Les expériences du future: détecteurs

1

École de GIF 2019, 2-6 Septembre 2019 École polytechnique - Palaiseau D. Contardo - IP2I CNRS/IN2P3

Tracking systems

Provide most precise measurement of charged particle trajectories to form primary (interaction) and secondary (decay) vertices, to estimate momentum from curvature in magnetic field

Charged particle energy loss in matter

* Particle Data Booklet http://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf and https://arxiv.org/pdf/1804.11246.pdf

Charged particle energy loss in matter: signal

Signal in thin material layers is described by Landau-Vavilov-Bichsel distribution

In Silicon dE/dx = 3.88 MeV/cm and average e-h pair pair energy is 36 eV/ \rightarrow S \simeq 106(70) e-h pairs/µm average(maximum probability)

* Particle Data Booklet http://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf and https://arxiv.org/pdf/1804.11246.pdf

Charged particle energy loss in matter: Bremsstrahlung

$$\frac{\mathrm{dE}}{\mathrm{dx}} = 4 \,\alpha \mathrm{N}_{\mathrm{A}} \frac{\mathrm{z}^{2} \mathrm{Z}^{2}}{\mathrm{A}} \left(\frac{1}{4\pi\epsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{mc}^{2}} \right)^{2} \mathrm{E} \ln \frac{183}{\mathrm{Z}^{\frac{1}{3}}} \propto \frac{\mathrm{E}}{\mathrm{m}^{2}}$$

For electrons Bremsstrahlung dominates for $E \ge 8$ MeV: $\frac{dE}{dx} = \frac{E}{X_0}$, $E(x) = E_0 e^{-\frac{x}{X_0}}$

Where the radiation length $X_0 = \frac{A}{4 \alpha N_A Z^2 r_e^2 \ln \frac{183}{2^2}} \operatorname{g cm}^{-2} \propto A/Z^2$, for composite: $1/X_0 = \Sigma_j w_j/X_j$

* Particle Data Booklet http://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf and https://arxiv.org/pdf/1804.11246.pdf

Charged particle passage in matter: multiple scattering (MS)

Multiple scattering is a limitation to trajectory measurement precision Gaussian approximation sufficient for most application

Tracking systems design: momentum measurement in B-field

Track parameters

Transverse (xy) and longitudinal (rz) projections, Impact Parameters (IP) d₀ and z₀

Resolution¹: $\sigma(p_T)/p_T = 8p_T\sigma(s)/0.3BL^2$

With N equally spaced points of resolution $\sigma(r\Phi)$: $\sigma(s) = \sqrt{720/(N+4)}$. $\sigma(r\Phi)/8$ (Gluckstem formula) $\sigma(r\Phi)$ has a constant term from intrinsic precision + a multiple scattering term $\propto 1/(p_T \sin^{1/2}(\theta)) \sqrt{(L/X0)}$

$\sigma(p_T)/p_T = ap_T \bigoplus b/sin^{1/2}(\theta)$

Where a depends on 1/BL², number of layers & intrinsic resolution and b depends on B, L number of X₀

¹⁾ Detectors are aligned with muons (from collisions and cosmic) and measured field MAP is corrected from mass measurements (ex. J/Ψ)

Tracking systems design: transverse (longitudinal) IP resolution

- Track origin resolution determines quality of association to collision vertex and decays
 - Geometry term: $\sigma_{\text{geom.}}^2 (d_0) = [(r_1 \sigma_1)^2 + (r_2 \sigma_2)^2]/(r_2 r_1)^2$
 - $r_1 r_2$ and σ_1/σ_2 inner/outer radii and hit resolutions
 - MS term: $\sigma^2_{MS}(d_0) = \Sigma^n_j (r_j \sigma(\Phi))^2$, n number of layers
 - $\sigma_j(d_0) = r_j\sigma(\Phi) = (r/\sin(\theta)p)13.6(MeV)\sqrt{(x/\sin(\theta) X_0)} [1 + 0.38 \log (x/\sin(\theta)X_0)]$
 - x layer thickness, X_0 radiation length θ track polar angle, Φ scattering angle

Transverse IP resolution: $\sigma(d_0) \simeq a \bigoplus b/p_T \sin^{1/2}(\theta)$

Constant term depends only on geometry, multiple scattering term depends on material, transverse momentum and pseudo-rapidity η¹⁾

 $\sigma(d_0)$ is driven by the vertex detector performance (Si-pixel detector)

1) η = -log [tan(θ/2)]

