Measuring the BAO peak using Ly α 3d auto and cross correlation functions (DR14)

Victoria de Sainte Agathe

LPNHE - Paris

May 7, 2019

- Lyα absorption auto-correlation function : de Sainte Agathe et al., 2019 https://arxiv.org/abs/1904.03400
- Lyα absorption QSO cross-correlation function : Blomqvist et al., 2019 https://arxiv.org/abs/1904.03430

picca software

Grow your tea GilHub is home to over 36 million developers development teams, manage permik Sign	working together. Join them to ssions, and collaborate on proj		
Find a repository Type: All • Language: All •			
picca set of tools for continuum fitting, correlation function calculation, cosmological fits cosmotogy astrophysics lyman-aipha bao	himme	Top languages Python C++ Jupyter Notebook Shell CSS	
Python 🗰 5 😵 2 🚭 GPL-3.0 Updated 3 days ago		Most used topics astrophysics bao cosmology	

Adding the Ly β region

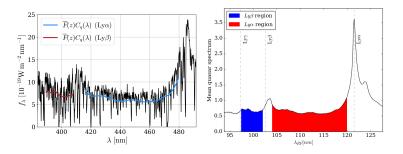


Figure: Ly α and Ly β regions in the quasar spectrum.

- Auto : $Ly\alpha(Ly\alpha) \times Ly\alpha(Ly\alpha)$ and $Ly\alpha(Ly\alpha) \times Ly\alpha(Ly\beta)$
- Cross : QSO×Ly α (Ly α +Ly β)

 \rightarrow We extend by 9% the number of absorptions

PNHE

Auto : the position of the BAO peak is not model dependant

α_{\parallel} controls the position of the BAO peak along the LOS α_{\perp} controls the position of the peak transversally to the LOS

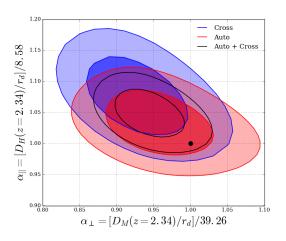
Table 6. Best fit values of $(\alpha_{\parallel}, \alpha_{\perp})$ for the $Ly\alpha(Ly\alpha) \times Ly\alpha(Ly\alpha+Ly\beta)$ correlation function fit with various models. The first group includes physical models starting with the basic Kaiser redshift-space model and then including, progressively, metals, HCD, and UV corrections. Fits in the second group include polynomial broadband terms, as described in the text.

Models	α_{\parallel}	α_{\perp}	χ^2/DOF	Probability
Kaiser	1.021 ± 0.028	0.977 ± 0.040	3624.74/(3180-4)	3.46×10^{-8}
+Metals	1.025 ± 0.032	0.979 ± 0.044	3607.96/(3180-9)	7.14×10^{-8}
+HCD (baseline)	1.033 ± 0.031	0.953 ± 0.042	3258.92/(3180-12)	0.127
+UV	1.033 ± 0.031	0.953 ± 0.042	3258.84/(3180-13)	0.125
BB				
Physical priors on $(b_{Lya}, \beta_{Lya}, b_{HCD})$	1.037 ± 0.028	0.972 ± 0.040	3006.25/(3030-36)	0.434
No additional priors	1.032 ± 0.027	0.980 ± 0.039	3001.00/(3030-36)	0.460

 \rightarrow We have tried many different models and the $(\alpha_{\parallel}, \alpha_{\perp})$ are stable

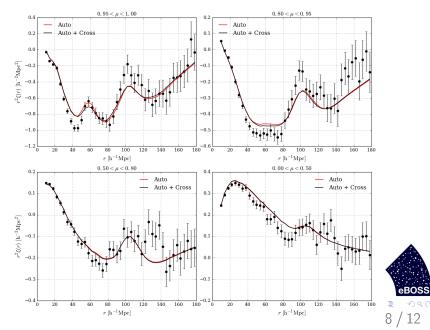
イロト 不得下 イヨト イヨト

Cross : the position of the BAO peak is not model dependant

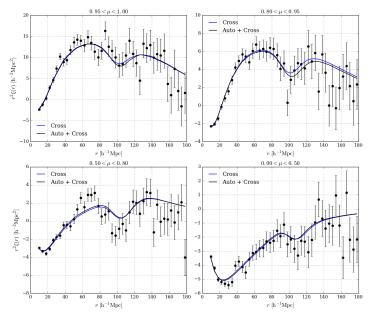

Table A.1. Results of non-standard fits. The first group presents results of successively adding complications from physical effects to the basic $Ly\alpha$ -only model. These complications are: metals, absorption by high-column density systems, the transverse proximity effect, and the relativistic dipole, corresponding to the standard fit from column 1 of Table 5. The second group presents fits which include fluctuations of the UV background radiation, the odd multipoles $\ell = (1, 3)$ or the broadband function (for this group we set $\xi^{0HCD} = 0$). The last group presents fits for non-standard data samples: no absorption in the $Ly\beta$ region or no correction of DLAs in the spectra. The fit is over the range $10 < r < 180 h^{-1}$ Mpc. Errors correspond to $\Delta\chi^2 = 1$.

