Les expériences du futur : potentiel de physique Physique du Higgs

Road Map of Higgs Physics

Run-I

and also

✓ Discovery of the Higgs boson at 125 GeV
 ✓ overall consistency with SM prediction

Run-2
 Higgs boson as test of SM
 ✓ observe VBF and VH productions
 ✓ observe ττ and bb decay modes
 ✓ observe ttH production
 ✓ measure Higgs couplings at <10%
 ● observe super-rare decays µµ and Zγ

- measure Higgs couplings at <5%</p>
- HL-LHC observe di-Higgs production

Higgs boson as a probe for New Physics
✓ constrain total width (via off-shell)
✓ constrain invisible width (via VBF)
✓ investigate Higgs boson as DM portal
✓ constrain self-coupling
✓ investigate CP mixing in the Higgs sector
✓ investigate flavour-violating decays

 \checkmark search for other partners in the scalar sector

Higgs Boson Production and Decay

Main production modes

« gluon fusion »

« in association with a top quark pair »

Main decay channels

BF (m_H = 125 GeV) $H \rightarrow b\overline{b}$ 58% $H \rightarrow WW^*$ 21% $H \rightarrow \tau \tau$ 6.4% 2.9% $H \rightarrow c\overline{c}$ $H \rightarrow ZZ^*$ 2.7% 0.25% $H \rightarrow \gamma \gamma$ $H \rightarrow Z\gamma$ 0.15% 0.022% $H \rightarrow \mu\mu$

« vector boson fusion »

« in association with a W or Z boson »

Higgs Boson Production and Decay

Main production modes

Main decay channels

Production and Decay: Run-1

Higgs Decays to Bosons, Run-2

6

Observation of VH (H→bb)

ttH Production, Run-2

Essential to constrain directly the top Yukawa coupling

ttH (H \rightarrow 4 ℓ) Candidate in CMS

Production and Decays: Partial Run-2

ATLAS-CONF-2019-005

10

Patterns of Deviation

Different new physics (NP) models lead to different patterns of deviations

The size of deviations depends on the NP scale

MSSM and 2-Higgs doublets models (2HD)

- one light CP-even state (h) with SM couplings
- deviations induced through mixing with extra Higgs states
- types I, II, X and Y: discrete symmetries to protect FCNC

$$\frac{g_{\rm hbb}}{g_{\rm hbb}^{\rm SM}} = \frac{g_{\rm h\tau\tau}}{g_{\rm h\tau\tau}^{\rm SM}} \simeq 1 + 1.7\% \left(\frac{1\,{\rm TeV}}{m_{\rm A}}\right)^2$$

Composite Higgs

- solves hierarchy problem
- all coupling reduced according to composite scale f

$$\frac{g_{\rm hff}}{g_{\rm hff}^{\rm SM}} = \frac{g_{\rm hVV}}{g_{\rm hVV}^{\rm SM}} \simeq 1 - 3\% \left(\frac{1\,{\rm TeV}}{\rm f}\right)^2$$

Percent level precision is required !

after full ILC running

Higgs Coupling Sectors

Next: from signal strength measurements to constraints on Higgs couplings

The Kappa Framework

Parameterisation based on multiplicative coupling modifiers, used to

characterise Higgs boson couplings

- tree-level couplings to particles: κ_W , κ_Z , κ_t , κ_b , κ_c , κ_τ , κ_μ
- additional *effective* couplings: κ_g , κ_γ , $\kappa_{Z\gamma}$

Link to signal strength measurements:

Way to identify potential deviations in HIggs couplings to bosons and fermions

$$\mu_{if} \equiv \frac{\sigma_i \times B_f}{(\sigma_i \times B_f)^{\rm SM}} = \frac{\kappa_i^2 \times \kappa_f^2}{\kappa_{\rm H}^2}, \text{ where } \begin{cases} \kappa_i^2 = \sigma_i / \sigma_i^{\rm SM} \\ \kappa_f^2 = \Gamma_f / \Gamma_f^{\rm SM} \end{cases}, \text{ and } \kappa_{\rm H}^2 = \Gamma_{\rm H} / \Gamma_{\rm H}^{\rm SM} \end{cases}$$

Generalisation to incorporate a BSM (invisible) width and untagged decays:

$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2 \times \Gamma_{\rm H}^{\rm SM}}{1 - (B^{\rm inv} + B^{\rm unt})}, \text{ where } \kappa_{\rm H}^2 = \sum_f B_f^{\rm SM} \kappa_f^2$$

Ratio of coupling modifiers, immune from dependance in $\Gamma_{\rm H}$

$$\lambda_{ij}=\kappa_i/\kappa_j$$
 , compared to $~~\kappa_{
m gZ}=\kappa_{
m g}\kappa_{
m Z}/\kappa_{
m H}$

Untagged decays: rare SM (or BSM) decays that are not directly probed by searches

Resolved and Effective Kappas

K Coupling Modifiers, LHC Physics (2017) CERN YR4

www.

