Black holes and (neutron) stars in the Minimal Theory of Massive Gravity

François Larrouturou¹ working with : A. de Felice², S. Mukohyama² & M. Oliosi² based on: arXiv:1808.01403

¹ Institut d'Astrophysique de Paris
 ² Yukawa Institute for Theoretical Physics – Kyôto University

3^{ème} Assemblée Générale du GdR Ondes Gravitationelles 10. October 2019

Motivation: Testing theories at astrophysical scales

■ Most of alternative theories are build to solve large-scales problem → What about astrophysical scales ?

⇒ Finding (or not) a black hole solution is a very good test as

- \hookrightarrow BHs seem to exist in real life,
- \hookrightarrow the post-Newtonian parameters β / γ are easily read from the metric,
- \hookrightarrow it opens the way to study the generation of GWs.
- ⇒ But stellar BHs do not "pop up" from nothing
 - \hookrightarrow one has to find a safe mechanism for star collapses.

Contents

The Minimal Theory of Massive Gravity
 Rapid reminder : "dRGT" ghost-free massive gravity
 Seeking for simplicity : the minimalistic approach
 The Minimal Theory of Massive Gravity

- Seeking for black holes and neutron stars
 When MTMG is mimicking GR
 Finding BHs in MTMG
 - Finding Dris in MiniMG
 - Finding (neutron) stars in MTMG
- **3** Seeking for rotating solutions
 - Applying the lemma to Kerr-de Sitter geometries

Rapid reminder : "dRGT" ghost-free massive gravity Seeking for simplicity : the minimalistic approach The Minimal Theory of Massive Gravity

Rapid reminder : "dRGT" ghost-free massive gravity

- General Relativity is a purely kinetic theory (regarding the graviton),
- \Rightarrow adding a potential provides $\Lambda_{\rm eff} \sim m_g^2$.
 - $\,\hookrightarrow\,$ no running of the cosmological constant,
 - \hookrightarrow OK with current bounds¹ : $m_g^2 \lesssim 1.2 \cdot 10^{-22}$ eV.
 - The first viable (*ie.* ghost-free) theory of "massive gravity" in 4D was constructed by C. de Rham, G. Gabadazze and A. Tolley² in 2010

$$\mathcal{S}_{\mathrm{dRGT}} = \mathcal{S}_{\mathrm{EH}}\left[g_{\mu\nu}
ight] + \mathcal{S}_{\mathrm{m}}\left[g_{\mu\nu};\psi_{m}
ight] + rac{M_{\mathrm{Pl}}^{2}m_{g}^{2}}{2}\int\!\mathrm{d}^{4}x\sqrt{-g}\,\mathcal{U}\left(\sqrt{f^{-1}g}
ight)\,,$$

with $f_{\mu\nu}$ a fiducial metric.

Then extended to "massive bi-gravity" (*ie.* with a dynamical fiducial sector) by S. Hassan and R. Rosen³ in 2012.

¹B. P. Abbott *et al.* [LVC], PRL 116(2016)221101
 ²C. de Rham, G. Gabadadze & A. J. Tolley, PRL 106(2011)231101
 ³S. F. Hassan & R. A. Rosen, JHEP 1202(2012)126

Rapid reminder : "dRGT" ghost-free massive gravity Seeking for simplicity : the minimalistic approach The Minimal Theory of Massive Gravity

Rapid reminder : "dRGT" ghost-free massive gravity

- dRGT massive gravity seems a nice theory :
 - \hookrightarrow "natural" explanation of the cosmological constant,
 - \hookrightarrow OK with current bounds on the graviton's mass,
 - \hookrightarrow no spurious degree of freedom,

BUT !

