fitting function (98) including the chiral log. The

dashed lines are the (central) results in the infinite volume limit at each value of the lattice spacing, while the shaded

areas identify the results in the continuum limit at the level of one standard deviation. The crosses represent the

values �Rphys
⇡ and �Rphys

K extrapolated at the physical point mphys
ud (MS, 2 GeV) = 3.70 (17) MeV [29]. The blue dotted

lines correspond to the values �Rphys
⇡ = 0.0176 (21) and �Rphys

K = 0.0064 (24), obtained using ChPT [26] and adopted

by the PDG [25].
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outlooks

• the calculation of the QED corrections to (radiative) leptonic
decays in the case of B mesons doesn’t present any
conceptual issue

• cutoff effects are the problem there but strategies to cope with
b-physics on the lattice exist and can be applied

• the problem is more challenging in the case of semileptonic
decays because, for generic kinematical configurations, the
physical observable cannot be extracted from euclidean
correlators by the leading exponential contributions

• nevertheless, the RM123+SOTON method can be extended
to the case of semileptonic decays, we have already analyzed
the problem in great detail

• the infrared divergence is again proportional to the leading
order decay rate (obvious) and the O(1/L) corrections are
again universal although, as expected from Low’s theorem,
their evaluation requires the knowledge of the derivatives of
the form-factors f±(sD) with respect to

sD = (pB − pD)2

B0

D+

�−

ν̄�



backup material



non-perturbative renormalization

• notice that ΓV (L) and Γ
pt
V

(L) are ultraviolet divergent in the Fermi theory

• the divergence can be reabsorbed into a renormalization of GF , both in the full theory and in the point-like effective
theory

• we have analyzed the renormalization of the four-fermion weak operator on the lattice in details and calculated
non-perturbatively the renormalization constants in the RI-MOM scheme

• we have then matched the non-perturbative results to the so-called W-regularization at O(α) (a.sirlin, NPB 196 (1982);

e.braaten and c.s.li PRD 42 (1990))

1

k2
7→

1

k2
−

1

k2 +m2
W

, HW =
GF VCKM√

2

{
1 +

α

π
log

mZ

mW

}
O

W-reg
1 ,

O
W-reg
1 =

5∑

i=1

Z1iO
latt
i (a)

• indeed, this is the scheme conventionally used to extract GF from the muon decay

1

τµ
=
G2
Fm

5
µ

192π3

[
1−

8m2
e

m2
µ

] [
1 +

α

2π

(
25

4
− π2

)]



power-law finite volume effects

• power-law finite volume effects arise when internal states can go on-shell, e.g.

k =
2πn + θ

L
,

∆O(p, L) = O(p, L)−O(p,∞)

=


 1

L3

∑

k

−
∫

d3k

(2π)3



∫
dk0

2π
fO(p, k)

A P

A P



power-law finite volume effects

• power-law finite volume effects arise when internal states can go on-shell, e.g.

k =
2πn + θ

L
, α > 0 ,

∆O(p, L) = O(p, L)−O(p,∞)

=


 1

L3

∑

k

−
∫

d3k

(2π)3
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2π
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=


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A P
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power-law finite volume effects
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d3n

(2π)3
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1
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A P
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universality of infrared divergences

∼ 1
2p·k+k2

×

• the key point of our method is the universality of infrared divergences

• to see how this works, let’s consider the contribution to the decay rate coming from the diagrams shown in the figure

Γ
P`
V =

∫
d4k

(2π)4
H
αµ

(k, p)
1

k2

Lαµ(k)

2p` · k + k2

• infrared divergences (and power-law finite volume effects) come from the singularity at k2 = 0 of the integrand

• the tensor Lαµ is a regular function, it contains the numerator of the lepton propagator and the appropriate
normalization factors

Lαµ(k) ≡ Lαµ(k, pν , p`) = O(1)



universality of infrared divergences

• the hadronic tensor is a QCD quantity

H
αµ

(k, p) = i

∫
d
4
x e
ik·x

T 〈0| JαW (0) j
µ

(x) |P 〉

• it satisfies the WIs coming from QED gauge invariance, e.g.

kµH
αµ

(k, p) = −fP pα ,

• and, given the kinematics of the process, it is singular only at the
single-meson pole