Kappa Coupling Modifiers

ATLAS-CONF-2019-005

Fermions versus Bosons

with ×2 lumi, $\gamma\gamma$ and 4 ℓ close κ_F (mostly ggF and ttH constraints)

ATLAS-CONF-2019-005

assuming same scaling for vector bosons and fermions

Fermions versus Bosons

repartial Run-2 per experiment already betted than Run-1 combination

ATLAS-CONF-2019-005

JHEP 08 (2016) 045

Fermions versus Bosons

CMS 2016 13 TeV 36 fb⁻¹

remember, at the time of the discovery...

LHC: It's Only the Beginning

LHC: It's Only the Beginning

HL-LHC ATLAS/CMS: expect 20-30 MeV resolution on Higgs boson mass

From LHC to HL-LHC

- per-decay signal strength parameters µ^f
- with YR18 systematic uncertainties (S2)
- as a function of integrated luminosity

w/ YR18 syst. uncert. (S2)

LHC

6.5%

10³

Integrated luminosity (fb⁻¹)

Parameter: µ^{ZZ}

Integrated luminosity (fb⁻¹)

10²

CMS Projection

6%

0.3

0.25

0.2

0.15

0.

0.05

0

Expected uncertainty

Integrated luminosity (fb⁻¹)

from LHC to HL-LHC

Significant improvement for those rare processes that are statisticsdominated

For many of this processes, large improvement of theory uncertainties for signal and background is mandatory

HL-LHC: Higgs Production and Decays

ATLAS HL-LHC, S2 scenario, L = 3 ab⁻¹, \int s = 14 TeV

- assume production and measure decay, and vice-versa
- all measurements are systematics dominated, except for µµ (clearly seen) and Zγ (≤5σ)

HL-LHC: Higgs Production, per Decay

Evolution of Projections

CMS Projections 2013

CMS Projection

taking into account experience gained and innovative techniques, what was optimistic in 2013 seems realistic in 2019

ATL-PHYS-PUB-2018-054

small differences are not significant

CMS-PAS-FTR-18-011

ATL-PHYS-PUB-2018-054

floating *B*^{BSM} does not affect the general picture

CMS-PAS-FTR-18-011

Combination of Projections

Combination of Projections

Coupling vs Mass

ATLAS 2016-1017 25-80 fb⁻¹

ATLAS-CONF-2019-005

Coupling vs Mass

ATL-PHYS-PUB-2018-054

CMS-TDR-15-002

Higgs Differential Cross Sections

- $rac{}{r} p_{T}^{H}$ distribution
- potential NP in high- p_T^H tails
- measured in $\gamma\gamma$ and 4Ł
- high- p_T^H improved by *boosted* $H \rightarrow b\overline{b}$

Higgs Differential Cross Sections

Top Yukawa at High Energy e+e- Colliders

Higgs Studies at 100 TeV

- different hierarchy of production processes
- sensitivity to effects at large Q^2

At *p*_T > 800 GeV

 δ (BR(H $\rightarrow \gamma\gamma$) / BR(H \rightarrow eeµµ)) (%)

10E

10

millions of events

√s = 100 TeV

 $L = 30 ab^{-1}$

stat.+syst

stat. only

ttH production becomes dominant

200 300 400 500 600 700 800

FCC-hh Simulation (Delphes)

 $BR(H \rightarrow \gamma \gamma)$

 $BR(H \rightarrow ee\mu\mu)$

Next: Higgs measurements at e⁺e⁻ colliders...

