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 Introduction
 Offline tracking with the central ALICE detectors
 Charged-particle ID with the central ALICE detectors
 Appendix: A few unclear questions…
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Reconstruction and PID: What is this ?

 (Offline) reconstruction and PID is software.
 Reconstruction is everything between the raw data and ESD.

 The raw data are files containing encoded “positions & 
ionization”                           (in pad/wire number, ADC/TDC counts etc).

 The Event Summary Data are files containing fitted particle momenta and          
vertex positions, probabilities related to PID                                                         
(in GeV/c, cm, etc).

 Particle Identification is everything that provides some information 
about the masses of the registered particles.

 PID is tightly connected with the reconstruction (tracking needs masses, fitted 
momenta are needed for PID).  PID is based on quite similar algorithms as many 
parts of reconstruction. PID contributes to ESD.  This is a part reconstruction.

 However, PID extends beyond the recontruction towards the physics analysis.      
This is quite fundamental… 
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 Particle Identification is everything that provides some information 
about the masses of the registered particles.

 PID is tightly connected with the reconstruction (tracking needs masses, fitted 
momenta are needed for PID).  PID is based on quite similar algorithms as many 
parts of reconstruction. PID contributes to ESD.  This is a part reconstruction.

 However, PID extends beyond the recontruction towards the physics analysis.      
This is quite fundamental… 
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A view on Reconstruction and PID

Mathematics Statistics

Programming Physics
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A view on Reconstruction and PID

Mathematics Statistics

Programming Physics

Reconstruction & PIDReconstruction & PID

Analyt. geometry
Diff. equations

…

Bayesian methods
Kalman filter

…

…
Num. algorithms
Design/implem.

…
Particle prop.
Material prop.
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A view on the statistical methods 
(used in ALICE reconstruction and PID)

Bayesian methods
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We are quite used to the Kalman-filter-based tracking, to likelihood-based 
fitting of histograms, to the Bayesian approach in PID…    
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A view on the statistical methods 
(used in ALICE reconstruction and PID)

Bayesian methods

Likelihood
(Bayesian, with equal priors)

Kalman filter
(Likelihood, with Gaussian PDFs)

We are quite used to the Kalman-filter-based tracking, to likelihood-based 
fitting of histograms, to the Bayesian approach in PID…    

However, there is nothing wrong about fitting histograms with Kalman 
filter, or doing a Bayesian tracking !    
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What is the Kalman filter ?

The classical estimate:
 l(1,…,N) = [l(1)+l(2)+…+l(N)] /N ;     σ2(1,…,N) = σ2/N

Example: measuring the “length of a table”

l(i), i=1,…,N  -- the results of N successive  independent measurements
σ – the precision of the measurements
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The Kalman filter estimate:
1. l(1), σ        (the seed)

2. l(1,2) = ½ l(1) + ½ l(2) = ½ l(1) + ½ m2;  (l(i)≡mi, i>1, the measurements)   

        σ2(1,2) = σ12
2 = ¼ σ2(1) + ¼ σ2(2) = [1/σ2+1/σ2]-1=½ σ2 

         ...
k+1.  l(1,…,k+1)=w1,…,kl(1,…,k)+wkmk+1=                   l(1,…,k)+                    mk+1

        …
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         ...
k+1.  l(1,…,k+1)=w1,…,kl(1,…,k)+wkmk+1=                   l(1,…,k)+                    mk+1

        …

        
     

What is the Kalman filter ?
Example: measuring the “length of a table”

l(i), i=1,…,N  -- the results of N successive  independent measurements
σ – the precision of the measurements

The final result is the same as the classical !
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What is so special about the Kalman filter ?
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What is so special about the Kalman filter ?

 The nature (or/and the hardware) may work sequentially 
(weather forecasts, radar applications…)

 The “length-of-the-table” may change between the 
measurement. Dynamically (daily variations of temperature) 
or/and stochastically (weather variations of temperature)

All this is quite natural in the Kalman approach 

 Can all this be addressed also in the classical approach ?