P, · · ·
〈0|JαW jµ|P 〉

PP, · · ·
〈0|jµ JαW |P 〉

• the singularity can be isolated by considering the point-like tensor, built in such a way to satisfy the same WIs of the full
theory

H
αµ
pt (k, p) = fP

{
δ
αµ −

(p + k)α (2p + k)µ

2p · k + k2

}
,

H
αµ
SD

(k, p) = H
αµ

(k, p)−Hαµpt (k, p) , kµH
αµ
pt (k, p) = −fP pα , kµH

αµ
SD

(k, p) = 0

• the structure dependent contributions are regular and, since there is no constant two-index tensor orthogonal to k,

H
αµ
SD

(k, p) =
(
p · k δαµ − kαpµ

)
FA + ε

αµρσ
pρkσFV + · · · = O(k)
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universality of leading finite volume effects

• at O(e2) with massive charged particles, singularities arise only at

k
2

= (±i|k|)2 + k
2

= 0

• the blobs on the right are QCD vertexes, e.g.

∆(p + k)Γ
µ

(p, k)∆(p) =

iN(p)

∫
d
4
xd

4
ye
−ipy−ikx

T 〈0|P (y)j
µ

(x)P
†
(0)|0〉 ,

∆(p) = N(p)

∫
d
4
ye
−ipy

T 〈0|P (y)P
†
(0)|0〉 ,

N
−1

(p) = |〈P (p)|P†(0)|0〉|2 ,

• gauge WIs constrain the first two terms in the expansion, e.g.

kµΓ
µ

(p, k) = ∆
−1

(p + k)−∆
−1

(p) ,

Γ
µ

(p, k) = 2p
µ

+ k
µ

+ O(k
2
)
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Figure 1: Skeleton expansion of the P� ! `⌫̄� amplitude at O(e2)

FIG. 3: Skeleton diagrams contributing at O(↵) to �0 for the decay P� ! `�⌫̄l. The thick black

line represents the pseudoscalar meson and the broken green line represents the leptons. The

photon is represented by the wavy line. The vertices marked � and W represent the coupling

of the photon(s) to the meson or weak Hamiltonian respectively. Their definitions are given in

Appendix A.

meson, we will always work in the Feynman gauge although the results are valid in any

gauge.

A. FV corrections for the self-energy diagram

In order to set the context for our calculation of the FV corrections to the decay amplitude

we start with a discussion of the electromagnetic e↵ects in the mass mP given by the diagrams

in Figs. 3(b) and Fig. 3(c) using the Feynman rules from the Lagrangian in Eq. (20). In
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meson, we will always work in the Feynman gauge although the results are valid in any

gauge.

A. FV corrections for the self-energy diagram

In order to set the context for our calculation of the FV corrections to the decay amplitude

we start with a discussion of the electromagnetic e↵ects in the mass mP given by the diagrams

in Figs. 3(b) and Fig. 3(c) using the Feynman rules from the Lagrangian in Eq. (20). In

the first two terms in 1/L are universal!!

{
ΓV − Γ

pt
V

}
(L) = Γ

SD
V (∞) + O

(
1

L2

)



QED on a finite volume: how?

• it is impossible to have a net electric charge in a periodic box!

• classically, this is a consequence of Gauss’s law

S =

∫

L3
d
4
x

{
1

4
FµνFµν + ψ̄f

(
γµD

f
µ +mf

)
ψf

}

∂k F0k(x)︸ ︷︷ ︸
Ek(x)

− ieqf ψ̄fγ0ψf (x)
︸ ︷︷ ︸

eρ(x)

= 0

Q =

∫

L3
d
3
x ρ(x) =

1

e

∫

L3
d
3
x ∂kEk(x) = 0

• this is well known in the field of classical simulations, charged molecules are usually studied by adding an appropriate
number of “counter-ions” to have a neutral system

• notice: if the volume is not large enough these counter-ions affect the low-energy dynamics of the system



QED on a finite volume: how?

• it is impossible to have a net electric charge in a periodic box!