(%) ή / ή ջ

10

10

50

900 1000

p^H_{T.min} [GeV]

➡ sub percent-level coupling

 $BR(4\ell)$ from e⁺e⁻

complementarity FCC-ee/hh

Top Yukawa Coupling at FCC-hh

FCC-hh: extraction y_t from $R_t = \sigma(ttH) / \sigma(ttZ)$

- most systematics cancel in the ratio
- measure of R_t with $\Delta R_t/R_t \approx 2\%$

Use all combinations of final states

- exclusive and boosted Higgs and Z decays
- semileptonic and boosted hadronic top

 $\Rightarrow \delta y_{top}/y_{top} \sim 1\% (stat+syst_{TH})$

- FCC-ee @ 365 GeV:
- measure of g_{Ztt} with $\Delta g_{Ztt}/g_{Ztt} \approx 1\%$

complementarity FCC-hh/ee
Recoil-Mass Analysis at e+e- Colliders

Higgs Decay Branching Ratios

Typical precision on $\sigma \times BR$ meas. ILC at 250 fb⁻¹ at $\sqrt{s} = 250$ GeV (~75 000 ZH events with LR pol.)

	δσzн/σzн		
ILC IDR VOI. 2 -	Filysics (2013)	2.6%	
	BR (125 GeV)	δ(σ×BR)/ (σ×BR)	
$H \rightarrow bb$	58.4%	1.1%	
$H \rightarrow cc$	2.9%	7.4%	
$H \rightarrow gg$	8.2%	9.1%	
$H \rightarrow WW^*$	21.4%	6.4%	
$H \rightarrow T^+T^-$	6.3%	4.2%	
$H \rightarrow ZZ^*$	2.6%	19%	
H → γγ	0.23%	34%	
H → µ⁺µ⁻	0.02%		
$H \rightarrow inv$	0%	<0.9%	

Neat, but still, statistics is an issue

 $\sigma(ZH) \times BF(H \rightarrow ZZ^*)$ is proportional to g_{HZZ}^4/Γ_H measurement of Γ_H

> Also: Higgs spin determination from rise of HZ cross section near threshold (measurements at √s = 215 and 225 GeV)

Predicted Statistics of Higgs Events

now aim higher	ing at <i>much</i> statistics	integrated ℒ in ab⁻¹ (√s in GeV)	# of years	# of H events	
	ILC-250	2 (250)	13	0.5M	
	ILC	2 (250) + 0.2 (350) + 4 (500)	25	1.6M	linear
	CLIC	1 (380) + 3 (1500) + 5 (3000)	25	1.5M	
	FCC-ee	5 (240) + 0.2 (350) + 1.5 (365)	8	1.2M	circular
	CEPC	5 (240)	10	1.0M	

one "year" data-taking time between 0.5 and 1.6×107 s

From the recoil analysis ($\int s = 250 \text{ GeV}$) with of the order of 1M events, σ_{ZH} can be determined at the 0.5% level

$$\sigma(\mathrm{e^+e^-} \to \mathrm{ZH}) = \sigma_{\mathrm{ZH}} \propto g_{\mathrm{HZZ}}^2$$

Note:

30 ab⁻¹ at FCC-hh 100 TeV (25 y)

 \rightarrow 40 billion Higgs boson produced!

(a small fraction usable due to backgrounds)

Higgs Couplings

- \blacktriangleright to extract couplings from BR, one needs a measurement of the total width Γ_{H}
- ➡ to measure the total width, one needs at least one partial width and BR

Higgs Couplings

inspired from

FCC-ee TDR (2018)

	HL-LHC	IL	.C	CLIC	FCC	C-ee	CEPC
√ s (Ge	14000	250	+500	380	90-240	+365	90-250
L (ab ⁻¹	3	2	+4	0.5	5	+1.5	5
Years	13	15	+10	7	3	+6	7
ZZ (%)	3.5	0.38	0.30	0.80	0.25	0.22	0.25
WW (%)	3.5	1.8	0.4	1.3	1.3	0.46	1.2
тт (%)	6.5	1.9	0.8	4.2	1.4	0.8	1.4
tt (%)	4.2	-	-	-	-	3.3(*)	-
bb (%)	8.2	1.8	0.6	1.3	1.4	0.7	1.3
cc (%)	-	2.4	1.2	1.8	1.8	1.2	1.8
gg (%)	-	2.2	1.0	1.4	1.7	0.9	1.4
YY (%)	3.6	1.1(*)	1.0(*)	4.7	4.7	1.3(*)	4.7
Гн (%)	50	3.9	1.7	6.3	2.8	1.5	2.6
exo (%)	_	<1.6	<1.3	<1.2	<1.2	<1.0	<1.2

