Les expériences du futur : potentiel de physique **Recherche de nouvelle physique**

Gautier Hamel de Monchenault

Questions ouvertes en physique des particules 2-6 septembre 2019 École polytechnique, Palaiseau

Search for Physics Beyond the SM (BSM)

 10^{-3}

0.8

0.6

2×10²

 10^{3}

2×10

m_{ee} [GeV]

0ata/Bkg 1.1 1 no evidence for SUSY at the TeV scale at the LHC

50% of the 900+ and 8 out of the last 10 CMS publications have title starting with "Search for" !

The Big Questions

For most physicists, search for New Physics (NP) is the most compelling motivation for future high-energy colliders, with the goal of providing elements of response to the big questions:

Is the Higgs boson a portal to new physics?

- deviations from SM predictions (couplings, properties)
- Higgs potential and baryon asymmetry
- rare decay modes

➡ Is the Higgs boson fundamental or composite?

- composite Higgs
- new particles associated with EWK symmetry breaking
- heavy gauge bosons

- Are there new particles or interactions around at the TeV scale?

- supersymmetry (SUSY)
- extended Higgs sectors
- Can we close the search for thermal relic WIMPs at future colliders?
 - Dark Matter (DM)
- Can we probe the feebly-interacting sector?
 - feebly-interacting particles (axions, ALPs, dark photons)
 - right-handed neutrinos

for these lectures, only a few chosen examples of searches at colliders, for illustration

Models with 1st Order Phase Transition

Question: is there BSM physics coupled to the Higgs capable of modifying the Higgs potential and allow for a 1st order EW phase transition as required for BAU?

Below, an example of minimal extension from the SM potential

➡ the SM Higgs potential

$$V_0^{\rm SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$$

- ➡ the Real Scalar Singlet class of models
- add a single real singlet S (1 ddl) with coupling to the Higgs field (4 ddl)

$$V_0(H) = V_0^{\rm SM}(H) - \frac{1}{2}\mu_S^2 S^2 + \frac{1}{4}\lambda_S S^4 + \lambda_{HS}|H|^2 S^2 \qquad \text{(simplified)}$$

with $\begin{aligned} h &= h_0 \cos \gamma + S \sin \gamma \\ \phi &= -h_0 \sin \gamma + S \cos \gamma \end{aligned}$

Equivalence theorem: $B(\phi \rightarrow hh) = B(\phi \rightarrow ZZ) = 25\%$

HL-LHC $\Rightarrow g_{HZZ}$ to 0.02 and λ to 50% probe a good portion of parameter space, but not all

FCC-ee g_{HZZ} to 1.5×10^{-3} allows to probe most of the parameter space

Combined constraints from precision Higgs measurements at FCC-ee and FCC-hh

FCC-ee/hh g_{HZZ} to 1×10⁻³ and λ to 6% leaves only a very small portion of the parameter space

Combined constraints from precision Higgs measurements at FCC-ee and FCC-hh

Direct detection of extra heavy scalar states at FCC-hh

Operators that lead to visible deviations in the Higgs self coupling are likely to first manifest themselves through deviations of single-Higgs couplings to gauge bosons

Self-coupling measurements remain important to interpret any SM departure in single-Higgs couplings to understand the origin of these deviations

M.L. Mangano @ HH 2019

Higgs Compositness

this ph

Strong

dime

Question: is the Higgs point-like? If not, how big is it?

• can compositeness explain the smallness of the electroweak scale and solve the Naturalness problem?

Basic idea of Composite Higgs (CH) models

- all the degrees of freedom of the SM apart from the Higgs are elementary
- the Higgs instead arises as a bound state from a strong dynamics
- such dynamics is roughly described by two parameters: the overall mass scale m_{*} and its overall coupling strength g_{*}

10

Bounds on SILH Lagrangian Interactions

constraints on compositeness scale

Higgs Compositness

Compared SILH Reach at Future Colliders

A Very High-Energy Muon Collider?

Let's have a dream...

J.P. Delahaye, DPhP seminar

- muon colliders are the only reasonable way to imagine high-energy highluminosity lepton colliders
- in terms of BSM physics reach, a 14 TeV muon collider compares with a 100 TeV pp collider... but much cleaner!

er I have a dream. Determined and the second and th

... Imagine a muon collider at $\sqrt{s} = 14$ TeV running for 5 years at $\mathscr{L} = 2 \times 10^{35}$ cm⁻²s⁻¹

like CLIC... just ten times better!

