DE LA RECHERCHE À L'INDUSTRIE

CZZ

PoPe verification of VOICE 1D-1V multispecies kinetics

Thomas Cartier-Michaud, Philippe Ghendrih, Virginie Grandgirard, Frédéric Schwander, Eric Serre, Eric Sonnendrücker et al. EnR ESKAPE ER-WP19/MAGYK AMIDEX/TOP

Ceal Maths & simulations for physics

Maths to simulations \neq bijection

 $\delta a_m(\{X\}_i)$ simulation weight error on $\mathcal{O}_m^{(s)}$

Error of code run

$$\mathcal{E}(\{X\}_i) = \mathcal{O}_c^{(r)}(\{X\}_i) - \sum_m \mathcal{O}_m^{(r)}(\{X\}_i)$$
$$= \sum_m \delta a_m(\{X\}_i) \mathcal{O}_m^{(r)}(\{X\}_i) + E(\{X\}_i)$$

Weight error = vicinity of solution ⇒ statistics Residue = numerical generation of new operator

VOICE 1D-1V kinetics

DE LA RECHERCHE À L'INDUSTRIE

C23

Ceal Recovering linear = not enough

Standard verification = excellent agreement BUT PoPe error POPE = 0

PoPe index = $-\log_{10}(\delta a_1)$

High precision at resonance Issue at v = 0 (vanishing operators) Error at large v,

propagation to small |v|

VOICE modification order 4 finite difference in v (previous Fourier)

PoPe index = $-\log_{10}(\delta a_1)$

PoPe index = 4

error on $\delta a_1 = fit$ governed by order 4 finite difference

new issue @ resonance

Oscillation in v @ resonance

Impact of N_v Most simulations

@ constrained resolution

Resonance: error generation

$\delta a_2 >> \delta a_1$ Strong evolution at v_{res}

Cea Filamentation breakdown

PoPe in depth analysis

PoPe index = 0 $N_v = 32$ order 4 fit of PoPe index d < 10⁻⁶, verified d ≈ 0
Projection on diffusion operator
Fourier scheme :
 peak at resonance
 high velocity

Geometry & PoPe Solution Pollution **PoPe** Hyper-surface Normal vector $\mathbf{N}\equiv \boldsymbol{\nabla}\mathbf{S}_{\text{equation}}$ **Projection on Proper elements** $S_{equation} = 0$ **Application: VOICE code** Eevo 1.0 Reference magnitude: 10⁻⁶ 0.5 -**Pollution** numerical projection on **N** operator ${\cal E}$ 0.0 Error magnitude: 10⁻¹² 0.5 -0.5 operator 0.0 -1.0x10⁻⁷ 10⁻⁶ -1.0 0.0 0.5 1.0 -1.5x10⁻⁶ -0.5 $oldsymbol{\mathcal{E}}_{evo}$ -0.5 operator -12 -1.0x10 close to colinear operators -1.5x10⁻⁶ -1.0 -0.5 0.0 0.5 1.0 1.5 operator

(oscillation in x & t)

NUMKIN October 26th 2017, Philippe GHENDRIH 11 / 21

evo

PoPe

Projection on Proper elements Application: VOICE code

Code Verification with data from production run

On the fly verification

In depth analysis of numerical scheme and equation