ILC: using *k*-framework

- simple scaling of the couplings
- no operator formalism
- no assumption on total width

HL-LHC measures σ_{ttH} but the extraction of g_{ttH} is model-dependent (through σ_{prod} and Γ_{H})

• benefits from Γ_H at e^+e^- machines

Comparison of Kappas: no BSM width

Comparison of Kappas: no BSM width

Comparison of Kappas: with BSM width

0.02 0.0 0.6 1.2 1.8 2.4 3.0

0

Fit including HL-LHC constraints to demonstrate the complementarity with lepton colliders:

- rare decays: γγ, γΖ, μμ
- top
- charm

NB: hadron collider cannot measure width need an assumption to close the fit e.g. | κ_V | < 1

Yukawa Couplings of Light Quarks

HL-LHC on charm Yukawa coupling

- LHCb might play a role here (direct and exclusive searches)
- constrains include differential distributions, off- and on-shell couplings, and limits on Bunt

• couplings of light quarks s, d, u are out of reach

Global SMEFT Fit

Effective Field Theories (EFT) are tools to probe indirectly New Physics (NP)

47

Anomalous hVV Couplings

SM hVV Lagrangian:

$$\mathcal{L}_{\rm SM}^{hVV} = \frac{h}{v} \left[2m_W^2 W_{\mu}^+ W_{\mu}^- + m_Z^2 Z_{\mu} Z_{\mu} \right]$$

🖛 dim-6 SMEFT hVV Lagrangian:

$$\Delta \mathcal{L}_{6}^{hVV} = \frac{h}{v} \left[2 \delta c_{w} n_{W}^{2} W_{\mu}^{+} W_{\mu}^{-} + \delta c_{z} n_{Z}^{2} Z_{\mu} Z_{\mu} + c_{ww} g^{2} W_{\mu\nu}^{+} W_{\mu\nu}^{-} + c_{ww} g^{2} \left(W_{\mu}^{-} \partial_{\nu} W_{\mu\nu}^{+} + \text{h.c.} \right) + c_{gg} g_{s}^{2} G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma\gamma} g^{2} A_{\mu\nu} A_{\mu\nu} + c_{z\gamma} g^{2} Z_{\mu\nu} A_{\mu\nu} + c_{zz} g^{2} Z_{\mu\nu} A_{\mu\nu} + c_{zz} g^{2} Z_{\mu\nu} Z_{\mu\nu} Z_{\mu\nu} Z_{\mu\nu} + c_{zw} g^{2} Z_{\mu} \partial_{\nu} Z_{\mu\nu} + c_{\gamma} g^{2} Z_{\mu} \partial_{\nu} Z_{\mu\nu} + c_{\gamma} g^{2} Z_{\mu} \partial_{\nu} A_{\mu\nu} \right]$$

$$\Rightarrow 7 \text{ independent parameters}$$

- Parameters are related by gauge invariance:

$$\begin{split} \delta c_w &= \delta c_z + 4 \delta m \text{ NP contributions to } m_w \text{: only source of custodial symmetry breaking} \\ c_{ww} &= c_{zz} + 2 \sin^2 \theta_w c_{z\gamma} + \sin^4 \theta_w c_{\gamma\gamma} \text{ } \\ c_{w\Box} &= \frac{1}{g^2 - g^{\prime \, 2}} \left[g^2 c_{z\Box} + g^{\prime \, 2} c_{zz} - e^2 \sin^2 \theta_w c_{\gamma\gamma} - (g^2 - g^{\prime \, 2}) \sin^2 \theta_w c_{z\gamma} \right] \text{ } \\ c_{\gamma\Box} &= \frac{1}{g^2 - g^{\prime \, 2}} \left[2g^2 c_{z\Box} + (g^2 + g^{\prime \, 2}) c_{zz} - e^2 c_{\gamma\gamma} - (g^2 - g^{\prime \, 2}) c_{z\gamma} \right] \text{ } \end{split}$$

A. Falkowski arxiv:1505.00046

de Blas et al, arxiv:1907.04311

Anomalous TGC

SM TGC Lagrangian:

