AGN feedback effects on the 1D power spectrum from Ly- α forests

Solène Chabanier, Frédéric Bournaud, Nathalie Palanque-Delabrouille

eBOSS/DESI meeting, CEA-Saclay May, 7th 2019

e Chabanier | eBCSS meeting, May 2019

1- Motivations

Galactic feedback is known to

- Be responsible for the quenching of galaxies and their observed morphological diversity
- Modify the density profiles of haloes
- Modify the distribution of matter at cosmological scales
- Affect the properties of DLAs
- Modify the transmitted flux statistics of the Ly- α forests

Transmitted flux power spectrum

Viel et al. 2012

2- The HorizonAGN simulation

- Cosmological hydrodynamical simulation run with the Adaptative Mesh Refinement code RAMSES
- Run to z = 1.2 using 4 million CPU hours
- $L_{box} = 100h^{-1}Mpc$ with WMAP-7 cosmology
- cell size = 1 to 100 kpc
- Heating from a uniform UV background with $z_{reio} = 10$ H and He cooling down to T=10⁴K, below adiabatic cooling only
- Stellar formation and stellar feedback
- AGN feedback implemented with subgrid model
- Companion simulation without AGN feedback: HnoAGN

2- The HorizonAGN simulation

<u>AGN feedback modes</u>

	QSO mode	Radio mode
Period of activity	High accretion rate	Low accretion rate
Energy injection	Isotropic injection of thermal energy	Bipolar outflows, injection of kinetic energy
Radius of energy deposition r_{AGN}	Δx	Δx
Energy deposition rate	$\Delta E_{IGM} = \varepsilon_F L_r = \varepsilon_F \varepsilon_r \dot{M}_{BH} c^2$	$\Delta E_{IGM} = \varepsilon_F L_r = \varepsilon_F \varepsilon_r \dot{M}_{BH} c^2$
	ε _F =0.15	ε_F =1

 L_r : radiated energy ε_F : fraction of radiated energy tuned to match the observations ε_r : radiative efficiency, fixed to 0.1 \dot{M}_{BH} : accretion rate

 $\longrightarrow \varepsilon_F \times \varepsilon_r$ is the fraction of the *total* energy transferred to the IGM

3- The Ly- α forest in HorizonAGN

Z= 2.0

Solène Chabanier | eBOSS meeting, May 2019

- Decrease of power on large scales
- Effect increases with decreasing redshift

- Why do we observe a decrease of power on large scales with P_{Lya} ?
 - Feedback efficiently heats the gas.
 - On small scales: dense gas cools down easily
 - On large scales: low density IGM stays hot

 \rightarrow with feedback gas is more ionized on large scales, hence less power in P_{Lya}

HAGN

- Why do we observe a decrease of power on large scales with P_{Lva} ?
 - Feedback efficiently heats the gas.
 - On small scales: dense gas cools down easily
 - On large scales: low density IGM stays hot
 - \rightarrow with feedback gas is more ionized on large scales, hence less power in P_{Lva}
 - Feedbacks redistribute HI to large scales Feedbacks heat hence ionize

Heating switched off

- 4 re-runs from z = 7.0
- Resulting M_{BH} = f(M_{stars}), SFR have to be within 3 σ of the observations

	Modified parameter	Running time	
HAGN_2Dx	$r_{AGN} = 2 * \Delta x$	3 millions CPU hours	
HAGN_05Dx	$r_{AGN} = 0.5 * \Delta x$	3.5 millions CPU hours	
HAGN_033e	ε_F =0.33* $\varepsilon_{F,init}$	2millions CPU hours	$\Delta E_{IGM} = \varepsilon_F L_r$ ε_F : fraction of radiated energy
HAGN_3e	$\varepsilon_F = 3^* \varepsilon_{F,init}$	/	L_r : radiated energy

<u>Radius of energy deposition r_{AGN}</u>

Only modifies the radius, the amount of injected energy is conserved

HAGN_2Dx

Radius of energy deposition r_{AGN}

Feedback efficiency: HAGN 05Dx > HAGN > HAGN 2Dx

The more r_{AGN} is high, the less energy per unit volume is deposited, hence the energy is injected to larger scales but is not able to efficiently heat the gas (not more than 10^6 , 10^7 K)

HAGN_05Dx

gas cools down more easily, and is less ionized for high r_{AGN}

Temperature map on a 25 $h^{-1}Mpc$ cube at z=2.3

1.	97e+04	4.31e+04	9.03e+04	1.84e+05	3.72e+05	7.45e+05	1.49e+06	2.99e+06	5.95e+06	
Solène Chabanier LeBOSS meeting, May 2019									12	

• Efficiency ε_F

HAGN

Temperature map

on a 10 $h^{-1}Mpc$

cube at z=2.5

HAGN_033e

6- Summary

- AGN feedbacks modify the P_{Lya} by efficiently heating the low density regions on large scales
- P_{Lya} is very dependent on the radius of energy deposition r_{AGN}
- Decreasing the efficiency parameter has very little effect on PLya

- Work in progress:
 - Increase the efficiency parameter
 - Modify the UV background
 - Switch off SN feedback