

Reducing quantum noise for Advanced Virgo and future gravitational wave detectors

using frequency-dependent squeezing with EPR entanglement

<u>Catherine Nguyen (APC laboratory)</u> on behalf of Virgo Collaboration (EPR – squeezing collaboration) INFN – APC laboratory

Deuxième Assemblée Générale du GdR Ondes Gravitationnelles Groupe de Travail « Développement des détecteurs » Lyon, 11 octobre 2019

Frequency-dependent squeezing (FDS)

• **Radiation pressure noise** will limit the future upgrade of Advanced Virgo.

We need **Frequency-dependent squeezing** to induce squeezed light ellipse rotation = broadband reduction of quantum noise

Figure 2. Anticipated best sensitivity of AdV+ during Phase I. For comparison the sensitivity at the beginning of O3 is shown.

Credit: Advanced Virgo PlusDesign Report (VIR-0596A-19)

2

Frequency-dependent squeezing (FDS)

Radiation pressure noise will limit the future upgrade of Advanced Virgo.

We need **Frequency-dependent squeezing** to induce squeezed light ellipse rotation = broadband reduction of quantum noise

Figure 2. Anticipated best sensitivity of AdV+ during Phase I. For comparison the sensitivity at the beginning of O3 is shown.

Credit: Advanced Virgo PlusDesign Report (VIR-0596A-19)

11/10/2019

Frequency-dependent squeezing (FDS)

Filter Cavity (FC)

 Frequency-independent squeezing injected into a filter cavity (Fabry-Perot cavity)
planned for O4 for AdV+ and aLIGO

Advanced Virgo Plus Design Report (VIR-0596A-19)

1/10/2019

A new technique ...

nature physics

Article | Published: 15 May 2017

Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement

Yiqiu Ma[™], Haixing Miao, Belinda Heyun Pang, Matthew Evans, Chunnong Zhao, Jan Harms, Roman Schnabel & Yanbei Chen

Nature Physics 13, 776–780 (2017) Download Citation 🚽

A new technique ...

ature

Less components

Published: 15 May 201

Less expensive

More flexible

Yiqiu Ma^{Ma}, Haixing Miao, Belinda Heyun Pang, Matthew Evans, Chunnong Zhao, Jan Harms, Roman Schnabel & Yanbei Chen

But....7) Download Citation &

3 dB penaltyOther losses

Proposal by Y. Ma et al. Nat Phys 13 no. 8, (Aug, 2017) 776-780

Credit: Y. Ma et al.

11/10/2019

GdR OG, GT Développement des détecteurs, EPR squeezing

Detune pumping frequency (of Δ)

Proposal by Y. Ma et al. Nat Phys 13 no. 8, (Aug, 2017) 776-780

Figure 3 | The differential mode of the interferometer as seen by the signal (upper panel) and idler (lower panel) beams

11/10/2019

Proposal by Y. Ma et al. Nat Phys 13 no. 8, (Aug, 2017) 776-780

11/10/2019

Proposal by Y. Ma et al. Nat Phys 13 no. 8, (Aug, 2017) 776–780

implemented to Advanced Virgo

11/10/2019

Preparatory frequency-independent squeezing bench at EGO to be transformed in an EPR bench

Preparation for EPR table-top experiment

- Final optical layout almost fixed
- Preparation for components

MC = mode-cleaner, LO = local oscillator, HD = homodyne detector, SHG = second harmonic generator, OPO = optical parametric oscillation, OPPL = optical phase-locked loop

MC = mode-cleaner, LO = local oscillator, HD = homodyne detector, SHG = second harmonic generator, OPO = optical parametric oscillation, OPPL = optical phase-locked loop

11/10/2019

Preparation for EPR table-top experiment

MC = mode-cleaner, LO = local oscillator, HD = homodyne detector, SHG = second harmonic generator, OPO = optical parametric oscillation, OPPL = optical phase-locked loop

11/10/2019

Preparation for EPR table-top experiment

MC = mode-cleaner, LO = local oscillator, HD = homodyne detector, SHG = second harmonic generator, OPO = optical parametric oscillation, OPPL = optical phase-locked loop

11/10/2019

Preparation for EPR table-top experiment

MC = mode-cleaner, LO = local oscillator, HD = homodyne detector, SHG = second harmonic generator, OPO = optical parametric oscillation, OPPL = optical phase-locked loop

11/10/2019

GdR OG, GT Développement des détecteurs, EPR squeezing

Work on etalon at APC

For APC : J.-P. Baronick, M. Barsuglia, E. Bréelle, C. Nguyen, P. Prat

- separate EPR- entangled beams
- no locking system
- needs a good thermal control
- Delivery ongoing (with our dimensioning)

Thermal control of the etalon

✓ We want a temperature stabilization of <u>+</u> 0.03°C
✓ We use temperature controller to find the working point.

Work on etalon at APC

GdR OG, GT Développement des détecteurs, EPR squeezing

Work on etalon at APC

Take-away messages

- Frequency-dependent squeezing technique is needed for a broadband reduction of quantum noise.
- For Observation Run O4, FDS technique using a filter cavity is planned for AdV+ and aLIGO.
- Squeezing using EPR entanglement is a technique to avoid using a filter cavity and an experiment will be built to test its application to Advanced Virgo.
- EPR squeezing is a promising technique for future detectors as Einstein Telescope.

Thank you for your attention !

Any questions ?

GdR OG, GT Développement des détecteurs, EPR squeezing

11/10/2019

Noise budget and quantum noise

Advanced Virgo sensitivity curvec

22

Quantum noise (QN) is one of the major sources of noise

Noise budget and quantum noise

Heisenberg uncertainty principle

Origin of quantum noise

GdR OG, GT Développement des détecteurs, EPR squeezing

Frequency-independent squeezing (FIS)