- → no stable Friedmann-Lemaître-Robertson-Walker cosmologie⁴
- \rightsquigarrow the static BH solutions are sick⁵
- \rightsquigarrow seems to break unitarity of the S-matrix at some energy⁶
- → propagates 5 degrees of freedom,
 - \hookrightarrow notably a scalar one \Rightarrow induces a fifth force that has to be screened.
 - ⁴A. De Felice, A. E. Gumrukcuoglu & S. Mukohyama, PRL 109(2012)171101
 - ⁵C. Deffayet & T. Jacobson, CQG 29(2012)065009
 - R. A. Rosen, JHEP 1710(2017)206
 - ⁶C. de Rham, S. Melville & A. J. Tolley, JHEP 04(2018)083

Rapid reminder : "dRGT" ghost-free massive gravity Seeking for simplicity : the minimalistic approach The Minimal Theory of Massive Gravity

Seeking for simplicity : the minimalistic approach

 Occam's rasor : Pluralitas non est ponenda sine neccesitate⁷ in english : "Entities should not be multiplied without necessity"

- ⇒ Let's seek for a massive gravity with only 2 propagating degrees of freedom.
- → Starting from a dRGT-inspired precursor theory, we kill the extra fields *via* Hamiltonian constraints.
- \hookrightarrow But it has a cost : loosing temporal Lorentz invariance \hookrightarrow weakly, as the breaking is $\propto m_r^2$.

⁷its "ontological" version, *Quaestiones et decisiones* in "Quatuor libros Sententiarum cum centilogio theologico", (1319)

Rapid reminder : "dRGT" ghost-free massive gravity Seeking for simplicity : the minimalistic approach The Minimal Theory of Massive Gravity

The Minimal Theory of Massive Gravity

Occam's rasor : "Entities should not be multiplied without necessity"

Let's seek for a massive gravity with only 2 propagating dof.

$$\begin{split} \mathcal{S}_{\mathsf{MTMG}} &= \mathcal{S}_{\mathsf{EH}}\left[g_{\mu\nu}\right] + \mathcal{S}_{\mathsf{m}}\left[g_{\mu\nu};\psi_{m}\right] \\ &+ \frac{M_{\mathsf{Pl}}^{2}m_{g}^{2}}{2}\int\!\!\mathrm{d}^{4}x\,N\sqrt{\gamma}\,\mathcal{W}\left[N,N_{i},\gamma_{ij};\tilde{N},\tilde{\gamma}_{ij};\lambda,\lambda^{i}\right]\,, \end{split}$$

 $\{N, N_i, \gamma_{ij}\}$: ADM decomposition of the physical metric,

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -N^{2}dt^{2} + \gamma_{ij}\left(N^{i}dt + dx^{i}\right)\left(N^{j}dt + dx^{j}\right)$$

 $\{\tilde{N}, \tilde{N}_i, \tilde{\gamma}_{ij}\}$: ADM decomposition of the fiducial metric $\{\lambda, \lambda^i\}$: non-dynamical fields (Lagrange multipliers) \Rightarrow For technical details about the construction, see⁸

⁸A. De Felice & S. Mukohyama, PLB 752(2016)302

Rapid reminder : "dRGT" ghost-free massive gravity Seeking for simplicity : the minimalistic approach The Minimal Theory of Massive Gravity

Cosmological phenomenology of MTMG

- By taking two FLRW metrics, two branches appear⁹:
- ⇒ The "self-accelerating" one, where the two scale factors are proportional,
 - \rightarrow a natural cosmological constant (w = -1) appears,
 - \leftrightarrow the scalar and vector sectors are the same as in GR (background and perturbations),
 - \hookrightarrow the tensor sector acquires a mass.
- ⇒ The "normal" one, with more complicated conditions
 - \hookrightarrow a dark fluid ($w \neq -1$) appears,
 - \hookrightarrow the scalar sector obeys a modified Poisson equation,
 - ⇒ interesting phenomenology, notably regarding ISW bounds¹⁰
 - \hookrightarrow the tensor sector acquires a mass.