8

ð

Tracking systems design: hit position resolution

- Intrinsic resolution is driven by channel pitch, charge sharing across channels, and Signal to Noise ratio (S/N)
 - In binary readout (no amplitude measurement) position is given by the center of the channel or 1/2 depending on cluster size, eg number of channels with S/N above threshold: $\sigma(x) = d/\sqrt{12}$ to $d/2\sqrt{12}$
 - In digital readout position can be weighted with signal amplitude: $\sigma(x) \propto 1/(S/N)$

Charge sharing depends on diffusion¹⁾ in sensitive element, S/N²⁾, incident angle and B-field, Resolution³⁾ optimization is a compromise in layer thickness, pitch and configuration parameters⁴⁾ It should also consider 2-tracks separation, requiring thorough simulation and measurements

- 1) Diffusion $\sigma = \sqrt{(2Dt_d)}$, t_d drift time, $D = \mu kT/q \rightarrow \sigma \simeq 8 \mu m$ for 300 μm thickness
- 2) S/N degrades with irradiation and cross-talk effect should be considered
- 3) Ultimate resolution is also limited by δ -rays emission that shift center of gravity (favoring small thickness but allowing lower diffusion),
- 4) Compensating or not Lorentz angle in B-field and/or tilting modules compared to \perp incidence

Tracking system design: physics parameters

Measuring low momentum tracks is important for hard scatter vertex and for pile-up mitigation

Current trackers: ATLAS and CMS examples

ATLAS

36 TRT 4 mm straws precision \simeq 120 - 140 μ m, 4x2 Si strips layers precision \simeq 120 - 140 μ m

11

Future Silicon trackers: ATLAS and CMS optimizations at HL-LHC¹²

Overall configuration drivers

- Both trackers extend Inner Tracker pixel (IT) coverage up to $\eta \simeq 4$ for VBF-H and VBS physics
- ATLAS has a 5 layers barrel pixel detector
 - Should optimize IP resolution (depending on MS), and also improve two track separation
- CMS has a design to provide Outer Tracker (OT) track parameters in hardware trigger at 40 MHz
 - Possible thanks to the high B-field, requires a pixelated layer close enough to the beam for z-coordinate measurement, but prevents a 5th pixel barrel layer
- Inner pixel layers are replaceable both in ATLAS and CMS

Future Silicon trackers: ATLAS and CMS optimizations at HL-LHC¹³

Main configuration parameters

• Number of hits per track: the figure of merit is the efficiency, including redundancy

Future Silicon trackers: ATLAS and CMS optimizations at HL-LHC¹⁴

Main configuration parameters

- Detector weight: divided by 2, with less layers, lighter mechanics, tilted modules in forward regions, new CO₂ cooling, DC-DC powering to reduce cable material and better arrangement of services, figures of merit:
 - Low fraction of radiation length reduce MS, γ-conversion and e-bremsstrahlung
 - Large interaction length reduce hadron interaction rates

CMS seems to have slightly lower X/X_0 (particularly in endcaps)

Future Silicon trackers: ATLAS and CMS optimizations at HL-LHC¹⁵

- Detector weight:
 - Thorough weighting of parts and registration of material at construction needed for simulation
 - Photon conversion and hadron interaction radiographies from data allow to correct description

Future Silicon trackers: ATLAS and CMS optimizations at HL-LHC¹⁶

- Sensor parameters: the figure of merits are hit occupancies and resolutions
 - Number of channels has been increase by $\simeq 4$ to 6 x present trackers¹⁾
 - Pixel sizes $\simeq 25 \times 100 \ \mu m^2$, 100 150 μm thickness
 - Strip pitch \simeq 75 to 90 μ m and length \simeq 2.5 to 5 cm length (likely 290 μ m thickness)
 - n-in-p and 3D sensors, radiation tolerance up to NIEL $\simeq 2 \times 10^{16}$ 1 MeV neq/cm² and TID of 1 Grad

1) High # of channel is more a density and power issue in FE electronics than a data bandwidth issues with zero suppression in FE

Future Silicon trackers: ATLAS and CMS optimizations at HL-LHC¹⁷

• Performance criteria: efficiency and fake rate

Future Silicon trackers: ATLAS and CMS optimizations at HL-LHC¹⁸

- Performance criteria: transverse Impact Parameter resolution
 - ATLAS studies:
 - Smaller radius of first layer dominates geometry factor compared to benefit of 5th layer
 - ~ GeV track resolution is dominated by MS¹⁾
 - Digital clustering is beneficial compared to binary mostly at high p_T
 - 25 x 100 μm^2 form factor is better than 50 x 50 μm^2

