Les expériences du futur : potentiel de physique Physique du modèle standard

École de Gif 2019 *Questions ouvertes en physique des particules* 2-6 septembre 2019 École polytechnique, Palaiseau

The Electroweak Fit

Another projection of the electroweak fit, this time showing M_W versus sin $2\theta_{eff}^{\ell}$

Electroweak Precision Observable (EWPO) measured at LEP/SLD

Physics at the Z-Pole

 e^+e^- colliders $\int s = 91 \text{ GeV}$

LEP-1 at CERN

- 1989-1992
- circular
- ALEPH, DELPHI, L3, OPAL
- 20 million Z's

27 km Ø

SLC at SLAC

- 1989-1998
- linear
- e⁻ beam polarisation
- SLD
- 550,000 Z's

A fantastic legacy!

$M_z =$	91187.5 ±	± 2	2.1	MeV
Γ _Z =	2495.2 ±	± 2	2.3	MeV
sin²θ _{eff} =	0.23153 ±	t (0.00	016
α _s =	0.1190 ±	± C	00.0	25
N _v =	2.9840 ±	t (0.00	82

from Z line shape from LR and FB asymmetries (tension "leptons" vs "quarks") from multi-jets from peak cross -section and ratio of partial widths (2σ deficit)

Only three species of *active*, *light* neutrinos

Maximum Violation of Parity

	left-handed doublets	right-handed singlets
(3 families)		1
Leptons	$L^{\ell}{}_{\scriptscriptstyle L} \equiv \frac{1}{2}(1-\gamma^5) \left(\begin{array}{c} \nu_{\ell} \\ \ell \end{array} \right)_{Y_{\scriptscriptstyle L}} = -1$	$\ell_R \equiv \frac{1}{2} (1 + \gamma^5) \ell$ $Y_R = -2$ $u_{iR} \equiv \frac{1}{2} (1 + \gamma^5) u_i$
Quarks (x3)	$Q^{j}_{L} \equiv rac{1}{2}(1-\gamma^{5}) \left(egin{array}{c} u_{j} \\ d'_{j} \end{array} ight)_{Y_{L}} = 1/3$	$J^{R} = rac{2}{2} \begin{pmatrix} 1 + \gamma' \end{pmatrix} J^{r} \qquad Y_{R} = 4/3 \ d'_{jR} \equiv rac{1}{2} (1 + \gamma^{5}) d'_{j} \qquad Y_{R} = -2/3$
	Electric charge $Q = T^3 + \frac{1}{2}Y$	Gell-Mann—Nishijima
$\bar{\nu}$ $W^ \ell$	$\sim \frac{g}{2\sqrt{2}} \bar{\nu}_{\ell} \gamma^{\mu} (1 - \gamma^5) \ell W_{\mu}^{-}$	$W^- \theta^*$
\overline{f}	$\bar{\nu}$ Neutral weak currents	$-1 \qquad \cos\theta \qquad +1 \\ (1 + \cos\theta^*)^2$
\int_{f}	$\sim \frac{g}{2\cos\theta_W} \bar{f}\gamma^\mu \left(R_f(1+\gamma^5) + L_j\right)$	$f(1-\gamma^5))fZ_{\mu}$

Weak Neutral Currents

axial current
$$a_f = (L_f - R_f)/2 = T_f^3$$

vector current $v_f = (L_f + R_f)/2 = T_f^3 - 2Q_f \sin^2 \theta_W$

Vector and axial-vector couplings to the Z boson

$$\sin^2 \theta_W = 0.2312$$

Fermion	$v_f = T_f^3 - 2Q_f \sin^2 \theta_W$	$a_f = T_f^3$	L_f	R_{f}	$v_f^2 + a_f^2$
$ u_e, u_\mu, u_ au$	1/2	1/2	1/2	0	1/2
e,μ,τ	$-1/2 + 2 \sin^2 \theta_W \simeq -0.038$	-1/2	$\simeq -0.269$	$\simeq +0.231$	$\simeq 0.251$
u,c,t	$1/2 - 4/3 \sin^2 \theta_W \simeq +0.192$	1/2	$\simeq +0.346$	$\simeq -0.154$	$\simeq 0.287$
d,s,b	$-1/2 + 2/3 \sin^2 \theta_W \simeq -0.346$	-1/2	$\simeq -0.423$	$\simeq +0.077$	$\simeq 0.370$

