GDR-InF workshop - LPNHE 8-9 July 2019 "QED corrections to (semi-)leptonic B decays"

Electron reconstruction at LHCb and Belle II

Martino Borsato University of Heidelberg

Electrons at GPDs

Electrons for B physics

- In energy range relevant for B physics at the LHC, electron energy is measured with the tracker, not with the ECal
- ECal used for electron identification and bremsstrahlung recovery

 Both true also for Belle II despite lower energy range

LHCb electron efficiency

• LHCb discards low-*p*_T electrons

- Cannot do hardware trigger with ECal
 - ECal threshold at $E_T > 3.5 \text{ GeV}$
- Can get swept out of acceptance due to brem loss (80% efficiency at $p_{\rm T} = 1$ GeV)
- Come with larger combinatorial (MVA cut)
- However, e[±] vs π[±] separation is excellent at low momentum below RICH threshold (RICH1: 2.6 GeV, RICH2: 4.4 GeV)

- Comparing first and second *R*_K:
 - Large efficiency improvement
- Could do better in LHCb upgrade (no hardware trigger bottleneck)

Analysis	$B^{+} \rightarrow K^{+} J / \psi(\mu \mu)$	$B^+ \rightarrow K^+ J/\psi(ee)$	<i>B</i> ⁺ in LHCb	ε(ee)/ε(μμ)
$1^{ m st}R_{ m K}$	667k	88k	130b	13%
2 nd R _K	1162k	344k	270b	30%
2nd/1st	1.7	3.9	2.1	

Belle(II) electron efficiency

- Much smaller differences between μ^{\pm} and e^{\pm} in Belle(II)
- Tracking efficiency similar to μ^{\pm}
- Efficiency difference mainly due to tighter e^{\pm} PID requirements (based on ECal rather than KLM)
- Excellent PID from
 - E/p from ECal
 - Shower shape in **ECal**
 - dE/dx from drift chamber
 - Cherenkov light in aerogel (TOP)

Simon Where PhD thesis and Phys. Rev. Lett. 118, 111801

Analysis	$\varepsilon(B \rightarrow K^{*0} \mu \mu)$	ε(B→K*0ee)	ε(ee)/ε(μμ)
Angular $K^*\ell\ell$ $q^2=[1,6]$ GeV ²	15.3%	12.7%	83%

Nucl.Instrum.Meth.A485:490-503,2002

Martino Borsato - University of Heidelberg

Bremsstrahlung at LHCb and Belle (II)

Bremsstrahlung

Common misconception:

- Relevant bremsstrahlung effects at LHCb/Belle are not due to the magnetic field used for tracking
- It's the interaction with the detector material (Coulomb field of atoms)
- Probability goes with $E/m^2 \rightarrow$ mainly affecting electrons
- Energy loss due to bremsstrahlung rises linearly with e[±] energy
 → fractional loss roughly independent of e[±] energy (easier to model)

Brem reco at Belle

- Belle ECal threshold to reconstruct neutral deposit is 10 MeV
- Probability to emit at least a brem $(E_{\gamma} > 10 \text{ MeV})$ is about 25%
- Brem emission results in kinked track
 - Effects considered via noise matrix in track fit
 - Work ongoing to improve this using information on the material distribution
- In Belle energy loss from bremsstrahlung is recovered by adding back the energy of photons in a cone of 0.05 rad around the e^{\pm}
 - Sensitive to beam-induced background
 - Work ongoing to optimise procedure for Belle II

Belle brem correction

- Use beam-energy constrained mass $M_{\rm bc} = \sqrt{E_{\rm beam}^{\star 2} - p_B^{\star 2}}$
 - Less dependence on measured momenta: $\sigma_{M_{\rm bc}}^2 \approx \sigma_{E_{\rm beam}}^2 + \left(\frac{p_B^{\star}}{m_B}\right)^2 \sigma_{p_B^2}^2$ and $p_B^*/m_B \simeq 0.06$
- Muon and electron modes look identical in beam-energy constrained *B* mass
- Bremsstrahlung effect enter only in the *q*² bins definition

•
$$-0.25 \text{ GeV} < m(ee) - m_{J/\psi} < 0.08 \text{ GeV}$$

• $-0.15 \text{ GeV} < m(\mu\mu) - m_{J/\psi} < 0.08 \text{ GeV}$

Brems emitted at LHCb

Μ

0

800

- Most brem emission due to material interaction
- If emitted before the magnet can affect momentum measurement
- Try to find brem photon and add its energy back

Nur Material-WW vor dem Magneten

8

Photon origin z-coordinate [m]

10

12

14

Brem recovery at LHCb

VELO

- LHCb brem recovery algorithm:
 - Extrapolate upstream e^{\pm} track to the ECAL
 - Take all reconstructed neutral clusters with $E_{\rm T} > 75~{\rm MeV}$
 - Add them back to electron momentum
- Main shortcomings
 - ECAL energy resolution worse than tracking resolution
 - Brem can be out of ECAL or too soft
- Electrons with brem recovered:
 - Better momentum resolution (more symmetric)
 - Better particle identification (π^{\pm} don't emit brem)
- What if no brem is found?
 - \rightarrow most of the time it was missed

Brem recovery at LHCb

 Assuming every e[±] emits one brem and probability of brem recovery (P) is uncorrelated among e⁺ and e⁻:

$$= f_{2cl}^{ee} + f_{1cl}^{ee} + f_{0cl}^{ee}$$
$$= P^2 + 2P(1 - P) + (1 - P)^2$$
$$\Rightarrow P \simeq 50\%$$

B mass resolution at LHCb

Minimum reconstructed B mass

- Maybe one should take into account *m(Ktt)* resolution when testing PHOTOS approximation
- Due to brem losses, minimum true *m*(*Kee*) is far from a step function
 no problem for *m*(*Kμμ*)
- Tested quickly using RapidSim (latest version includes an approximation of

Summary

- Electron reconstruction efficiency
 - Belle(II): very similar between μ^{\pm} and e^{\pm} at
 - LHCb: improved significantly in past years (more expected in upgrade)
- Bremsstrahlung recovery
 - Belle(II): few photons emitted, recovered if $E_{\gamma} > 10$ MeV and within 0.05 rad
 - LHCb: most electrons emit a hard brem before the magnet, recovered with efficiency about 50%
- QED corrections:
 - Need to test PHOTOS using more realistic mass thresholds for LHCb?

BACKUP

q^2 versus B mass

Martino Borsato - University of Heidelberg

Double ratio

ф Г 11 LHCb