1) Jet tracks are in the range 1 -10 GeV, similar behavior in longitudinal direction with slightly smaller performance due to angle and MS

Future Silicon trackers: ATLAS and CMS optimizations at HL-LHC¹⁹

- Performance criteria: p_T resolution
 - ATLAS studies:
 - σ(p_T) up to > 10 GeV dominated by MS
 - $\sigma(p_T)$ 100 GeV sensitive to resolution

CMS has a better $\sigma(p_T)$ due to higher B-field

Future Silicon trackers: CMS Track Trigger

Example of efficiency and background rate reduction for a muon trigger threshold at 20 GeV

Future Silicon trackers: CMS HL-LHC OT modules example

Two types of modules: < 50 g, power consumption FE 20(50) ns peaking(full) time, 0.5 mW/channel Total cooling power (-35°): 100(50) kW Outer(Inner) Tracker

	Module type		TBPS	TB2S	TEDD	Total per variant	Total per type	
ł			0	11(1	2702		pertype	
	2S	1.8 mm	0	4464	2792	7256	7680	
		4.0 mm	0	0	424	424	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		1.6 mm	826	0	0	826		
	PS	2.6 mm	1462	0	0	1462	5616	
		4.0 mm	584	0	2744	3328		
	Total		2872	4464	5960	13296		

2S module	PS module			
$\sim 2 \times 90 \ { m cm}^2$ active area	$\sim 2 imes 45~{ m cm}^2$ active area			
2×1016 strips: $\sim 5 \text{ cm} \times 90 \ \mu \text{m}$	2×960 strips: ~ 2.4 cm $\times 100 \ \mu$ m			
2×1016 strips: $\sim 5 \text{ cm} \times 90 \ \mu \text{m}$	32×960 macro-pixels: ~ 1.5 mm $\times 100 \ \mu$ m			
Front-end power $\sim 5{ m W}$	Front-end power $\sim 8~{ m W}$			
Sensor power (–20 $^\circ \text{C}) \sim 1.0 \text{ W}$	Sensor power ($-20^\circ C$) $\sim 1.4W$			

Future Silicon trackers: next colliders performance target

- e-e experiments (ILC/CLIC/FCC-ee/CepC): track P_T and Impact Parameter resolutions \simeq /5 LHC
 - $\sigma(p_T)/p_T^2 \simeq 3 \times 10^{-5} \,\text{GeV}^{-1} \,(p \le 100 \,\,\text{GeV})$
 - $\sigma(d_0)/d_0 \simeq 2/3-5/10-20 \ \mu m \ (100/10/1 \ GeV \ at \ 90^\circ)$
 - R&D challenge
 - $\simeq 3 \ \mu m$ hit resolution with $\simeq 0.2 \ \% X_0$ per layer in pixel vertex detector
- h-h experiments FCC-hh/SppC need similar detectors
 - Resolutions ≃ x 2 e-e (due to larger inner layer radius (rates/radiation) and mass (power/cooling))
 - Additional R&D challenge
 - Hit rate readout capability $\simeq 30 \text{ GHz/cm}^2$ in inner pixel layer
 - Current technology would not survive $R \le 30$ cm for radiation tolerance