Effective couplings

$$g_{Vf} = \sqrt{\bar{\rho}} \left(T_f^3 - 2Q_f \sin^2 \theta_W^{\text{eff}} \right)$$
$$g_{Af} = \sqrt{\bar{\rho}} T_f^3$$

$$\sin^2 \theta_W^{\text{eff}\,f} = \frac{1}{4|Q_f|} (1 - \frac{g_{Vf}}{g_{Af}})$$

Left-Right Asymmetries

Asymmetry in left- and right-handed couplings

$$\mathcal{A}_f = \frac{L_f - R_f}{L_f + R_f} = 2 \frac{g_{\mathrm{V}f}/g_{\mathrm{A}f}}{1 + \left(\frac{g_{\mathrm{V}f}}{g_{\mathrm{A}f}}\right)^2}$$

Depends on vector to axial-vector ratios

- small for leptons
- large for down-type quarks
- sensitive to $sin^2\theta_W$

Left-right asymmetries can be measured at the Z pole with longitudinally polarised beams (i.e., at SLD)

 \mathcal{A}_{e}

 $\mathcal{A}_{\mu}, \mathcal{A}_{ au}$

0

-0.8

-0.4

Polar distributions of Z decays to lepton pairs

0.4

0

cosθ

0.8

Forward-Backward Asymmetries

1

The Electroweak Fit

Mw: Parametric Errors

sin²θ_{eff} : Parametric Errors

Experimental

 $\sin^2 \theta_{\rm eff}^{\,\ell} = 0.23153 \pm 0.00016$

Electroweak Fit

 $\sin^{2} \theta_{\text{eff}}^{\ell} = 0.231488$ $\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{th}}$ $\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{top}} \quad (\delta + \delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{H}} \quad (\delta + \delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{H}}$ $\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\text{Z}}$ $\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\alpha}$ $\pm (\delta \sin^{2} \theta_{\text{W}}^{\text{eff}})_{\alpha}$

 $\pm 7.0 \times 10^{-5}$

 4.7×10^{-5}

- $(\delta M_{\rm top}/0.76 {\rm ~GeV}) \times 2.9 \times 10^{-5}$
- $\pm (\delta \sin^2 \theta_{\rm W}^{\rm eff})_{\rm H} \qquad (\delta M_{\rm H}/0.24 \text{ GeV}) \times 0.1 \times 10^{-5}$
 - $(\delta M_{\rm Z}/2.1 \text{ MeV}) \times 1.5 \times 10^{-5}$
 - $(\delta \alpha / 10^{-4}) \times 3.5 \times 10^{-5}$
 - $(\delta \alpha_{\rm s}/3 \times 10^{-3}) \times 1.0 \times 10^{-5}$

Main parametric errors: • **theory** • α • **top mass** • Z mass • Δ_S • Higgs mass

The Electroweak Fit at LHC

the most complete consistency test of the electroweak sector of the Standard Model

Main ingredients:

- effective weak mixing angle
- mass of the W boson
- width of the W boson
- mass of the top quark
- (mass of the Higgs boson)

Effective Weak Mixing Angle at HL-LHC

CMS Run-1 2017

EPJC 78 (2018) 701

From $A_{FB}(\ell \ell)$ in 6 rapidity bins

- data: Run-1 at 8 TeV
- best sensitivity in bin at larger rapidity (2.0 < |Y_{ℓℓ}| < 2.4)
- event reweighing method to cancel acceptance effects
- main uncertainty from PDF, but reduced by constraints from data
- combined uncertainty: ±0.00053

CMS-PAS-FTR-17-001

- 14 TeV smaller asymmetries at low rapidity due to wider rapidity plateau
- extension of tracker acceptance
 - additional rapidity bin : 2.4 < |Y_{ℓℓ}| < 2.8</p>