 $\mathcal{L}_{\rm SM}^{\rm TGC} = ig\cos\theta_w \left[(W^-_{\mu\nu}W^{+\mu} - W^+_{\mu\nu}W^{-\mu})Z^{\nu} + Z_{\mu\nu}W^{+\mu}W^{-\nu} \right]$ $+ ig\sin\theta_w \left[(W^-_{\mu\nu}W^{+\mu} - W^+_{\mu\nu}W^{-\mu})A^{\nu} + F_{\mu\nu}W^{+\mu}W^{-\nu} \right]$

🖛 dim-6 SMEFT TGC Lagrangian:

$$\Delta \mathcal{L}^{aTGC} = i \delta \kappa_{\gamma} A^{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} + ig \cos \theta_{w} \left[\delta g_{1Z} (W^{+}_{\mu\nu} W^{-\mu} - W^{-}_{\mu\nu} W^{+\mu}) Z^{\nu} + (\delta g_{1Z} - \frac{g'^{2}}{g^{2}} \delta \kappa_{\gamma}) Z^{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} \right] + \frac{ig \lambda_{z}}{m_{W}^{2}} \left(\sin \theta_{w} W^{+\nu}_{\mu} W^{-\rho}_{\nu} A^{\mu}_{\rho} + \cos \theta_{w} W^{+\nu}_{\mu} W^{-\rho}_{\nu} Z^{\mu}_{\rho} \right)$$

- 2 aTGC parameters can be expressed in terms of anomalous hVV parameters:

$$\delta g_{1,z} = \frac{1}{2(g^2 - g'^2)} \left[c_{\gamma\gamma} e^2 g'^2 + c_{z\gamma} (g^2 - g'^2) g'^2 - c_{zz} (g^2 + g'^2) g'^2 - c_{z\Box} (g^2 + g'^2) g^2 \right]$$

$$\delta \kappa_{\gamma} = -\frac{g^2}{2} \left(c_{\gamma\gamma} \frac{e^2}{g^2 + g'^2} + c_{z\gamma} \frac{g^2 - g'^2}{g^2 + g'^2} - c_{zz} \right)$$

■ 1 independent parameter

Anomalous hff and (h)Vff Couplings

dim-6 SMEFT hff Lagrangian:

$$\Delta \mathcal{L}_6^{hff} = -\frac{h}{v} \sum_{f \in u, d, e} (\delta y_f)_{ij} (m_f)_{jj} \bar{f}_i f_j + \text{h.c.}$$

CP-violating phases are set to zero and off-diagonal terms are not considered
 keep 5 independent hff parameters

 $\delta y_t (=(dy_u)_{33}), \, \delta y_c (=(dy_u)_{22}), \, \delta y_b (=(dy_d)_{33}), \, \delta y_\tau (=(dy_e)_{33}), \, \delta y_\mu (=(dy_e)_{22})$

refilted dim-6 SMEFT (h)Vff Lagrangian:

$$\Delta \mathcal{L}_{6}^{(h)Vff} = \frac{g}{\sqrt{2}} \left(1 + 2\frac{h}{v} \right) W_{\mu}^{+} \left((\delta g_{W}^{\ell})_{ij} \bar{\nu}_{L}^{i} \gamma^{\mu} \ell_{L}^{j} + (\delta g_{W,L}^{q})_{ij} \bar{u}_{L}^{i} \gamma^{\mu} d_{L}^{j} + (\delta g_{W,R}^{q})_{ij} \bar{u}_{R}^{i} \gamma^{\mu} d_{R}^{j} + \text{h.c.} \right)$$
$$+ \sqrt{g^{2} + g^{\prime 2}} \left(1 + 2\frac{h}{v} \right) Z_{\mu} \left[\sum_{f=u,d,e,\nu} \delta g_{Z,L}^{f})_{ij} \bar{f}_{L}^{i} \gamma^{\mu} f_{L}^{j} + \sum_{f=u,d,e} \delta g_{Z,R}^{f})_{ij} \bar{f}_{R}^{i} \gamma^{\mu} f_{R}^{j} \right]$$

with

$$\delta g_W^{\ell} = \delta g_{Z,L}^{\nu} - \delta g_{Z,L}^{\ell}$$
$$\delta g_{W,L}^q = \delta g_{Z,L}^u V_{CKM} - V_{CKM} \delta g_{Z,L}^d$$