A. Wulzer @ Granada EPPSU symposium 2019

Higgs Compositness at Muon Collider

New Resonances, Particles or Forces

Question: is there a new very-short distance force on top of the electroweak and strong forces?

in the dilepton spectrum

Seeking a peak

- $M < \sqrt{s}$ for lepton colliders
- M < 0.3-0.5 √s for hadron colliders, assuming "weak" couplings

J. de Blas @ EPPSU symposium, Granada 2019 J. Alcaraz @ EPPSU symposium, Granada 2019

no resonance seen but *deviations* wrt SM

Deviation in high-mass tails

- lepton colliders: sensitive to ratio [mass/coupling] ≫ √s
- hadron colliders: only relevant if $g_{Z'} > g_{SM}$
 - Imass/coupling] ≫ 0.5√s

High-Energy Probes

- example: new W', Z' vector bosons
- at low-energy typically accounted for by dimension-6 operators interfering with SM processes
- effects grow like
 center-of-mass
 energy squared of
 the collision
 - $\propto rac{s}{\Lambda^2}$

new resonance in the corresponding spectra

excites the corresponding contact interaction operators in EFT fit

High-Energy Probes

another example:spin-2 graviton

at low-energy:
 dimension-8
 operators

grow with
 center-of-mass
 energy as

$$\propto rac{s^2}{\Lambda^4}$$

due to huge growth with energy, can show up at high-energy colliders even in the absence of deviations at low energy

Heavy Bosons Benchmark Models

Sequential Standard Model (SSM)

- simple model as benchmark to compare sensitivities of experiments
- massive W' and Z' bosons with couplings to fermions identical to SM W and Z bosons

🖛 Y-Universal Z' model

- another "simple" model with a new Heavy Dark Photon Z'
- massive U(1) gauge symmetry
- charges equal to SM hypercharge

$$\mathcal{L} = -\frac{1}{4g_{Z'}^2} \left(Z'_{\mu\nu} \right)^2 - \frac{1}{4{g'}^2} \left(B_{\mu\nu} - Z'_{\mu\nu} \right)^2 + \frac{M_{Z'}^2}{2g_{Z'}^2} \left(Z'_{\mu} \right)^2$$

Direct searches at high-energy

• most sensitive: dilepton spectra

Indirect searches at low energy:

• one single ("universal") operator, known as Y-Universal

also known as
$$c_{2B}$$

$$\frac{c_{2B}}{\Lambda^2} = \frac{g_{Z'}^2}{{g'}^4 M_{Z'}^2} = \frac{Y}{{g'}^2 m_W^2}$$

many other models with flavour dependence, etc.

B field:

generator of

U(1)_Y SM

symmetry

(coupling = g')

A. Wulzer @ EPPSU symposium, Granada 2019

Direct Search for Resonances at LHC

20

Direct Search for Resonances LHC → FCC

ll (l=e,μ)) [pb]

↑

* 2 10⁻⁴ N ↑

10-4

10⁻⁵

 10^{-6}

10

10⁴

10

10²

10 **=**

 10^{-1}

Int. Luminosity [fb⁻¹]

10

 $\sqrt{s} = 27 \text{ TeV}$

 $L = 15 ab^{-1}$

 $Z \rightarrow II \ (I = e, \mu)$

HELHC simulation

 $10^{5} = \sqrt{s} = 27 TeV$

15 ab

1 ab

Λ

6

Z'_{SSM}

HE-LHC

HE-LHC Simulation (Delphes)

Median expected

95% expected

68% expected

Zssm

Ζĺ

10

ee

10

12

Mass [TeV]

14

8

Z_{LRM}

13 TeV

12 14 Mass [TeV]

HL-LHC

arxiv:1902.11217

HL/HE-LHC (2018) BSM arxiv:1812.07831

Integrated luminosity versus mass for a 5 σ discovery

8

ATL-PHYS-PUB-2018-044

Z' Constraints at Future Colliders

Best reach

direct: FCC-hh

indirect: CLIC 3-TeV

This is an example where highenergy makes a difference even for indirect constraints

- certain operators vary like v²/Λ², precision probes large Λ (e.g. anomalous Higgs couplings)
- other operators vary like Q^2/Λ^2 , those probe large Λ even with moderate precision