Effective Weak Mixing Angle at HL-LHC

- extend di-lepton acceptance from |Y| < 2.4 to |Y| < 2.8
 - improvement 30% statistical and 20% PDF uncertainty
- statistical uncertainty negligible beyond L = 300 fb⁻¹
- with 3000 fb⁻¹ and constraining PDF from the data, envision reaching present LEP/SLD uncertainty (±0.00020)

Vector and Axial Couplings at LHeC

 $\alpha_W^{-1} = \alpha_{\text{QED}}^{-1} \sin^2 \theta_W \simeq 30$

EWK Bosons at LHC

Z boson

• Dilepton invariant mass

$$M^2 = 2 p_{\rm T}(\ell_1) p_{\rm T}(\ell_2) \left(\cosh \Delta \eta_{12} - \cos \Delta \phi_{12}\right)$$

W boson

- Lepton transverse momentum
- Missing transverse energy

$$p_{\rm T}(\nu) = E_{\rm T}^{\rm miss}$$

• Transverse mass

$$M_{\rm T}^2 = 2 p_{\rm T}(\ell) p_{\rm T}(\nu) \left(1 - \cos \Delta \phi(\ell, \nu)\right)$$

 $\Delta \phi(\ell,
u)$

angle between lepton and missing momentum in transverse plane

Principle of W Mass Measurement at LHC

The transverse mass is

- less sensitive to the $q_T(W)$ spectrum
- much more sensitive to the hadronic recoil

But, due to pile-up, lepton p_T is the most promising at the LHC

Experimental challenges

- control the lepton energy scale at < 0.1%
- pile up conditions

Theoretical challenges

- modelling of the $q_T(W)$
- modelling of the templates obtained from simulation with corrections in q_T , y and A_i
- knowledge of the PDFs

W Mass Measurement at LHC

ATLAS: first measurement of 10[°] Events / 2 GeV ATLAS - Data 10^{8} Fit result vs = 7 TeV, 4.6 fb⁻¹ the W mass $W \rightarrow ev + EW$ 10⁷ **Multijets** 10^{6} tt + single top Error budget 10⁵ 10^{4} • total = 18.5 MeV One of the most challenging 10³ = 6.8 MeV • stat. measurements at the LHC 10² 10 • PDF = 9.2 MeV Data/Fit • QCD = 8.3 MeV 1.05 0.95 arXiv:1701.07240 100 120 0 20 40 60 80 m_⊤ [GeV] $p_{\tau}^{l},\,W^{+}\!\!\rightarrow l^{+}\!\nu$ • m_w (Partial Comb.) ATLAS p۲ť – ± 🗾 Stat. Uncertainty Full Uncertainty $p_{\tau}^{l},\,W^{\pm} {\rightarrow}\, l^{\pm} \nu$ $\sqrt{s} = 7 \text{ TeV}, 4.1-4.6 \text{ fb}^{-1}$ m_w (Full Comb.) $\bar{m}_{T}^{-}, \bar{W}^{+} \rightarrow \bar{I}^{+} \bar{\nu}$ ╋ Stat. Uncertainty $m_{T}, W \rightarrow \Gamma v$ mτ Full Uncertainty **Crosschecks** ± $m_{T}, W^{\pm} \rightarrow l^{\pm} v$ in many $\bar{p}_{\tau}^{I}, \bar{W}^{\bar{\pm}} \rightarrow \bar{e}^{\pm} \bar{\nu}$ e $m_T, W^{\pm} \rightarrow e^{\pm} v$ categories $p_{\tau}^{l},\,W^{\pm}\!\!\rightarrow\mu^{\pm}\!\nu$ μ $m_{T}^{},\,W^{\pm}\!\!\rightarrow\mu^{\pm}\nu$ m_{T} - p_{T}^{I} , $W^{+} \rightarrow I^{+} v$ *m*_T-*p*_Tℓ $m_T^- p_T^l, W \rightarrow I \nu$ ± m_{T} - p_{τ}^{I} , $W^{\pm} \rightarrow f^{\pm} v$ 80340 80360 80380 80400 80420 80440 80460 80280 80300 80320

m_w [MeV] 17

W Mass Measurement at HL/EH-LHC

- Low-PU special runs to exploit missing transverse momentum
- Sizeable improvement from acceptance extended to |η| < 4 due to barrel/ endcap anti-correlations