Future Silicon trackers: next colliders concepts

	Tracker parameters / experiments	ILD-ILC	SiD-ILC	CLICdet-CLIC	CLD-FCC-ee	IDEA FCC-ee/CepC	Baseline-CepC	FCC-hh (SppC)	
<u> 9</u>	Silicon: Planar, 3D sensors. HR/HV CMOS. hvbrid/3D/SoI interconnection or monolithic readout								
ັນ	In/Out layer radius (mm)	16/60 14/60		30/60	17/60			25/200	
มีไ	Number of layers/disks	3 x double layers	5/4	3x double-layers	Same as CLICdet	0	~		
∍∣	Thickness (μm)		50 to 100 (depend	ling on elctronics)	as CL	e as IL	50 to 100		
v -	Pitch/cell size (μm x μm)		≤ 25	x 25			25 x 50 - 33 x 400		
Ξl	Hit resolution (μm)		3	3	Ĕ	Ĕ	7		
<u>× </u>	(X0)/layer (%)	0.2			0.3	Sa	Š	1	
ן צ	σ(Δdº) (μm) (1/10/100 GeV)	10/3/2		20/5/2	20/5/2			30/10/5	
ะ L	Max NIEL (1 MeV neq/cm ²)/TID (Mrad)	10 ¹¹ /0.1	10 ¹¹ /0.1	10 ¹¹ /0.1	2 x 12 ¹² /1			6 x 10 ¹⁷ / 30 x 10 ³	
Γ	Outer Tracker technologies	TPC ¹⁾ + Si	Si	Si	Si	DC ²⁾ + Si	Si	Si	
	Layer/Outer radius (mm)	153/300/1800	1200	1500	2100	2000		200/1600	
Le l	Number of layers/disks (IT/OT)	2/1 double Si inner/outer TPC	5/4	3+3/7+4	same as CLICdet	12 layers 1 cm ² x 1.2 m	ILD		
D D	Transverse pitch (μm)		5	0		e as	33		
- 1	Transvers hit resolution (μm)		7	7	100	Ĕ	10		
บิ	X0/layer (%) (Barrel)		1				Š	2/2.5	
Ξl	σ(Δpτ)/pτ ² (GeV ⁻¹) (< 100 GeV, 90°)		2-3 x	10 ⁻⁵				5 x 10 ⁻⁵	
`	Min NIEL (1 MeV neq/cm ²)/TID (Mrad)							5 x 10 ¹⁵ / 10	
L	Time integration window	0.5 - 5 μs	0.5 - 5 μs	5 ns	1 µs	1 µs	1 µs	25 ns	

- 1) Number of hits in TPC \simeq 225 with expected resolution of \simeq 150 μ m
- 2) Number of hits in DC \simeq 122 with expected resolution of \simeq 100 μ m

Future Silicon trackers: e-e collider performance simulations

Future Silicon trackers: e-e collider performance simulations

Impact parameter resolution is more sensitive to multiple scattering than intrinsic resolution CLIC, ILD and SiD designs provide similar precision At high momentum resolution seems better than expected from parametrization $\sigma(d_0) \simeq a \bigoplus b/p_T \sin^{1/2}(\theta) = a \bigoplus b/p \sin^{3/2}(\theta)$

Future Silicon trackers: FCC-hh design proposal

* Compared to 6 x 10⁹ and 2.2 x 10⁹ for ATLAS/CMS Phase-II Trackers; ** Compared to 30-40 ps in ATLAS/CMS HL-LHC MIP Timing Detectors

Tracking systems: Silicon technology

Si-crystals semiconductor properties:

- Small energy gap 1.2 eV (between valence & conduction band), E (e-h pair creation)¹⁾ \simeq 3.6 eV
- High density 2.33 g/cm³; dE/dx (MIP) \approx 3.8 MeV/cm \approx 106 e-h/µm (average)
- High carrier mobility: $\mu_e(\mu_h) = 1450(450) \text{ cm}^2/\text{V.s}$,
 - $v = \mu E$, fast charge collection can go down to O(1) ns
- Material used in industrial process, relatively low cost

	Diamond	SiC (4H)	GaAs	Si	Ge
Atomic number Z	6	14/6	31/33	14	32
Bandgap Eg [eV]	5.5	3.3	1.42	1.12	0.66
E(e-h pair) [eV]	13	7.6-8.4	4.3	3.6	2.9
density [g/cm ³]	3.515	3.22	5.32	2.33	5.32
e-mobility µ _e [cm ² /Vs]	1800	800	8500	1450	3900
h-mobility μ_h [cm ² /Vs]	1200	115	400	450	1900

Alternative semi-conductors: Ge need cryogeny with liquid nitrogen at 77k, Diamond less signal and expensive

1) \simeq 30 eV LAr and 100 eV in scintillators

Tracking systems: Silicon sensors

Several Si-sensors types and design, differences are in depletion, electronic readout implementation and eventually in performance, hybrid designs much more radiation tolerant

1) $\simeq 10^4$ more free carriers in Si than MIP signal

Tracking systems: Si-sensors electronic scheme and noise

Detector equivalent scheme

Noise: ENC = $\sqrt{ENC_{C}^{2} + ENC_{I}^{2} + ENC_{Rp}^{2} + ENC_{Rs}^{2}}$

- ENC_C = a + b .C dominates total noise, b \propto 1 / τ (integration time) and C electrode capacitance (proportional to size)
- $ENC_{I} = (e/2)V(I_{leak}\tau/e)$ leakage current noise becomes important after irradiation
- $ENC_{Rp} = (e/e) \sqrt{[kT\tau/2R_{p}]}$ (bias resistor)
- $ENC_{Rs} = 0395C \sqrt{(R_s kT/\tau)}$