22

Supersymmetry

Supersymmetry: a family of weakly-coupled theoretical models that give solutions to the Naturalness problem, realise unification at the GUT scale, and, in certain realisations, provide a candidate of Dark Matter (R-parity conserving SUSY)

23

SUSY Production

Strong production

- gluinos
- squarks of 1st and 2d generations
- top and bottom squarks

Electroweak production

- neutralinos
- charginos
- sleptons

SUSY signatures

- R-parity conserving
 - large transverse missing energy
- R-parity violating
 - feebly interacting or non-prompt

If you believe in SUSY:

- direct searches are more powerful than precision constraints because SUSY is weakly coupled
- lepton colliders will provide limited improvement
- high-energy proton colliders bring significant improvement in direct coverage

Gluino Searches

Example of Stop Exclusion Plot

Stop Searches

 $\int \mathcal{L} dt [ab^{-1}] \sqrt{s} [TeV]$

Model

discovery potential

Conditions

HL/HE-LHC up to 1.4/3.2 TeV

ILC/CLIC up to √s/2

FCC-hh up to 8 TeV

 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 3 1.7 TeV $m(\tilde{\chi}_1^0)=0$ 14 нг-гнс $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / 3 \text{ body}$ $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$ 3 0.85 TeV 14 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / 4 \text{ body}$ 3 $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim 5$ GeV, monojet (*) 14 0.95 TeV $m(\tilde{\chi}_1^0)=0$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0, \tilde{\chi}_2^0$ 15 27 3.65 TeV НЕ-LHC $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$ (*) $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / 3$ -body 15 27 1.8 TeV $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / 4$ -body 15 $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim 5$ GeV, monojet (*) 27 2.0 TeV $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$ $m(\tilde{\chi}_1^0)=0$ (tbc) 4 0.5 0.25 TeV $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$ 0.25 TeV 4 0.5 Ľ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$ $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim 10 \text{ GeV}$ 4 0.5 0.25 TeV $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$ $m(\tilde{\chi}_1^0)=0$ 2.5 1.5 0.75 TeV St.2 $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$ CLIC $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0$ 2.5 1.5 0.75 TeV $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim 50 \text{ GeV}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$ (0.75 - e) TeV 1.5 2.5 m(X10)~350 GeV St.3 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$ 5 3.0 1.5 TeV CLIC $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$ $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0$ 5 3.0 1.5 TeV $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$ (1.5 - c) TeV $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim 50 \text{ GeV}$ 5 3.0 $m(\tilde{\chi}_1^0)=0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 30 100 10.8 TeV FCC-hh $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / 3$ -body $m(\tilde{\chi}_1^0)$ up to 4 TeV 30 100 10.0 TeV $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / 4$ -body $\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim 5$ GeV, monojet (*) 30 100 5.0 TeV 10⁻¹ 1 Mass scale [TeV]

Mass limit (95% CL exclusion)

SUSY can/will never die... but if no stop is found at future colliders, SUSY cannot serve its main purpose, which is to solve the Naturalness problem

Dark Matter: The Log Crisis

Our ignorance of Dark Matter is logarithmic!

Mass ranges for dark matter and mediator particle candidates, experimental anomalies, and search techniques

Thermal WIMPs

WIMP = weakly-interacting massive particle

WIMP scenario: the relic density of Dark Matter is set by non-relativistic annihilation (freeze-out) to SM particles, either through

- a SM portal (e.g., the Higgs boson)
- a new mediator (consider scalar, pseudoscalar, vector or axialvector mediators)

WIMPs can account for relic abundance for masses in the few GeV to few TeV range

30

A Simplified Dark Matter Model

Consider a simple model where Dark Matter interacts via a new Z' boson

- the WIMP is a Majorana fermion
- the mediator Z' has only vector couplings to the SM quarks
 no constraints from EWPO &

couplings

31

New Physics at the Z-Pole

A weekly coupled window on the Dark Sector

Search axion-like particles (ALP)

- very light: $Z \rightarrow \gamma$ + missing energy
- light: $Z \rightarrow \gamma \gamma$
- heavier: $Z \rightarrow \gamma \gamma \gamma$

New Physics at the Z-Pole

Huge production of neutrinos: 2×n_z×20% !

Gautier Hamel de Monchenault