HL-LHC Low-PU special runs ($<\mu> = 2$)				
L	acceptance	# of events	δ <i>m</i> _W (MeV)	
200 pb ⁻¹	η < 2.4	2 × 10 ⁶	16	
	ŋ < 4		12	
1 fb⁻¹	ŋ < 4		9	
	with	5		

Above 200 fb-1 uncertainties are dominated by PDFs

Improvements on the knowledge of PDFs (including for heavy flavours) are essential

DY and Heavy Flavour

- the contribution of sea quarks is much more important at the LHC
- the use of the Z control sample for the W mass is not trivial at the LHC

:tions

- PDFs contribute to systematic uncertainties in many flagship analyses at LHC (including Higgs coupling ameasurements)
- LHC participates to PDFs^{10⁻³} × improvements for HL-LHC through tt, DY, W+charm, inclusive jet and photon differential production cross-sections

Projected forward W+charm data

arXiv:1810.03639

0.6

0.4

0.2

Х

PDFs at the HL-LHC (Q = 10 GeV)

Gluino pair production @ HL-LHC √s=14 TeV

improvements by factor of 2-5 possible

1.8

1.6

12

0.8

0.6

0.4

0,2L1 1000

Ratio to baseline

Improved Precision with LHeC

Electroweak precision measurements at the LHC are limited by PDF uncertainties

*M*_W at ATLAS (2017)

- total = 18.5 MeV
- stat. = 6.8 MeV
- PDF = 9.2 MeV
- QCD = 8.3 MeV

With full HL-LHC

- 5-9 MeV on *M*w
- 15×10^{-5} on $sin^2 \theta_{eff}$

 $sin^2\theta_{eff}$ at CMS (2018)

- total = 53×10^{-5}
- stat. = 36×10^{-5}
- PDF = 31×10^{-5}
- theory = 16×10^{-5}

With full HL-LHC+LHeC

- <2 MeV on *M*_W
- 4 × 10⁻⁵ on $sin^2\theta_{eff}$

LHeC greatly empowers LHC/HL-LHC results

- NP exclusion limits
- x-section measurements
- high precision QCD measurements
- per-mil α_s measurement

The Top Quark

The top quark

- is the $SU(2)_L$ partner of the bottom quark
- is the heaviest known fundamental particle

 $m_t = y_t v / \sqrt{2} \simeq 173 \text{ GeV}$

 is the only fermion with "natural" coupling to the Higgs field

$$\Rightarrow y_t \simeq 1$$

- plays a special role in electroweak physics, flavour physics and Higgs physics
- decays almost exclusively to bW
- decays before it has time to hadronise

$$\Gamma(t \to bW^+) \approx \frac{\alpha}{16s_W^2} \left| V_{tb} \right|^2 \frac{m_t^3}{m_W^2}$$

 \sim I.5 GeV (> Λ_{QCD})

typical top decay time: 5×10^{-25} s typical hadronisation time: 2×10^{-24} s

40 times heavier than the b quark!

Top Pair Production

Single Top Production

Top Mass Measurement at LHC

mtit [GeV]

Which Top Mass for the Electroweak Fit?

The definition of the mass of the top quark is ill-defined

- the mass measured from bW decay products is assumed to be close from pole m_{pole}
- problem: m_{pole} for a coloured particle cannot be determined with accuracy better than Λ_{QCD} ($\approx 0.2 \text{ GeV}$)
- the top quark decays before hadronising but still the b quark has to hadronise

Which final state particles to assign to the original top quark?