- assume flavour-diagonal couplings
- impose U(2) for the first 2 families

we keep 15 independent parameters: 6 ($Z\ell\ell$) + 3 ($W\ell v$) + 2 ($Zu\overline{u}$) + 4 ($Zd\overline{d}$)

Equivalence Theorem: Vff \leftrightarrow hVff

In the SM, the Higgs boson field h is one of 4 ddl as part of an SU(2)_L doublet

 Z_L

 $\phi = \begin{pmatrix} h^{\pm} \\ (v+h) + ih^0 \end{pmatrix}$

F. Riva, HL/HE-LHC symposium, 2019 Ch. Grojean, ECFA/EPS, 2019

At some level of precision (not yet reached at the LHC) electroweak and diboson processes will interfere with Higgs measurements

one of the purposes of SMEFT is to exploit fully the connections between the electroweak and Higgs sectors

SMEFT Fit Parameters for Higgs Studies

Neutral Diagonal (ND) scenario

- a sufficient set of SMEFT parameters to describe Z-pole EWPO, diboson and single Higgs processes at colliders
- assumes flavour-diagonal neutral couplings
- assumes flavour universality for the first two families

1 (δm) + 6 (hVV/aTGC) + 1 (aTGC)
5 (hff)

28 new physics parameters

To compare with results from the kappa-framework studies

- project the ND SMEFT fit results onto observables similar to Higgs coupling modifiers and Zff effective couplings
- complete with TGC modifiers to get the correct number of independent parameters

ILC: Higgs Couplings with SMEFT

HL-LHC (ATLAS) 3 ab⁻¹ Green + ILC-250 2 ab⁻¹ Blue + ILC-500 4 ab⁻¹ + ILC-360 200 fb⁻¹ SMEFT-based ILC framework

 invisible decay of H boson as new degree of freedom

through EWPO and other constraints the *custodial* symmetry prevails!

Results obtained with the SMEFT with 2 ab⁻¹ at 250 GeV already in the 1% range for the main couplings, *including HWW*

So, are there still a compelling reasons to run ILC at $\int s = 500 \text{ GeV}$?

- access to W fusion production for independent *HWW* coupling meas.
- top physics with polarisation
- \bullet mild constraints on λ
- better BSM reach

Global EFT Fit

Global EFT Fit

Improvement beyond HL-LHC

if no deviations seen at HL-LHC, discoveries are still possible at future colliders

Focus on Lepton Colliders

Focus on Lepton Colliders

Focus on Lepton Colliders

Comparing 3 scenarios:

- only LEP/SLD electroweak measurements
- actual electroweak measurements
- perfect electroweak measurements

Z Pole Running?

Impact of Z Pole Running

Z Pole Running?

- FCC-ee and CEPC benefit a lot from Z pole running
- measurements are quasi-perfect as far as Higgs couplings are concerned
- at ILC and CLIC, the absence of Z-pole running is a limiting factor for Higgs precision (~30%)
- measurements via radiative return to the Z help mitigate the issue, especially at high energy
- at ILC, the 500 GeV run is important to reduce the impact of electroweak measurements on Higgs precision

Z-Pole Running Fit Correlations

- without Z-pole running, large correlations between Higgs and EWK/TGC observables
- with Z-pole running, only correlations between EWK and TGC observables remain

Sensitivity on Electroweak Couplings

Beam Polarisation at the ILC

e⁺e⁻ → HZ
$$\sigma_{(-80\%,+30\%)} \approx 1.4 \sigma_0$$

 $\sigma_{(+80\%,-30\%)} \approx 1.1 \sigma_0$

e⁺e⁻ → Hv⊽
$$\begin{matrix} \sigma_{(-80\%,+30\%)} \approx 2.3 \, \sigma_{0} \\ \sigma_{(+80\%,-30\%)} \approx 0.14 \, \sigma_{0} \end{matrix}$$

-102 -

typically: (RL,LR,RR,LL) = (45%,45%,5%,5%)

$$\sigma = 2\sigma_0 (\mathcal{L}_{\rm eff} / \mathcal{L}) (1 - \mathcal{P}_{\rm eff} A_{\rm LR})$$

Impact of Polarisation at the ILC

Electroweak interactions have $\mathcal{O}(1)$ parity-violation signal and background x-section depend on polarisation

Positron polarisation has a marginal impact: it does not play a significant role for Higgs measurements (<10%)