e euler number, e electron charge

- DC coupling used for small size pixels/mini-strips (small C and I_{leak})
- AC coupling preferred for strips to avoid large I_{leak} (strips have also larger C) Typical noise for Si-sensors today is ~ 100(1000) e⁻ for pixels/strips Choice of S/N threshold is an optimization of hit efficiency versus noise occupancy (bandwidth), a minimum of 1/5 of S is considered acceptable¹⁾²⁾
- 1) In pixels a higher threshold $\simeq 10 \times N$ is needed to contain absolute bandwidth
- 2) Precise timing measurements need higher S/N to reduce noise contribution to resolution

Tracking systems: Si-sensors irradiation effects

Irradiation introduces default in the crystal lattice that reduce signal and/or increase noise

- Mostly displacement of Si-atoms and doping modification (affecting band gap levels) result in:
 - Increased leakage current¹⁾, and therefore noise
 - Modified doping concentration mostly toward p-type, requiring V_d increase
 - Creation of trapping²⁾ centers that captures electrons and holes, reducing Charge Collection Efficiency, the most critical effect at high irradiation level
- Surface damage (SiO₂ layer) that do not affect CCE but can create operation issues
 - Typically solved with design features
- Annealing decrease I_{leak} and allows diffusion of defaults/change of doping but beneficial annealing is followed is by reverse annealing

Operation optimizations

Temperature as low as possible, annealing scenarios during maintenance

Sensor optimizations³⁾

- n-in-p (p-type bulk) collect electrons (less trapping), avoid some micro discharges creating noise
 - ATLAS, CMS and LHCb choice for LHC upgrade
- Thinner sensors (deep signal is not collected), reduce V_{bias} and I_{leak} and allow higher electric field
- Material and fabrication process details are important
- 1) I_{leak} varies exponentially with Temperature x 2 every 7°, hence operation at low temperature for noise and also to avoid thermal runaway
- 2) Trapping is characterized by collection time \rightarrow prefer electron collection (faster), and higher electric field
- 3) Non-Ionization Energy Loss concept do not fully apply at highest irradiation, requiring thorough testing with all particles (n,p,γ)

Tracking systems: Si-sensors Outer Tracker S/N (depleted case)

In Si-sensors with full depletion, charge collection efficiency before irradiation is $\simeq 100\%$

- Ex. 200 μ m thickness: max probability(average) charge¹⁾ number is \simeq 14000(21200) e⁻
- This allows comfortable S/N, typically \geq 15 for all type of designs²)

Example of CMS at HL-LHC n-in-p sensors after irradiation

• S/N remains comfortable at 12 with sufficient margin, sensor specification to sustain 800 V to provide further margin, but would approach thermal runaway limit

- 1) For S/N seed strip signal (after charge sharing) needs to be considered
- 2) S/N referring to the collected charge assumes that the preamplifier-shaper integrate all the charge

Tracking systems: Si-sensors Inner Tracker S/N (depleted case)

CMS pixels 1st (2nd) layers are exposed to 2(0.5) 10¹⁶ 1 MeV neq/cm² for HL-LHC 3000 fb⁻¹

• Efficiencies measured for S/N threshold (RD53) = 1200 (10⁻⁶ noise occupancy \simeq 1% of hits in layer 4)

100 @8000 Lin efficiency [%] 98 7000 N 96 - Epi 100 μm andau la 6000 2000 2000 CMS planar pixel sensors ongoing 94 - MCz 200 μm RD53A I $0 n_{eq}/cm^2$ 92 tests: 2nd layer can sustain 3000 fb⁻¹ $1 \cdot 10^{15} n_{ea}/cm^2$ 4000 90 at 600 V 1.5 · 10¹⁵ n_m/cm² 3000 88 3 · 10¹⁵ n_{eg}/cm² 2000 86 509 default, 34°, 5.2.10¹⁵ n_{pc}/cm² $1.3 \cdot 10^{16} \, n_{er}/cm^2$ 521 bias dot, 18°, 5.3.10¹⁵ n_{ka}/cm 84 1000 512 bias dot, 34°, 2.7·10¹⁵ n_{es}/cm 82 511 bias dot. 30°. 6.6.10¹⁵ n_{pc}/cm 0 200 400 600 800 1000 Bias [V] 80 Ó 100 200 300 400 500 600 700 800 sensor bias [V] 3D CNM, 50x50 µm² 1E, d=230 µm Efficiency 3D pixel sensors ongoing tests 10^{16} neg/cm² 0.95 0.98 507 ± 21. 413 5 + 1 0.96 with RD53 chip: 0.85 0.94 3D Irradiated Modules 1st layer in CMS¹⁾ should sustain 0.8 0.92 130um active thickness $[\Phi] = 10^{11}$ 6400 e⁻ 0.75E 25um x 100u 0.9 .0 ke . 15 at least ½ of 3000 fb⁻¹ with full 0.7 50um x 50um 0.88 0.86 0.65 efficiency at 150 0.84 0.6 0.82 0.55 ATLAS CMS 10 12 14 16 18 20 0.8 0.5 120 140 120 140 charge (electrons) V bias [V] Voltage [V]