Surely YES !
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So, why have we chosen the Kalman filter 
in ALICE ?
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So, why have we chosen the Kalman filter 
in ALICE ?

 Computational convenience                                           
(with  the conventional, “sequential”  hardware)

 Inertia of thinking (after the great success of the 
famous article by P.Billoir in NIM in 1984)
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What is the Bayesian approach ?
Example: a supervisor choosing a summer student
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What is so special about the Bayesian 
approach ?
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What is so special about the Bayesian 
approach ?

 It puts together two quite different sources of information
 The supervisor’s preferences are property of the supervisor. They, 

probably, do not change with time, and so can be precalculated.
 The numbers of applications by girls/boys is an example of the 

conditions that are completely external to the supervisor. These may 
change year-by-year, and so, fundamentally, cannot be calculated 
once and forever.
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What is so special about the Bayesian 
approach ?

 It puts together two quite different sources of information
 The supervisor’s preferences are property of the supervisor. They, 

probably, do not change with time, and so can be precalculated.
 The numbers of applications by girls/boys is an example of the 

conditions that are completely external to the supervisor. These may 
change year-by-year, and so, fundamentally, cannot be calculated 
once and forever.

 Can all this be addressed also in the classical approach ?

Yes… Probably…
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So, why are we doing the Bayesian 
approach in ALICE ?
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Already at the level of a single detector.  
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So, why are we doing the Bayesian 
approach in ALICE ?

 The explicit factorization of what can be done in 
reconstruction (“supervisor’s preferences”), and what has to 
be done in physics analysis (“number of applications”).  
Already at the level of a single detector.  

 Computational convenience, when it comes to combining the 
PID information over the contributing detectors.

 Gain in the disk space at the level of AOD. 
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ALICE experiment at LHC

Inner Tracking System (ITS) Time Of Flight (TOF)

Time Projection Chamber (TPC) Transition Radiation Detector (TRD)

High Momentum Particle Identification Detector (HMPID)
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ALICE experiment at LHC

Inner Tracking System (ITS) Time Of Flight (TOF)

Time Projection Chamber (TPC) Transition Radiation Detector (TRD)

High Momentum Particle Identification Detector (HMPID)

TPC (-0.9<η<0.9) tracking efficiency:
~80%  for  Pt<0.2 GeV/c
(limited by decays),
~90% for Pt>1 GeV/c
(limited by dead zones),
for > 10000 tracks in the TPC.   
Momentum resolution (B=0.5 T):
~1% at Pt=1 GeV/c,
~5% at Pt=100 GeV/c  (ITS+TPC+…).
Precise secondary vertexing
better than 100 µm     (ITS).

Excellent charged PID capability: 
from P~0.1 GeV/c upto a few GeV/c,
(upto a few tens GeV/c, TPC rel. rise),
 electrons in TRD, P>1GeV/c
(ITS+TPC+TRD+TOF+HMPID+…).
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The general reconstruction strategy

 Cluster finding in the detectors (centre of gravity)
 Unfolding of overlapped clusters (optional)

 Primary vertex reconstruction using the ITS (SPD)
 Pileup detection (optional)

 “Seeding” in TPC (with/out the vertex contraint)
 Later, also the “seeding” in ITS and TRD (optional)

 Combined tracking
 On-the-fly kink and V0 reconstruction (optional)

 Primary vertex using the tracks
 Secondary vertices using the tracks (V0s, cascades)
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The three passes of the combined 
tracking

1. “Seeds” in TPC. Tracking from the 
outer to the inner wall of TPC.  
The same in ITS.
 Track parameters are OK
 PID is not yet OK

2. Tracking from the inner to outer 
layer of ITS. The same in TPC. 
The same in TRD. Matching with 
TOF, HMPID, PHOS/EMCAL
 PID is OK
 Track parameters are not OK

3. Tracking from the outer to inner 
TRD wall. The same in TPC. The 
same in ITS.
 PID is OK
 Track parameters are also OK
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A bit of the software design…