Electron polarisation

- leads to a large improvement of hVV determination (>50%)
- benefits from polarisation less important at high-energy (<10%)

In the EFT, the gain from polarisation is higher than the mere increase in statistics because polarisation removes degeneracies among operators

BAU, Higgs Potential and Self-Coupling

• New Physics must modify the potential and the self-coupling

in the spirit of the κ framework, define $\kappa_{\lambda} = \lambda / \lambda_{SM}$

The direct measurement of the tri-linear self-coupling λ is a key goal of future colliders first order EW transition implies large deviation from the

SM prediction ($\kappa_{\lambda} = 1$)

HH Production & Self-Coupling at LHC

• $\sigma(pp \rightarrow HH) = 30 \text{ fb at } \sqrt{s} = 14 \text{ TeV}$

• $\sigma(pp \rightarrow HH) / \sigma(pp \rightarrow H) = 1\%$

► lots of information from differential cross section in *m*_{HH}

Self-Coupling: ATLAS+CMS Combined

- approximate cross-section degeneracy between $\kappa_{\lambda} = 1$ and 4, with different kinematics
- this results in a second minimum in the likelihood ratio versus κ_{λ} around $\kappa_{\lambda} = 5-6$
- best sensitivity: $b\overline{b}\gamma\gamma$ and $b\overline{b}\tau\tau$ (then $b\overline{b}b\overline{b}$)

Self-Coupling: ATLAS+CMS Combined

HE-LHC: Self-Coupling

HL/HE-LHC WG2

Self-Coupling from Single Higgs at LHC

- constraints on the Higgs self-coupling via single
 Higgs measurements
- κ_λ-dependent NLO electroweak corrections modify Higgs boson production rates (also branching fractions)

 by reanalysing the rate measurements, obtain limits on κ_λ that are competitive with present direct HH analyses

assuming that NP only affects κ_{λ} : -3.2 < κ_{λ} < 11.9 @ 95%CL

ATL-PHYS-PUB-2019-009

74

Self-Coupling from Single Higgs at HL-LHC

Summary of Self-Coupling at HL/HE-LHC

1.di-H, excl.: di-Higgs production 2.di-H, glob.: di-Higgs + global fit 3.single-H, excl.: single-Higgs production 4.single-H, glob.: single-Higgs + global fit

- 🖛 HL-LHC
- \bullet 4 σ evidence of HH prod.
- κ_λ: 50% @ 68%CL (>100% @ 95%CL)
- 🖛 HE-LHC
- observation of HH prod.
- κ_λ: 10-15% @ 68%CL / 95%CL

method 1 (di-H, excl.) is the most useful at hadron colliders

FCC-hh: Self Coupling at 100 TeV

Di-Higgs Production at Lepton Colliders

78

Self Coupling from Single Higgs at e⁺e⁻

- ► Up to 1.5% effect on σ_{ZH} at \sqrt{s} = 240 GeV
 - σ_{ZH} with 0.5% accuracy
 - degeneracy between $\delta\kappa_\lambda$ and $\delta\kappa_Z$

Two energy points are necessary to break the degeneracy

FCC-ee (2IPs) : modelindependent constraint on $\delta\kappa_\lambda$ at the $\pm 35\%$ level

see also arXiv:1711.03978

Self-Coupling, Summary

- di-H, excl.: di-Higgs production
- **di-H, glob.**: di-Higgs + single-Higgs couplings (global fit)
- single-H, excl.: single-Higgs production
- **single-H, glob.:** single-Higgs + single-Higgs couplings (global fit)

Self-Coupling, Summary

5% sensitivity needed to get sensitive to quantum corrections to the Higgs potential (Ch.Grojean)

indirect (single Higgs)

from di-Higgs production

Higgs@FC WG single-H, excl. single-H, glob. All future colliders combined with HL-LHC HL-LHC HE-LHC FCC-ee/eh/hh FCC-ee_{240 18} FCC-ee₃₆₅ ILC250 28 ILC350 2 ILC 500 3 CEPC CLIC380 45 CLIC₁₅₀₀ CLIC3000 20 10 30 50 0 40 68% CL bounds on κ_3 [%] May 2019

- small impact from global analysis
- at FCC-hh, a 1% uncertainty on the top Yukawa κ_t induces a deviation of the HH rate comparable to the uncertainty on κ_λ

- single-Higgs analyses relevant for lepton colliders at √s < 400 GeV below the ZHH production threshold
- global analyses to get more robust results