1) 1st layer in CMS is closer to the beam line than in ATLAS with about 1.6 x more fluence

Silicon trackers state of the art: LHCb vertex (pixel) detector

LHCb VELO upgrade for installation during 2020

- 12 disks of 4 modules, inner radius \simeq 4.5 mm
- Planar n-in-p sensors fully depleted up to $\simeq kV$
- 200 μ m thick, 55 x 55 μ m² pixels, \simeq 10 μ m hit resolution
- 120 x 120 μm² micro cooling-channel etched in sensor substrate
 - $\simeq 1.5\% \text{ X/X}_0 \text{ per disk}$
- Radiation tolerance $\simeq 10^{15}$ 1 MeV neq/cm² (T $\simeq -20^{\circ}$)

Silicon trackers state of the art: ALICE ITS2 (installation 2020)

Monolithic Active Pixels (MAPs): CMOS standard process with readout grown on Si-sensors lightest and most precise designs, relatively slow readout and low radiation tolerance

- 7 layers of MAPs $\simeq 10~m^2$ with 12.5 Gpix up to η = 1.3
 - 3 inner layer each 0.35% X/X_0 from 22 to 40 mm
 - 4 outer layers of $1\% X/X_0$ up to 400 mm
- Installation in 2020
 - Sensors CMOS TowerJazz 180 nm technology (no depletion :
 - Epitaxial 50 μ m thick, pixels, 29 x 27 μ m², \simeq 5 μ m resolution
 - Binary zero suppressed readout 100 kHz, \simeq 5 μ s integration time
 - Radiation tolerance $\simeq 2 \times 10^{13}$ neq/cm² and $\simeq 3$ Mrad

Silicon trackers state of the art: BELLE-II pixel detector

Monolithic Active Pixels (MAPs) in depFET technology

- Pixel detector¹: 2 layers at 1.4 cm and 2.2 cm, 0.03 m²
 - Thickness $\simeq 75 \ \mu\text{m}$, pixels $\simeq 50 \ \text{x} \ 50/85 \ \mu\text{m}^2$, $\sigma(\text{hit}) \simeq 15 \ \mu\text{m}$ resolution $\simeq 0.2\% \ X_0/\text{layer}$
 - Binary readout continuous row by row, 20 µs integration time
 - Radiation tolerance $\simeq 10^{13}$ neq/cm² and $\simeq 10$ Mrad

Silicon sensors: R&D goals

An ideal detector would be monolithic with high:

hit and time precision, speed and rate capability, radiation tolerance; and low cost

- Improve hit precision $\rightarrow e^+-e^-$ colliders
 - Smaller pitch and thickness: deeper sub-micron technology
 - Improve charge sharing: new design ex. ELAD
- Improve radiation tolerance \rightarrow h-h colliders
 - Smaller pitch and thickness, deeper sub-micron technology
 - Planar, 3D to maintain high field and small electron path
 - Work on material and fabrication process to reduce damages
- Improve integration of electronics \rightarrow e⁺-e⁻ colliders, h-h colliders
 - Monolithic, new connection scheme to electrodes, ASICs interconnection
- Improve cost \rightarrow e⁺-e⁻ colliders, h-h colliders
 - Develop process as close as possible to standards used in microelectronics and imaging industries

Silicon sensors: R&D examples¹⁾

1) Design of sensors particularly for field configurations is supported by simulation tools ex. TCAD, it can be interfaced with GEANT to assess signal fluctuation effects, ex CLIC studies

Silicon sensors: R&D demonstrators (not exhaustive)