ESD

TPC tracker

TRD tracker ITS tracker

ITS stand-alone

TOFPHOS & EMCAL

V0s & cascades

File

 The general initialization and the processing sequence is 
    defined by AliReconstruction.
 The process is configured/triggered by a special macro rec.C
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Charged PID with central ALICE

ITS

TPC

TRD

TOF

HMPID

The same track can simultaneously
be registered by 5 detectors 
that 
 have quite different PID 

response,
 are efficient in complementary 

momentum ranges.
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Charged PID with central ALICE

ITS

TPC

TRD

TOF

HMPID

The same track can simultaneously
be registered by 5 detectors 
that 
 have quite different PID 

response,
 are efficient in complementary 

momentum ranges.

 The PID procedure cannot be 
Kalman-like (PDFs are not Gaussian).
 It cannot be Likelihood-like either 
(the priors cannot be fixed once and
forever)…
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Bayesian approach in PID

 Ci  - a priori  probabilities to be a particle of the i-type.                
“Particle concentrations”, that depend on the event and track selection.

 r(s|i) – conditional probability density functions to get the signal s, if a 
particle of i-type hits the detector.                                                                
“Detector response functions”, depend on properties of the detector.

Probability to be a particle of i-type (i = e, µ, π, K, p, … ), 
if the PID signal in the detector is s: 

In the case of N contributing detectors:
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Obtaining the conditional PDFs
Example: “TPC response function”

For each momentum p the function r(s|i) is a Gaussian with
 centroid <dE/dx> given by the Bethe-Bloch formula and 
 sigma σ = 0.08<dE/dx> 

This is a property of the detector (TPC). Can be prepared in advance !

Central PbPb HIJING events

kaons

pions

protons
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Obtaining the a priori  probabilities
(“particle concentrations”)   

1. Sometimes, we may 
know the priors (V0s, 
cascades)

2. Sometimes, we can get 
the priors by iterating 
over the data

3. Anytime, we can use the 
raw PID signals
 Simple histograming 
 Complicated fits…

Ce~0
Cµ~0
Cπ~2800

CK~350 Cp~250

Ci are proportional to the counts 
at the maxima

β by TOF, p by TPC
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Obtaining the a priori  probabilities
(“particle concentrations”)   

1. Sometimes, we may 
know the priors (V0s, 
cascades)

2. Sometimes, we can get 
the priors by iterating 
over the data

3. Anytime, we can use the 
raw PID signals
 Simple histograming 
 Complicated fits…

Ce~0
Cµ~0
Cπ~2800

CK~350 Cp~250

The “particle concentrations” depend on the event and track selection.
They cannot be prepared once and for all kinds of analysis ! 

Ci are proportional to the counts 
at the maxima

β by TOF, p by TPC
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Fine, but what is the advantage ?
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Fine, but what is the advantage ?

 The raw PID signals do not have to be stored for 
all the tracks (big gain in disk space for AOD)

 Much less parameters to fit at the analysis level 
 In fact, the “amplitudes” only. Because the “centroids and sigmas” 

are already given by the response functions (precalcualted by 
reconstruction). 
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The three parts of the PID procedure

 Calibration part, belongs to the calibration software.               
Obtaining the single detector response functions.                         
Done by detector experts.

 “Constant part”, belongs to the reconstruction software.                   
Calculating (for each track) the values of detector response functions, 
combining them and writing the result to the Event Summary Data. 
Done automatically, in massive reconstruction runs on the Grid.

 “Variable part”, belongs to the analysis software.                       
Estimating (for a subset of tracks selected for a particular analysis) the 
concentrations of particles of each type, calculating the final PID 
weights by means of Bayes’ formula using these particle concentrations 
and the combined response stored in the ESD.                             
Done by physicists involved in this particular analysis.
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Example: Kaon identification with ITS,TPC and TOF

ITS TPC

(central PbPb HIJING events)
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Example: Kaon identification with ITS,TPC and TOF

ITS TPC

TOF

(central PbPb HIJING events)

Contamination

Efficiency

ITS & TPC & TOF
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Example: Kaon identification with ITS,TPC and TOF

ITS TPC

TOF

Efficiency of the combined PID is higher (or equal) and the contamination is
lower (or equal) than the ones given by any of the detectors stand-alone.