Analysis	$lpha_{\parallel}$	α_{\perp}	β_{α}	$b_{\eta \alpha}$	$\chi^2_{\rm min}/DOF$, probability
Lyα	1.073 ± 0.041	0.925 ± 0.045	2.75 ± 0.21	-0.285 ± 0.012	3268.55/(3180 - 6), p = 0.12
+ metals	1.074 ± 0.041	0.921 ± 0.045	2.76 ± 0.22	-0.281 ± 0.012	3239.52/(3180 - 10), p = 0.19
+ HCD	1.074 ± 0.041	0.921 ± 0.045	2.76 ± 0.22	-0.281 ± 0.017	3239.52/(3180 - 12), p = 0.18
+ TP	1.075 ± 0.040	0.923 ± 0.043	2.31 ± 0.30	-0.269 ± 0.014	3236.62/(3180 - 13), p = 0.19
+ rel1	1.076 ± 0.040	0.923 ± 0.043	2.28 ± 0.31	-0.267 ± 0.014	3231.61/(3180 - 14), p = 0.20
UV	1.077 ± 0.040	0.923 ± 0.043	2.34 ± 0.32	-0.274 ± 0.020	3231.30/(3180 - 13), p = 0.21
odd-l	1.074 ± 0.040	0.927 ± 0.045	2.33 ± 0.32	-0.267 ± 0.014	3223.25/(3180 - 16), p = 0.23
BB (0,2,0,6)	1.083 ± 0.039	0.921 ± 0.043	2.53 ± 0.46	-0.280 ± 0.022	3223.75/(3180 - 24), p = 0.20
no Ly β keep DLAs	$\begin{array}{c} 1.084 \pm 0.040 \\ 1.071 \pm 0.042 \end{array}$	$\begin{array}{c} 0.921 \pm 0.042 \\ 0.929 \pm 0.049 \end{array}$	$\begin{array}{c} 2.33 \pm 0.32 \\ 2.08 \pm 0.27 \end{array}$	$\begin{array}{c} -0.272 \pm 0.014 \\ -0.279 \pm 0.016 \end{array}$	3231.05/(3180 - 14), p = 0.21 3217.64/(3180 - 14), p = 0.26

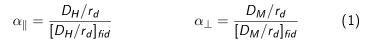
 $\longrightarrow \text{We have tried many different models and the } \begin{pmatrix} \mathsf{LPNHE} \\ \alpha_{\parallel}, \alpha_{\perp} \end{pmatrix} \text{ are stable}$

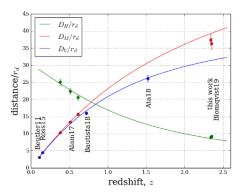

Combining fit using both auto and cross correlation functions

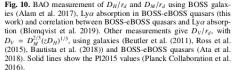
Parameter	Ly α -quasar	Ly α -Ly α	combined
α_{\parallel}	1.076 ± 0.042	1.033 ± 0.034	1.049 ± 0.026
$\alpha_{\perp}^{"}$	0.923 ± 0.046	0.953 ± 0.048	0.942 ± 0.031



The Ly α auto-correlation function



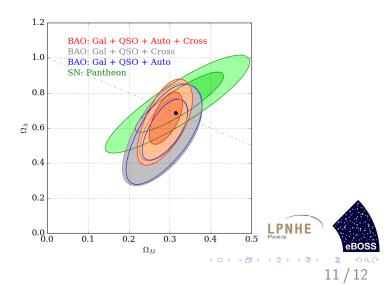

The QSO×Ly α cross-correlation function



Constraining Ω_M, Ω_Λ parameters

12

10


LPNHE

PARIS

Constraining Ω_M, Ω_Λ parameters

 \longrightarrow combined with galaxies and quasars BAO measurements gives :

 $\Omega_M = 0.293 \pm 0.027 \qquad \Omega_{\Lambda} = 0.675 \pm 0.099 \tag{2}$

Conclusion

► The ensemble of BAO measurements is in good agreement with the CMB-inspired flat ∧CDM model. By themselves, the BAO data provide a good confirmation of this model.

 The BAO measurements presented here will be improved by DESI by increasing the number of quasars and improving the spectral resolution.

