Antonin MAIRE – PhD student in Strasbourg Friday, June 19th 2009 – Soft physics Workshop

Multi-strange particles : $\Xi^{-}(dss), \Omega^{-}(sss)$ at LHC

- I. Incentives for studying cascades
- II. Topological identification
- III. Situations: ESD/AOD + tasks
- IV. Analysis environment
- V. Latest output
- VI. Conclusions

I.1 – Incentives : collective effects

- Radial flow :
 - \rightarrow shape of the d²N/dp_tdy spectra
 - Flow seen in Au-Au at RHIC.
 - But radial flow in pp collision ?
 - at LHC ?

Example of Tsallis Blast-Wave Exponential + Power law + blast ...

$$\frac{d^2 N}{2\pi m_T dm_T dy} \propto (1 + \frac{q-1}{T}m_T)^{-1/(q-1)}$$

FIG. 1: (Color Online) Identified particle transverse momentum spectra in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} = 200$ GeV in0-10% central (a) and in peripheral 60-80% collisions (b). The symbols represent experiment data points. The solid curves represent the TBW fit.

Friday, June 19th 2009

I.2 – **Incentives** : hadronisation mechan.

II – With topological identification

• A general question :

hadronisation issue for quarks coming out of QGP

 \rightarrow Charged multi-strange baryons :

$\Xi^{-}(dss)$	$\Xi^+(dss)$
$\Omega^{-}(sss)$	$\Omega^+(sss)$

Advantages coming along :

- s quarks, ~ genuine + ~ relatively abundant products of the collision
- 2. small cross section in the hadronic phase
- 3. decay mode in *cascade*
- → possible identification over a large energy range (soft to hard phenomena)

III.1 – Situation : vertexers; ESD, AOD.

ESD :

* STEER/AliV0vertexer + STEER/AliCascadeVertexer :

- Use of AliESDEvent::GetPrimaryVertex()
 - = best available Vtx between Trackg, SPD, TPC, Default Prim. Vtx
- * STEER/AliESDv0 + STEER/AliESDcascade :
 - inheritance from AliVParticle
 - Constrain on the charge sign according to the sign of the bachelor

Filter ESD to AOD : (for V0 : B.Hippolyte)

for Cascades : *AliAnalysisTaskESDfilter* + *AliAODEvent,* updated to properly include Cascades at AOD level.

 \rightarrow Code in SVN : trunk/ANALYSIS

+ branches/v4-16-Release/ANALYSIS/ (See Savannah - #47433)

AOD :

Class STEER/AliAODcascade + STEER/AliAODv0 available

III.2 – **CheckCascade** : QA for $\Xi^{-/+}$, $\Omega^{-/+}$

Description of the task : *AliAnalysisTaskCheckCascade*

- \rightarrow performs **basic cross-checks** prior to full Cascade analysis (QA task)
- = Validation of the cascade vertexer selections
- = Inv Mass distribution of the candidates under different mass hypotheses $(\Xi / +, \Omega / +)$
- = Info for extra selections (Armenteros, Λ mass Vs Ξ mass...)
 - \rightarrow profits from **combined PID**,
 - \rightarrow provides TH2F Inv Mass Vs Pt = traw material for yield extraction ...

Output: TList of (44) TH1F, (14) TH2F

Readiness of the code :

- code is in SVN (\$ALICE_ROOT/PWG2/SPECTRA),
- class in compliance with ALICE Analysis Framework,
- tested on local, CAF, GRID with latest aliroot trunk,
- able to process ESD ... or AOD, pp or PbPb.

III.3 – **Efficiency task** : perf. for $\Xi^{-/+}$, $\Omega^{-/+}$

Description of the task :

- \rightarrow Performs study of performance with MC info
- = look for any primary **generated** cascades,
- = look for generated cascades which are **findable**,
- = Inv Mass distribution of the candidates under different mass hypotheses (Ξ -/+, Ω -/+),
- = Association of reconstructed cascade candidate to MC cascade,
- = tap **MC PID** info,

Output: TList of (88) TH1Fand (13) TH2F

Readiness of the code :

- code is in SVN (\$ALICE_ROOT/PWG2/SPECTRA),
- class in compliance with ALICE Analysis Framework,
- tested on local, CAF, GRID with latest aliroot trunk,
- able to process **ESD** ... + ~AOD, pp or PbPb.

IV – Analysis Env. : around LHC09a4

• Production LHC09a4:

- Root : v5-23-02,
- Geant3 : v1-10
- AliRoot : v4-16-Rev08,
- Runs : 81 007 to 81 656
- \rightarrow 110 Mevts p+p collisions at 10 TeV,
- = Pythia + enhancement (!)
- (0.25% of events = with 1 Ω^- ; same for Ω^+)

Analysis environment :

- AliRoot - Task :
- v4-17-03, trunk/PWG2/SPECTRA/
-
- Analysed stat :
 - Standalone Cascade train on GRID,
 - AliEn plugin,
 - 98.8 Mevts

V.1 – Latest output : efficiencies

Hypotheses :

- 1. LHC09a4, Here, 98.8 Mevts analysed with MC
- 2. Considered channel = $\Xi^{-} \rightarrow \Lambda^{0} + \pi^{-} \rightarrow (p + \pi^{-}) + \pi^{-}$ (B.R. = 99,88% * 63,9% = 63,8 %)

Used definition

Nb of MC part. effectively reco.

Eff. =

Nb of gen. at |y| < 1

Reconstructed Ξ^- : 22 868 Ξ^- generated. at mid-rapidity : 932 995

 \rightarrow Overall efficiency for Ξ^{-} = 2,45 %

V.2 – Latest output : Bachelor PID

V.3 – Latest output : towards Yields

- Performance tasks \rightarrow profit from CORRFW

Conclusions and Prospects

- Conclusions :
 - Conclusion 1 sur cet aspect

• Prospects :

_

- perspective 1 sur cet **aspect**

A. Annexe 1B. Annexe 2

A.1 – Appendix : Bachelor PID for $\Xi^{-/+}$

Friday, June 19th 2009

Appendix B: $\Xi^{-/+}$ in Pt

Friday, June 19th 2009

Appendix C : $\Omega^{-/+}$ in Pt

Friday, June 19th 2009

Appendix D : $\Xi^{-/+}$ associated over« findable »

Appendix E: $\Omega^{-/+}$ associated over « findable »

Friday, June 19th 2009

Appendix F : Ξ in Y or in η (examples)