- Importance of measuring the mass using alternate techniques
 - mass and end point of b $\boldsymbol{\ell}$ spectrum
 - decay length (boost) of B hadrons

theoretically a good approach is to extract the mass from measurements of the cross section

Pole Mass Measurements

Initially, using

- an inclusive x-section measurement
- NLO calculations of $t\overline{t}$ x-section as a function of pole m_t
- fit together with $\alpha_s(m_t)$

Top Mass Measurements at HL-LHC

Top Mass Measurements Error Budget

Top Differential x-Sections at HL-LHC

Electroweak Fit at HL-LHC

Uncertainties 2018

- $sin^2\theta_{eff}$ (WA) 0.00016
- W mass (WA) 15 MeV
- W width (WA) 42 MeV
- top mass (WA) 760 MeV
- (Higgs mass (WA) 240 MeV)

Electroweak Fit at HL-LHC

HL-LHC Uncertainties

- $sin^2\theta_{eff}$ 0.00015
- W mass 7 MeV
- W width 30 MeV
- top mass 400 MeV
- (Higgs mass 50 MeV)

Electroweak Fit at HL-LHC

Physics with 3×10¹¹ Z Bosons

Jump by factor 5 to 20 in relative precision

EWPO at FCC-ee

TeraZ (5 X 10¹² Z)

From data collected in a lineshape energy scan:

- Z mass (key for jump in precision for ewk fits)
- Z width (jump in sensitivity to ewk rad corr)
- R_I = hadronic/leptonic width (α_s(m²_Z), lepton couplings)
- peak cross section (invisible width, N_v)
- $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{QED}(m_Z^2)$, lepton couplings)
- Tau polarization (sin²θ_{eff}, lepton couplings, α_{QED}(m_z²))
- R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings)

OkuWW (10⁸ WW)

From data collected around and above the WW threshold:

- W mass (key for jump in precision for ewk fits)
- W width (first precise direct meas)
- $R^{W} = \Gamma_{had} / \Gamma_{lept} (\alpha_{s} (m_{Z}^{2}))$
- Γ_e , Γ_μ , Γ_τ (precise universality test)
- Triple and Quartic Gauge couplings (jump in precision, especially for charged couplings)

Physics with 5×10¹² Z Bosons

	observable	present value	FCC-ee	from	main source of	
	Observable	present value	stat syst	110III	systematics	
	M _z (MeV)	91187.5 ± 2.1	0.005 ± 0.1	line change		
-CC-ee	Γz (MeV)	V) 2495.2 ± 2.3 0.008 ± 0.1	beam energy			
	sin²θ _{eff} (×10 ⁵)	23153 ± 16	0.3 ± 0.2-0.5	$A_{FB}^{\mu,0}$		
	A _{FB} ^{b,0} (×10 ⁴)	992 ± 16	0.002 ± 1-3	b-quark asymmetry	b-jet charge	
	Re (×10 ³) 20767 ± 25 0.06 ± 0.2-1 hadron	hadrons to leptons	lopton accontanco			
	α _s (×10 ⁴)	1990 ± 25	0.1 ± 0.4-1.6	Re	tepton acceptance	
	1/α (×10³)	128952 ± 14	4 ± <1	A _{FB} ^µ off-peak		
	σ _{had} ⁰ (pb)	(pb) 41541 ± 37 0.1 ± 4	luminosity			
	<i>N</i> _v (×10 ⁴)	29840 ± 82	0.05 ± 10	pear cross-sections	measurement	

 \blacktriangleright continuous $\int s$ calibration by RDP

- ∆E/E ~ Ø(10⁻⁶)
- 100 (500) keV at Z-pole (WW)
 ➡ energy spread (~60 MeV) at 1% from scattering angle of µ pairs
- 🖛 W+Si luminometer
 - small angle Bhabha scattering
 - absolute (relative) : 10⁻⁴ (5×10⁻⁵)

From asymmetries and partial width measurements, improvement by 1 to 2 orders of magnitude on Z vector and axial-vector couplings to leptons (e, μ and τ) and quarks (b and c)

QED Coupling Constant α(Mz²)

 $1/\alpha(M_{z^2}) = 128.952 \pm 0.014 \quad (\rightarrow \delta \alpha / \alpha \approx 1.1 \times 10^{-4})$