(central PbPb HIJING events)

Contamination

Efficiency

ITS & TPC & TOF
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A complementary approach:         
n-sigma cuts
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 Guarantees a definite and constant over the momentum 
efficiency. Does not deal with the priors !
 Does not tell anything about the contamination
 Does not maximize the significance



I. Belikov Workshop ALICE-France, IPHC Strasbourg, 19 June 2009 23

A complementary approach:         
n-sigma cuts

 Guarantees a definite and constant over the momentum 
efficiency. Does not deal with the priors !
 Does not tell anything about the contamination
 Does not maximize the significance

 Everything that concerns the response functions is the 
same as for the Bayesian
 A big piece of software can (and must) be shared by the two approaches.  
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Conclusions

 Reconstruction and PID in ALICE are challenging 
and quite interesting themselves.

 However, ALICE physics is even more interesting.
 It’s about the time to start doing physics ! 
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Appendix:  A few unclear questions…
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Statistical problems 
with track finding in ITS

TPC

ITS
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Statistical problems 
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Statistical problems 
with track finding in ITS

Several clusters within 

the “road” defined by

multiple scattering…  

Suggested solution: 
 Investigation of the 

whole tree of possible 
prolongations.

 Applying a “vertex 
constraint” (1st pass).TPC

ITS
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primary vertex 

Ad-hoc “vertex constraint” 

12

Looking at the cluster position only,
the cluster #1 is “better”. 

(y,z)

track
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primary vertex 

Ad-hoc “vertex constraint” 

12

Looking at the cluster position only,
the cluster #1 is “better”. 

But, if also taking into account the
direction towards the primary vertex,
the cluster #2 becomes more 
preferable…  

Technically, this is done by extending
the “measurement”  (y,z) -> (y,z,φ,θ)   

A question:
Can all this be justified ? Improved ?
(especially, if applied the same track
 repeatedly ?)

Too big angle
(φ,θ)

(y,z)

track
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The high-momentum limit for PID

The Bayesian calculations nicely
glue together the momentum sub-
ranges, but, as the momentum 
goes up,  the “separation power”
vanishes, and… 

pions

kaons

protons

TOF
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The high-momentum limit for PID

The Bayesian calculations nicely
glue together the momentum sub-
ranges, but, as the momentum 
goes up,  the “separation power”
vanishes, and… 

pions

kaons

protons

TOF

We are left with the bare priors 

Questions:
 The influence of the priors on the final result: Can it be somehow quantified ?
 In any approach: at what momentum should we stop doing the PID ?
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The problem of track mismatching
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The problem of track mismatching

 

true tra
jectory

reconstructed track

reconstructed track

The track mismatching biases the combining (any kind of !) the PID information,

because the main assumption that all the detectors register the same particle, 

is not satisfied…

PID contamination

PID efficiency

TOF
”Mismatching”
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Ad-hoc treatment for the 
mismatching in TOF 

TOFTPC

Observing in one of the detectors the distribution of signals for a clean sample
of particles pre-selected in other detectors, we can get the range of signals,
where the probability of mismatching is “high”         Veto in the combining… 
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Ad-hoc treatment for the 
mismatching in TOF 

TOFTPC

A question: Can it be somehow generalized ?  Made “smooth” ?  Optimized ?

Observing in one of the detectors the distribution of signals for a clean sample
of particles pre-selected in other detectors, we can get the range of signals,
where the probability of mismatching is “high”         Veto in the combining… 
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Ad-hoc treatment for the 
mismatching in TOF 

TOFTPC

A question: Can it be somehow generalized ?  Made “smooth” ?  Optimized ?

Observing in one of the detectors the distribution of signals for a clean sample
of particles pre-selected in other detectors, we can get the range of signals,
where the probability of mismatching is “high”         Veto in the combining… 

Something like  w = (1-p12)w1 + p12w12  (p12 -  prob. of a correct matching) ?