• at the quantum level, Gauss’s law becomes the generator of local gauge
transformations

∫

pbc in space
DψDψ̄DAµ e−S

= 〈Φ| e−TH
∫

pbc in space
Dα ei

∫
L3 d

3xα(x) [∂kEk−eρ](x)

︸ ︷︷ ︸
Pg

|Ψ〉 ,

[H, ∂kEk(x)− eρ(x)] = 0

ψ̄ψ

ψ̄ψ

ψ̄ψ

ψ̄ψ

ψ̄ψ

ψ̄ψ

• a physical state is invariant under local gauge transformations and necessarily neutral

P
2
g = Pg , |Ψ〉phys = Pg |Ψ〉 , Q |Ψ〉phys =

1

e

{∫

L3
d
3
x ∂kEk(x)

}
|Ψ〉phys = 0



QED on a finite volume: how?

• it is impossible to have a net electric charge in a periodic box!

• one may think to overcome this problem by gauge fixing and to extract, say,
the electron mass from the correlator

〈ψ(x) ψ̄(0)〉

• notice that after gauge fixing the theory is still invariant under global gauge
transformations (electric charge is conserved)

• moreover, large gauge transformations survive gauge fixing (n ∈ Z4)

ψ(x) 7→ e
2πi

∑
µ
xµnµ
Lµ ψ(x) ,

Aµ(x) 7→ Aµ(x) +
2πnµ

Lµ

ψ̄ψ

ψ̄ψ

ψ̄ψ

• as a consequence the correlator vanishes unless the two operators are in the same point,

ψ(x) ψ̄(0) 7→ e
2πi

∑
µ
xµnµ
Lµ ψ(x) ψ̄(0) , 〈ψ(x) ψ̄(0)〉 = 0 , x 6= 0



quenching the zero modes

• in order to study charged particles in a periodic box it has been suggested long
ago (duncan et al. 96) to quench (a set of) the zero momentum modes of the gauge
field, for example

〈O〉 =

∫

pbc in space
DψDψ̄DAµ

∏

µ

δ

{∫

TL3
d
4
xAµ(x)

}
e
−S O

• by using this procedure one is also quenching large gauge transformations that are
no longer a symmetry and charged particles can propagate

• the assumption is that the induced modifications on the infrared dynamics of the
theory should disappear once the infinite volume limit is taken

• the point to note is that the resulting finite volume theory, although it may admit an hamiltonian description, is non-local
m.hayakawa, s.uno Prog.Theor.Phys. 120 (2008)

QEDL :
∏

µ,t

δ

{∫

L3
d
3
xAµ(t,x)

}
7→

∫

pbc in space
Dαµ(t) e

−
∫
L3 d

4xαµ(t)Aµ(t,x)



local theory on the finite volume: QCD+QEDC

b.lucini, a.patella, a.ramos, n.t, JHEP 1602(2016)

• consider C? boundary conditions (first suggested by wise and polley 91)

ψf (x + Lk) = C
−1
ψ̄
T
f (x)

ψ̄f (x + Lk) = −ψTf (x)C

Aµ(x + Lk) = −Aµ(x) , Uµ(x + Lk) = U
∗
µ(x) ,

• the gauge field is anti-periodic (|p|min = π/L): no zero modes by construction!

• this means no large gauge transformations and

Q =

∫

L3
d
3
x ρ(x) =

1

e

∫

L3
d
3
x ∂kEk(x) 6= 0

• a fully gauge invariant formulation is possible: for example the electrostatic potential is unique with anti-periodic
boundary conditions

∂k∂kΦ(x) = δ
3
(x) , Φ(x + Lk) = −Φ(x)



quenching the zero modes: induced systematics at O(α)

• at O(α) the systematics associated with the quenching of the zero modes can be understood; this is what we did in the
applications described so far; for example,

=
1

L3

∑

k

∫ 1/a dk0

2π

1− δk,0
k2

H
µν

(k)Lµν(k) ,

H
µν

(k) =

∫
d
4
x e
ikx

T 〈0|jµ(x) J
ν
W (0)|P (p)〉 ,

L
µν

(k) = v̄ν`γ
ν 1

i( /p` + /k) +m`
γ
µ
u`

• the ultraviolet behaviour of this object can be understood by taking

j
µ

(x) J
ν
W (0) ∼
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• in the local theory the diagram has a logarithmic divergence (absent with a propagating W) that renormalizes GF

• the effect of the zero-modes subtraction is a term

1
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∫ 1/a dk0

(k0)4
∼
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i.e. no new ultraviolet divergences but tricky interplay between cutoff and finite volume effects!