- uncertainty dominated by hadronic vacuum polarisation (from low energy data)
- currently second largest source of parametric error on $sin^2\theta_{eff}$ (first=theory)
- can be measured from the slope of the
 FB μ asymmetry in the vicinity of the Z pole

$$A_{\rm FB}^{\ \mu}(s) \simeq A_{\rm FB}^{0\ \mu} \left[1 + \frac{s - M_Z^2}{2s} \frac{8\pi\sqrt{2}\,\alpha}{M_Z^2 G_{\rm F}(1 - 4\sin^2\theta_{\rm eff})^2} \right]$$

FCC-ee $1/\alpha(M_Z^2)$ at the 4×10^{-5} level from 40 fb⁻¹ at ± 3 GeV of Z pole

P. Janot, JHEP 02 (2016) 053

- param. error < 1.2×10^{-5} on $sin^2 \theta_{eff}$
- param. error < 0.6 MeV on M_W

Note: computation of missing EW higher-order corrections is needed

W Mass at e⁺e⁻ Colliders

ILC at threshold with polarisation

- use LR to enhance WW
- use RL to measure backgrounds
- use LL and RR to control polarisation
- 500 fb⁻¹ (±80%, \mp 30%) $\rightarrow \delta M_W \approx 2.1$ MeV (stat+syst)

A run at $\sqrt{s} = 160$ GeV not in the current staged running scenario at the ILC

Above threshold

- 1000 times LEP-2 statistics
- much better detectors

FCC-ee at threshold, unpolarised

Center-of-mass energy (unc. 0.3 MeV)

- known by resonant depolarisation
 Luminosity (unc. <2×10⁻⁴)
- from Bhabha events

Carefully chosen energy points

Top Mass at Pair Threshold

Which definition for the top quark mass?

- HL-LHC → MC mass with uncertainty <200 MeV
- can the pole mass be determined at better than $\mathcal{O}(\Lambda_{QCD})$?

Threshold mass

- safe definition
- can be translated to pole mass with uncertainty <100 MeV

Cross section at threshold affected by properties of the top quark (mass, width, y_{top}) and QCD (α_s)

Energy scan

- optimal choice of points
- typically 20 fb⁻¹ per point
- stat: I 5-20 MeV on M_{top}
- theory (NNNLO): 40 MeV

also:

- Γ_{top} at <100 MeV
- indirect y_{top} at 10%

Electroweak Fit after FCC-ee Z/WW/HZ/tt

40

Fermion Pair Production

Of special interest:

 $F_{1A^{\gamma}}$ is 0 in SM as a result of QED gauge invariance

Tensor couplings

- 0 in SM
- sensitive to bound state effects
- $F_{2V}^{\gamma/2}$ are related to anomalous magnetic dipole moment
- $F_{2A^{\gamma/Z}}$ are CP violating

Chiral structure of third generation of quarks

- ➡ top quark: mass close to the EWSB scale
 - top Yukawa close to one
- could be (partially) composite?

The top quark is a candidate to be a messenger in many new physics models, including composites and/or large extra dimensions

b quark: weak isospin partner

b-Quark EWK Couplings

Observables sensitive to chiral structure: σ and A_{FB}

Differential cross sections as a function of $\cos\theta_b$ S (1+ $\cos^2\theta_b$) + A $\cos\theta_b$

- Excellent b- and c-tagging size of the beam spot
 - reduced tube radius
- ➡ particle identification (TPC)

b-charge determination

- on event-by-event basis
- sum of charges at secondary and tertiary vertices

S. Bilokin at al, arxiv:1709.04289

Tackling the LEP Anomaly

δ g^Z/g^Z 8.0 R

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

LEP-I

-0.1 -0.05

F. Richard, LCWS 2017

Long-standing LEP anomaly

- a 2.5σ tension between
 A_{FB}^ℓ and A_{FB}^b
- corresponds to a deviation of 30% of the g_{R}^{Z} coupling
- hint of heavy quark compositeness?