Higgs Couplings: Sensitivity to BSM Models

Deviations to SM Higgs boson couplings (in %)

models consistent with no discovery at the HL-LHC (incl. Higgs partners)

82

Higgs Boson Width as Probe of BSM

 \bullet The Higgs total decay width Γ_{H} contains information on the interaction with all particles, including possible BSM states CMS 35.9 fb⁻¹ (13 TeV) 10 |U| Ņ \blacksquare Direct Γ_{H} measurements from line-Observed CMS 2016 ----- Expected shape limited by typical 1-GeV mass $L = 36 \text{ fb}^{-1}$ resolution Г_н < 1.1 GeV 95% CL @ 95% CL 10³ Γ_H [GeV] LHC HIGGS XS WG 2010 68% CL 10² 0.5 2.5 1.5 Solution: $\Gamma_{\rm H}~({\rm GeV})$ compare $H \rightarrow ZZ$ off-shell JHEP 11 (2017) 047 10 and on-shell production CMS limit CMS Preliminary 2016 + 2017 + 2018 137.1 fb⁻¹ (13 TeV) Events / 4GeV 350 Data
 H(125) $q\bar{q} \rightarrow ZZ, Z\gamma'$ 300 10⁻¹ gg→ZZ, Zγ* on-shell 250 Width of the SM Higgs boson 10⁻² 200 SM $\Gamma_{\rm H} = 4.07 \pm 0.16 \, \text{MeV}$ 150 off-shell 100 200 300 500 1000 100 F M_H [GeV] 50 0 200 300 m41 (GeV)

Indirect Higgs Boson Width

Higgs Boson Width from Off-Shell at LHC

Higgs Boson Width at HL-LHC

Three approaches explored

- \blacktriangleright interference between Higgs $\gamma\gamma$ signal and QCD background
 - weak contraint: 8-22 × SM
- $racksim fit in the \kappa$ -framework (with assumption)
 - Γ_H 100% correlated with *B*^{unt} and: *B*^{unt} < 4.1% @ 95%CL
- $rac{}{rac{}}$ H ightarrow ZZ off-shell vs on-shell
 - 20% precision, but model dependent

 R_{int} induces a mass shift of -35 ± 9 MeV for Γ_{H} = 4.1 MeV

ATL-PHYS-PUB-2016-009

Fundamental difference between hadron and lepton colliders:

- hadron collider not directly sensitive to the width $\Gamma_{\rm H}$
- an additional assumption is needed (e.g. $|\kappa_V| \le 1$) when untagged decays are allowed

Higgs Invisible Decays at (HL-)LHC

Connection between Higgs and Dark Matter ($m_{DM} < m_{H}/2$)

- SM: $B^{inv} \approx 0.1\%$ from H $\rightarrow ZZ^* \rightarrow 4v$
- signature: large *E*_T^{miss}
- sensitivity dominated by VBF channel

Run-1 + 2016 (36 fb⁻¹)

- ATLAS: *B*^{inv} < 26% @ 95%CL (17%)
- CMS: *B*^{inv} < 19% @ 95%CL (15%)

HL-LHC, using VBF and VH channels
ATLAS+CMS: B^{inv} < 2.5% @ 95%CL

Higgs portal: window on the Dark sector?

Higgs Invisible Decays at FCC-hh

 \blacksquare Exploit Higgs production at very large p_T

← Constrain the background HZ (Z → $v\overline{v}$) at the 1% level using NLO QCD/EWK to relate to measured HZ (Z → $\ell + \ell -$), HW and H γ spectra

Invisible Width

Typical current LHC limits: 20% at 95%CL

Hadron Colliders: limited by MET uncertainties Lepton Colliders: from Z recoil in HZ events

Hadron Colliders cannot measure the total width. An assumption is needed to close the fit, e.g. $|\kappa_V| < 1$

- Lepton Colliders would improve upon HL-LHC limits by one order of magnitude
- FCC-hh would gain another order of magnitude, reaching close to the SM sensitivity

Constraints on Dark Matter

HL-LHC: improvement of these limits by one order of magnitude on $\sigma_{WIMP-n} = 10^{-47} \text{ cm}^2$

FCC-hh: Impact on DM Constraints

Complementary to direct detection experiment to reach the neutrino floor

Gautier Hamel de Monchenault