Probing Large Scale UV Background Inhomogeneities with Metal Absorption

Sean Morrison¹ Mat Pieri,¹ David Syphers,² Debopam Som,³ Ignasi Pérez-Ràfols,¹ & Tae-Sun Kim⁴

¹Laboratoire d'Astrophysique de Marseille, Université d'Aix-Marseille, ²Eastern Washington University, ³Ohio State University, ⁴University of Wisconsin-Madison

The 5th Joint Meeting of eBOSS-DESI France

Overview

Inhomogeneities in the UV Background

- Introduction: Inhomogeneities in the UV Background
- η: The Opacity Ratio of He II to H I
- Measuring η
- Measuring Metals in the IGM
- Techniques
- Evolution of the UV Background
- Summary

2 Inhomogeneities Associated with Observed Quasar Positions

- Methodology
- Preliminary Results
- Summary

UV Background Shape & Intensity

- component to an understanding:
 - star formation
 - AGN activity
 - reionization
 - Quasar population
 - galaxy population
- Impacts Ly-α forest cosmological constraints
- Traced using various ionization species
 - O VI most sensitive metal species for a probe of these effects

Quasar/Transverse Proximity Effects

Aix*Marseille

QSO Absorption Sightlines

η : The Ratio of HeII to HI

- $\eta = \frac{N_{\rm He\,II}}{N_{\rm H\,I}} \approx \frac{4\tau_{\rm He\,II}}{\tau_{\rm H\,I}}$
 - Density independent
 - Large η : soft radiation
 - Small η : hard radiation
 - η sensitive on

Mpc scales to the locations of transverse quasars smaller scales to thermal broadening, galactic outflows, and proximity to local galaxies

Aix*Marseille

Measuring η on Large Scales

- Measuring He Ly- α to H Ly- α (η) ratio filtered on \geq 2 Mpc scales.
- Data from Hubble COS (He) and UVES/HIRES (H)

Measuring Metals in the IGM

- Pixel Optical Depth Techniques (Songaila et al. 1995; Schaye et al. 2003)
- A example (simulated) Ly-α forest in a quasar spectrum with an OVI forest (5 times ionized oxygen)

Probing Large Scale UVB Inhomogeneities eBC

Aix^{*}Marseille

Measuring Metals in the IGM

• Pixel Optical Depth Techniques (Songaila et al. 1995; Schaye et al. 2003)

Aix^{*}Marseille

 A example (simulated) Ly-α forest in a quasar spectrum with an OVI forest (5 times ionized oxygen)

Measuring Metals in the IGM

- Pixel Optical Depth Techniques (Songaila et al. 1995; Schaye et al. 2003)
- A example (simulated) Ly-α forest in a quasar spectrum with an OVI forest (5 times ionized oxygen)

Sean Morrison (LAM)

Probing Large Scale UVB Inhomogeneities eB

Aix^{*}Marseille

Soft/Hard Split as a Function of Scale: $O\,{\rm VI}$

Comparison of Lines-of-Sight (Matched *z*)

Aix*Marseille

- UV background inhomogeneities on $\gtrsim 200$ cMpc scales with
 - hard UV regions with internal ionization structure on \sim 10 cMpc
 - soft UV regions showing no such structure
- HE 2347-4342 He II Gunn-Peterson trough is consistent with post-HeII-reionization conditions

Overview

Inhomogeneities in the UV Background

- Introduction: Inhomogeneities in the UV Background
- η: The Opacity Ratio of He II to H I
- Measuring η
- Measuring Metals in the IGM
- Techniques
- Evolution of the UV Background
- Summary

2 Inhomogeneities Associated with Observed Quasar Positions

- Methodology
- Preliminary Results
- Summary

Inhomogeneities Associated with Quasar Positions

- Take advantage of the statistics and increasing completeness of Quasar samples
- Utilize the absorber frame stacking method,¹ splitting on QSO Proximity
- Utilize all 5 bins: $-0.05 \leq F(Ly-\alpha) \leq 0.45$
 - Not just interested in CGM
- Utilizing SDSS DR12 Ly- α absorbers², with DR14 QSO locations
- Using high-ionization lines detected in all 5 bins
 - O VI, C IV, Si IV, & Si III V CHI SI IV SI HI ALHI CHI ALHI SI H Fell Mg H O I 05, 0.050

¹See Mat Pieri's Talk for details on this method

²As in Pieri et al. (2014)

Sean Morrison (LAM)

Probing Large Scale UVB Inhomogeneities

[0.050, 0.150]

2 %

Pieri et al. (2014)

Preliminary Results: Closest QSO Proximity

Sean Morrison (LAM) Probing Large Scale UVB Inhomogeneities eBOSS-DESI France meeting 16/17

Preliminary Results: Closest QSO Proximity

Sean Morrison (LAM)

Aix*Marseille

Sean Morrison (LAM)

Aix*Marseille Preliminary Results: Closest QSO Proximity

Sean Morrison (LAM)

Summary

Motivation:

- UV Background inhomogeneities effect:
 - the Ly- α Forest (BAO and small scale)
 - the contaminating metals

Status:

- Begun measuring the large-scale inhomogeneity of metals
- Tentative detection of the large scale sensitivity to guasar proximity

Extra Slides

Null Soft/Hard Splits: O VI

Aix*Marseille

Number of Absorbers with QSO

Extra Slides

Aix*Marseille

Preliminary Results: Closest QSO Proximity

Extra Slides

Preliminary Results: Closest QSO Proximity

References

- Agafonova I. I., Levshakov S. A., Reimers D., Fechner C., Tytler D., Simcoe R. A., Songaila A., 2007, A&A, 461, 893
- Pieri M. M., Haehnelt M. G., 2004, MNRAS, 347, 985
- Pieri M. M., et al., 2014, MNRAS, 441, 1718
- Schaye J., Aguirre A., Kim T.-S., Theuns T., Rauch M., Sargent W. L. W., 2003, ApJ, 596, 768
- Songaila A., Hu E. M., Cowie L. L., 1995, Nature, 375, 124