- $\delta g_R^Z / g_R^Z \sim 2\%$ (10% at LEP)
- discard or confirm the anomaly with >5σ confidence
- sign ambiguity in the anomaly can be resolved

also:

- constraints on tensor couplings
- sensitivity to BSM scenarios
 - (e.g., Randall-Sundrum)

 $\delta \; g_R^Z/g_R^Z$

AFB

2.5σ

σ

σ

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

ILC-250

lσL

σR

σ

AFB^R

AFBL

σr

Top-Quark EWK Couplings

ILC 500 fb⁻¹@500 GeV

- precise reconstruction in both polarisations
- b-charge needed to solve ambiguities in LR
- 2% precision on A_{FB}
- improved precision with 2 ab⁻¹

FCC-ee 2.4 ab⁻¹@365 GeV

- compensates lack of polarisation with statistics (one million tt events)
- final state polarisation extracted statistically from 2D energy/angular distribution of the lepton (polarisation transferred through the V-A decay of t →Wb)

44

Top Quark: Sensitivity to NP

ILC optimal energy: √s ~ 500 GeV

Top Flavour Changing Neutral Currents

FCNC is a process where the top does not decay through CC (t \rightarrow b with exchange of a W) but through NC (t \rightarrow c, u, with exchange of g, γ , Z or H)

- highly-suppressed in the SM
- can be enhanced by new physics

	SM	2HDM	MSSM
t → cg	5 x 10 ⁻¹²	10-8 - 10-4	10-7 - 10-6
t → cZ	x 0 ^{- 4}	10-10 - 10-6	10-7 - 10-6
t → cγ	5 x 10-14	10-9 - 10-7	10-9 - 10-8
t → cH	3 × 10-15	10-5 - 10-3	10-9 - 10-5

- FCC-hh: best reach due to the huge statistics available (10¹² top quarks!)
- Exploiting boosted topologies allows to compensate large pileup (> 500)

Tops + (multi) Bosons, (multi) Tops

➡ ttW and ttZ production observed at LHC Run-II

Tops + (multi) Bosons at FCC-hh

HL-LHC (\rightarrow HE-LHC) \rightarrow FCC-hh mb huge increase in statistics

Summary of SM x-Sections at LHC

Unitarity and the Higgs Boson

Difference between massive and massless boson = longitudinal polarisation Very relativistic massive bosons are dominated by their longitudinal polarisation

Longitudinal scattering amplitudes grow as CM energy increases

... and eventually violate *unitarity*

In the SM, the Higgs boson "unitarises" the longitudinal scattering amplitudes

(*unitarity* means "sum of probabilities of all processes equals one")

Unitarity and the Higgs Boson

The Higgs boson contribution cancels exactly the E^2 dependance of the cross section at high energy

Unitarity is preserved if and only if all Higgs couplings are exactly those predicted by the SM

... is "unitarised" by Higgs boson exchange

cf. N. Arkani-Hamed : "Inevitability of Physical Laws: Why the Higgs Boson Has to Exist" 51

Elucidating the EWSB Sector

Probe longitudinal gauge boson scattering in regime where the EW symmetry is restored (√s ≫ 246 GeV) Crucial closure test of the SM

- either the Higgs regularises the theory fully
- or New Physics must show up a the TeV scale

Dibosons & Vector Boson Fusion (VBF) anomalous Triple Gauge Couplings (aTGC) Tribosons & Vector Boson Scattering (VBS) anomalous Quartic Gauge Couplings (aQGC)

Common features:

- two hard high-rapidity jets
- large di-jet invariant mass (set by the mass scale of the scattered vector bosons)

VBS Expectations at HL/HE-LHC

CMS-PAS-FTR-18-038

VBS Expectactions at FCC-hh

Extraction of the same-sign W_LW_L signal requires removal of large QCD backgrounds (VV+jets) and separation of large EW background from transverse-boson scattering

- two forward jets with large rapidity separation
- large dilepton mass
- LL component from azimuthal correlations between leptons

VBS process set strong constraints on the design for FCC-hh detectors

A precise measurement (3-4% precision) necessitates leptons down to $|\eta| = 4$ and jets down to $|\eta| = 6$ in conditions of 1000 pile-up events!

Gautier Hamel de Monchenault

CMS Physics Briefing