⁹A. De Felice & S. Mukohyama, JCAP04(2016)028 ¹⁰N. Bolis, A. De Felice & S. Mukohyama, PRD 98(2018)024010

When MTMG is mimicking GR Finding BHs in MTMG Finding (neutron) stars in MTMG

When MTMG is mimicking GR

The metric equations of motion of MTMG can be written as

$$M_{
m Pl}^2 \left(G_{\mu
u} + \Lambda_{\mu
u}
ight) = T_{\mu
u}^{
m mat}$$

 \hookrightarrow Let's take the ansatz $\lambda(x^{\mu})$, $\lambda^{i}(x^{\mu})$,

$$\begin{split} \mathrm{d}s_{g}^{2} &= -N^{2}(x^{\mu})\,\mathrm{d}t^{2} + a^{2}(t)\,\delta_{ij}\left[N^{i}(x^{\mu})\mathrm{d}t + \mathrm{d}x^{i}\right]\left[N^{j}(x^{\mu})\mathrm{d}t + \mathrm{d}x^{j}\right]\,,\\ \mathrm{d}s_{f}^{2} &= -\tilde{N}^{2}(x^{\mu})\,\mathrm{d}t^{2} + \tilde{a}^{2}(t)\,\delta_{ij}\left[\tilde{N}^{i}(x^{\mu})\mathrm{d}t + \mathrm{d}x^{i}\right]\left[\tilde{N}^{j}(x^{\mu})\mathrm{d}t + \mathrm{d}x^{j}\right]\,, \end{split}$$

\Rightarrow Then¹¹ in the first branch,

- the constraint equations are solved by $\tilde{a}(t) = \mathcal{X}a(t)$,
- the auxilliary functions can be safely set to their vanishing cosmological values,
- the mass term becomes

$$\Lambda_{\mu
u} = rac{m_g^2}{2} \left(c_4 + 2 c_3 \, \mathcal{X} + c_2 \, \mathcal{X}^2
ight) \, g_{\mu
u} \equiv \Lambda_{ ext{eff}} \, g_{\mu
u} \, .$$

¹¹A De Felice, FL, S. Mukohyama & M. Oliosi, PRD 98(2018)104031

When MTMG is mimicking GR Finding BHs in MTMG Finding (neutron) stars in MTMG

When MTMG is mimicking GR

Thus a nice lemma

Any metric with flat constant-time surfaces

 $\mathrm{d} s_g^2 = -N^2(x^\mu)\,\mathrm{d} t^2 + a^2(t)\,\delta_{ij}\left[N^i(x^\mu)\mathrm{d} t + \mathrm{d} x^i\right]\left[N^j(x^\mu)\mathrm{d} t + \mathrm{d} x^j\right]\,,$

that is solution of GR + Λ is solution of the self-accelerating branch of MTMG with $\Lambda_{\rm eff} \propto m_g^2.$

 $\Rightarrow\,$ Can we use such a trick to construct BH and star solutions in MTMG ?

 NB : as diffeomorphisms are broken, two solutions that are similar under coordinate changes are not equivalent in MTMG.

When MTMG is mimicking GR Finding BHs in MTMG Finding (neutron) stars in MTMG

Can BHs have flat constant-time surfaces ?

YES !12,13&14

Let's take a spherically symmetric system.
 The metric can be written as

$$ds^2 = -f(t,r) dt^2 + rac{dr^2}{1 - rac{2\mu(r,t)}{r}} + r^2 d\Omega^2,$$

 \hookrightarrow a coordinate change $t \to \tau + T(r, \tau)$ such that $(\partial_r T)^2 = \frac{2\mu}{f(r-2\mu)}$ yields

$$\mathrm{d}s^{2} = -\frac{rf}{r-2\mu}\left(1+\partial_{\tau}T\right)^{2}\,\mathrm{d}\tau^{2} + \left[\mathrm{d}r-f\,\partial_{r}T\left(1+\partial_{\tau}T\right)\mathrm{d}\tau\right]^{2} + r^{2}\mathrm{d}\Omega^{2}\,,$$

¹²P. Painlevé, C. R. Acad. Sci. (Paris) 173(1921)677
 ¹³A. Gullstrand, Ark. Mat. Astron. Fys 16(1922)8
 ¹⁴G. Lemaître, Ann. Soc. Sci. Bruxelles A53(1933)51

When MTMG is mimicking GR Finding BHs in MTMG Finding (neutron) stars in MTMG

Can BHs have flat constant-time surfaces ?