Connection to high rate capability ASIC planar and CMOS

CMOS modified process for radiation tolerance Planar/3D finer pitch for resolution faster and higher rate readout Smaller pitch and Sol process Capacitive Coupling (PD) of Modified HV-CMOS Modified HR-CMOS depletion (6V) thinner planar and 3D Si/ASIC wafers connected HV CMOS design to ASIC depletion (< 100 V) pixels bump bonded through Insulator Oxyde layer through insulating glue with faster and higher rate readout capabilities collection front-end Substrate NMO electrode contact pwell nwe nwell digital par deep nwell collection electro low dose n-type implant BOX (insul depletion boundary PMOS n-well depleted zone pixel detector depleted zone deep n-well p⁻ epitaxial lave -10um - depleted volume CCPDv3 p-substrate particl CCPD C3DF CLICPix¹ ALICE PS CLICTD investigator M2 64 × 64 THE PROPERTY OF LASPix²⁾ M3 64 × 64

Demonstrators $\simeq 2 \times 2 \text{ cm}^2$

Sinergy with 1) CERN MEDIPIX, 2) Mu3e experiment

Silicon sensors: R&D demonstrators (not exhaustive)

Silicon sensor R&D	Hybrid	Sol		CMOS Monolthitic				CCPD
Demonstrator	CLICpix	Cracov	CLIPS (CLIC)	ALICE investigator	CLICTD*	Malta/Monopix	ATLASpix(Mu3ePix)	C3DP+CLICpix
Sensor	planar	planar	planar	HR-CMOS standard	HR-CMOS mo	odified process	HV-CN	IOS
Connection to readout electronics	bump bonding	Sol	Sol	momolithic	monolthitic	monolithic	monolitic	CC with glue
ASIC technology (nm)	65	200	200	180(TJ)	180 (TJ)	180(TJ)/150(LF)	180(AMS)/150(LF)	65
Thickness (μm)	50 / 200	300 / 500	100 / 500	50	50 / 100	100	60	50
Pitch/cell size (μm x μm)	25 x 25	30 x 30	20 x 20	28 x 28	30 x 300	36 x 36	40 x 130	25 x 25
Hit resolution (µm)	9/3	5/2		5		4	13	6
Time resolution (ns)	7			6		< 10	7	7
Max NIEL (1 MeV neg/cm2)/TID (Mrad)	O(10 ¹⁶)/Grad			O(10 ¹³)/300			O(10 ¹⁵)/100	

* In production

Silicon sensors: R&D demonstrators outcome and outlook

- CMOS MAPs suitable for outer trackers and close to fulfil needs for ee- collider vertex detectors
 - 3 μ m hit resolution likely needs < 25 x 25 μ m² pixels (charge sharing¹) too small with 50 μ m thickness)
 - $\simeq 200 \text{ MHz/cm}^2$ hit rate capability and $\simeq 5 \text{ ns}$ time precision (CLIC requirement achieved)
 - However CLIC inner pixel layer hit rate requires 6 GHz/cm²
 - Enlarged sensor size 15 x 15 cm² with stitching process is being investigated
- New ASIC connection techniques still at early stage, bump-bonding difficult with smallest pixels
- O(100) better radiation tolerance achieved in HR/HV CMOS modified process 2 x 10¹⁵ neq/cm²
 - Still marginally at the level of requirement for an outer tracker FCC-hh/SppC layer

Deeper sub-micron technologies 65 nm or less can improve in all aspects

- Ex. ALICE ITS3 upgrade proposal: CMOS MAPs in 65 nm technology, 10 x 10 μm^2 pixels, \simeq 20 μm thick sensors for 0.05% X_0

FCC-hh/SppC remains a challenge for hit rate and radiation tolerance

• Also alternative material R&D for radiation tolerance, ex. pCVD diamond CERN RD42

1) Some design studies (ELAD) with implants in depth of sensors to control charge sharing through E-field configuration

40

Topics not addressed in this section

- Other tracking technologies
 - TPC, MPGDs in Gas detector section
 - Scintillating devices in calorimeter section
- Si-sensors for other purpose
 - Pad-sensors for High Granularity Calorimeters in calorimetry section
 - Exploitation of precision timing with regular sensors¹⁾
 - LGAD technology for precision timing in MIP Timing Detector section
- Other silicon technologies used for photodetection
 - APDs, HPDs, SiPMs, in calorimetry section

 Regular silicon sensors could provide ultimate timing precision of ≥ 70 ps at S/N ≥ 10 NA62 vertex detector achieve ~ 115 ps precision
 https://indico.cern.ch/event/577856/contributions/3420172/attachments/1878363/3093866/eps2019_na62_kleimen ova.pdf

Topics not addressed in this section: LHCb scintillating Fiber Tracker

3 stations, each 2.5% X/X0 - 4 plans (X-U-V-X) with ± 5° stereo angle - 50-75 μm resolution

- 3 M fibers Φ 250 μm x 2.5 m (10 000 km)
 - 3 Mrad in inner region
 - High precision assembly of fiber mats

- Readout with 128 SiPM array 250 µm pitch
 - 40°C cooling to sustain 1.2·10¹² neq. /cm2

Additional information

Charged particle interaction in matter: parameters

Symbol	Definition	Units or Value		
α	Fine structure constant	1/137.035 999 11(46)		
	$(e^2/4\pi\epsilon_0\hbar c)$,		
M	Incident particle mass	MeV/c^2		
E	Incident part. energy γMc^2	MeV		
T	Kinetic energy	MeV		
$m_e c^2$	Electron mass $\times c^2$	0.510 998 918(44) MeV		
r_e	Classical electron radius	2.817 940 325(28) fm		
	$e^2/4\pi\epsilon_0 m_e c^2$			
N_A	Avogadro's number	$6.0221415(10) \times 10^{23} \text{ mol}^{-1}$		
ze	Charge of incident particle			
Z	Atomic number of absorber			
A	Atomic mass of absorber	g mol ⁻¹		
K/A	$4\pi N_A r_e^2 m_e c^2 / A$	$0.307075 \text{ MeV g}^{-1} \text{ cm}^2$		
		for $A = 1 \text{ g mol}^{-1}$		
Ι	Mean excitation energy	eV (Nota bene!)		
$\delta(\beta\gamma)$	Density effect correction to ic	onization energy loss		
$\hbar \omega_p$	Plasma energy	$\sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$		
	$(\sqrt{4\pi N_e r_e^3} m_e c^2 / \alpha)$	$(\rho \text{ in g cm}^{-3})$		
N_e	Electron density	$(units of r_e)^{-3}$		
w_{j}	Weight fraction of the j th ele	ement in a compound or mixture		
n_j	\propto number of <i>j</i> th kind of ator	ns in a compound or mixture		
_	$4\alpha r_e^2 N_A / A$ (716.408)	$(g \text{ cm}^{-2})^{-1}$ for $A = 1 \text{ g mol}^{-1}$		
X_0	Radiation length	$\rm g~cm^{-2}$		
E_c	Critical energy for electrons	MeV		
$E_{\mu c}$	Critical energy for muons	GeV		
E_s	Scale energy $\sqrt{4\pi/\alpha} m_e c^2$	21.2052 MeV		
R_M	Molière radius	$\rm g~cm^{-2}$		

Charged particle interaction in matter: Bethe-Bloch terms

$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot [\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} + \frac{C}{2} - \frac{$$

 Table 1: Bethe–Bloche formula terms

$\frac{\mathrm{d}E}{\mathrm{d}x}$	Average energy loss in unit of MeV g^{-1} cm ²
$K = 4\pi N_{\rm A} r_{\rm e}^2 m_{\rm e} c^2 = 0.307 { m MeV}{ m g}^{-1}{ m cm}^2$	
$W_{\rm max} = 2m e^{c^2 \beta^2 \gamma^2} / (1 + 2\gamma m_{\rm e}/M + (m_{\rm e}/M)^2)$	Maximum energy transfer in a single collision
z	Charge of the incident particle
M	Mass of the incident particle
Z	Charge number of the medium
A	Atomic mass of the medium
Ι	Mean excitation energy of the medium
δ	Density correction
	(transverse extension of the electric field)
$N_{\rm A} = 6.022 \times 10^{23}$	Avogadro's number
$r_{ m e}=e^2/4\pi\epsilon_0m_{ m e}c^2$ = 2.8 fm	Classical electron radius
$m_{\rm e} = 511 \; {\rm keV}$	Electron mass
$\beta = v/c$	Velocity
$\gamma = (1 - \beta^2)^{-1/2}$	Lorenz factor

Charged particle interaction in matter: particle energies

Energy Range	Sources of Radiation
eV	visible light, secondary electrons, thermal neutrons
keV	X-rays, electrons from radioactive β decay
MeV	α particles, photons from excited nuclei, acceleration with cyclotrons, solar neutrinos
GeV	air showers from cosmic rays, acceleration with synchrotrons
TeV	high-energy accelerators (e.g. LHC) TeV gamma rays from galaxy
> TeV	cosmic accelerators: quasars, super-massive black holes, supernova remnants,