• Explicitly the Schwarzschild-de-Sitter solution in extended Painlevé-Gullstrand coordinates^{15,16&17} together with $r \rightarrow a(\tau)r$ reads

$$\mathrm{d}s^2 = -\mathrm{d}\tau^2 + a^2(\tau) \left[\left(\mathrm{d}r + \beta \, \mathrm{d}\tau \right)^2 + r^2 \mathrm{d}\Omega^2 \right]$$

with

$$\beta(\tau, r) = \frac{\partial_{\tau} a}{a} r \pm \sqrt{\frac{2M}{a^3 r} - \frac{\Lambda r^2}{3}}$$

- ⇒ Cosmologically embedded static GR-like BHs are natural solution of the self-accelerating branch of MTMG !
- ⇒ In the $M \rightarrow 0$ limit, those solutions are strictly homogeneous, isotropic and free of strong coupling issues, which seems to be a unique feature among massive gravities.

 ¹⁵P. Painlevé, C. R. Acad. Sci. (Paris) 173(1921)677
 ¹⁶A. Gullstrand, Ark. Mat. Astron. Fys 16(1922)8
 ¹⁷G. Lemaître, Ann. Soc. Sci. Bruxelles A53(1933)51

When MTMG is mimicking GR Finding BHs in MTMG Finding (neutron) stars in MTMG

What about matter ?

Usual fluid system can be described by

$$\mathrm{d}s^2 = -N^2 \mathrm{d}\tau^2 + (\mathrm{d}r + \beta \,\mathrm{d}\tau)^2 + r^2 \mathrm{d}\Omega^2 \,.$$

- To avoid coordinate singularity, we impose that the extrinsic curvature remains regular and becomes isotropic at the center.
- \hookrightarrow The anisotropic part of the extrinsic curvature, $K_{rr} K/3$ shall thus vanish at r = 0. This is realised for

$$\lim_{r\to 0}\left(\partial_r\beta-\frac{\beta}{r}\right)=0\,,$$

⇒ Taking a usual fluid with density ρ and barotropic equation of state $P = P(\rho)$, it comes

$$eta(au,r) = \pm rac{N\,r}{M_{\mathsf{Pl}}} \sqrt{rac{2
ho_{r=0}}{3}} + \mathcal{O}\left(r^3
ight)\,.$$

Applying the lemma to Kerr-de Sitter geometries

Let's spin to win !

- Static BHs are nice theoretical objects, but real BHs are spinning...
- ⇒ Can we implement Kerr-de Sitter spacetimes in MTMG in the same convenient fashion ?

No !18

- Starting from KdS in usual Boyer-Lindquist coordinates, no change of coordinate can yield a spatially flat metric.
- \Rightarrow We have to go hunting the spinning BHs the hard way...

¹⁸A. De Felice, FL, S. Mukohyama & M. Oliosi, arXiv:1908.03456, to be published

Summary and perspectives

- Finding BHs and (neutron) stars is an important test for alternative theories of gravity.
 - \hookrightarrow Those objects seem to exist in real life,
 - $\,\hookrightarrow\,$ They are needed to generate and study GWs.
 - → They are small-scales objects, when the theories are developed to solve large-scale problems.
- The Minimal Theory of Massive Gravity is a newborn in the family of massive gravities.
 - \hookrightarrow It propagates only two GW polarisations,
 - \hookrightarrow It has a stable, self-accelerating cosmology,
 - → It contains static BHs and (neutron) stars that are free from strong coupling issues.
- What's next ?
 - \hookrightarrow Seeking for rotating BHs,
 - \hookrightarrow Studying the perturbations of the BHs.

Thank you for your attention