

BACK-UP

General top quark features

Why heavy (quarks) at multi-purpose colliders? (I)

"Special" reasons

top \& b are the most massive known quarks

largest (unmeasured)

 coupling y_{t} to Higgs boson```
New W mass by
ATLAS
mw = 80370 \pm 7
(stat) }\pm11(\operatorname{exp
syst) }\pm14(mo
sys) MeV=
80370 \pm 19 MeV
7 \text { TeV pp-}
collision data
```

Tevatron indirect
W mass
$\mathrm{m}_{\mathrm{w}}=80351 \pm 15$
(stat) $\pm 10$ (syst) $=$
$80351 \pm 18 \mathrm{MeV}$
using 1.9 TeV p-
antip collision

## top quark production

$$
\begin{aligned}
& \text { The Standard Model } \\
& \text { The Standard Model } \\
& \phi=\frac{1}{\sqrt{2}}\binom{0}{v+\mathbf{H}}\left[\begin{array}{l}
\mathcal{L}=-\frac{1}{h} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \phi \psi+h \cdot c . \\
+{D_{\mu} \phi l^{2}}^{2} V(\phi)+\bar{\psi}_{i} y_{i j} \psi_{i} \phi+h . c .
\end{array}\right. \\
& \mathbf{H}=\text { figs particle } \\
& L_{w} \sim g^{2}(V+H)^{2} W^{+}{ }_{\mu} W^{-\mu} \\
& L_{f}=m_{f} f_{L}{ }^{-} f_{R} .+y_{f} H f_{L} f_{R}{ }^{-} / \sqrt{2}+\text { hic. }
\end{aligned}
$$

$$
\begin{aligned}
& M_{W}=\frac{1}{2} g_{2} v=\left(\frac{\sqrt{2} g^{2}}{8 G_{\mu}}\right)^{1 / 2} \\
& \text { mass term interaction term } \\
& m_{f}=y_{f} v / \sqrt{2} \\
& v=\frac{1}{\left(\sqrt{2} G_{\mu}\right)^{1 / 2}} \longrightarrow v \sim 246 \mathrm{GeV} \longrightarrow \\
& \text {----> } \\
& m_{b, 0 b s} \sim 4 \mathrm{GeV} \perp m_{t} \sim 173 \mathrm{GeV}
\end{aligned}
$$

top: largest (unmeasured) coupling $y_{t}$ to Highs boson
replacing values gives $y_{\text {top }}=\sqrt{2} m_{\text {top }} / v \sim \sqrt{2} 173 / 246 \sim 0.99 \quad$ Is $y_{t \sim 1}$ ? Is it SM Highs?

The SM Lagrangian (2019)
The Standard Model: QF theory invariant under $\operatorname{su}(2) \times u(1) \times \operatorname{su}(3)$
observed

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{\hbar} F_{\omega} F^{\mu \nu}+i \bar{\psi} \phi \psi+h \cdot c . \\
& +\left.\phi_{r} \phi\right|^{2}-V(\phi)+\bar{\psi}_{i} y_{i j} \psi_{i} \phi+h \cdot c .
\end{aligned}
$$

Gauge fields are in kinetic terms and co n. derivative $D \mu$

Spontaneous symmetry breaking: the Lagrangian shows the possibility that at a given energy scale, the symmetry of the observed physical states is different from the symmetry of the Lagrangian interactions, by realising one of multiple asymmetric configurations (minimum potential energy state)
spin-1 W\&Z bosons emerge as massive by coupling to H photon remains massless
$L_{w, z} \sim g_{2}{ }^{2}(v+H)^{2} w^{+}{ }_{\mu} w^{-\mu}$ ${ }^{+} g_{2}{ }^{2} / 8 \cos \theta_{W} Z_{\mu} Z^{\mu}$

$$
M_{W}=\frac{1}{2} g_{2} v=\left(\frac{\sqrt{2} g^{2}}{8 G_{\mu}}\right)^{1 / 2} M_{Z} \cos \theta_{W}=M_{W}
$$

$$
v=\frac{1}{\left(\sqrt{2} G_{\mu}\right)^{1 / 2}} \longrightarrow V \sim 246 \mathrm{GeV}
$$

 gauge coupling
spin1/2 fermions (u,c,d,s,b,...)

- negative chirality $\left(F_{L}\right)$ state couple to $W$, $\boldsymbol{Z}$ by covariant derivative
- obtain mass from assuming gauge invariant coupling terms (Yukawa coupling) to $\phi$ : $F_{L} \phi f_{R}=y(v+H) f_{L} f_{R}$ $\mathcal{L}_{Y}=-Y_{i j}^{d} \overline{Q_{L i}^{I}} \phi d_{R j}^{I}-Y_{i j}^{u} \overline{Q_{L i}^{I}} \epsilon \phi^{*} u_{R j}^{I}+$ h.c.
Diagonalise $\underline{Y}$ and replace $\phi$ from SSB

$$
\begin{gathered}
L_{f}=m_{f} f_{L} \bar{f}_{R}+y_{f}+f_{L} \bar{f}_{R} / \sqrt{2}+\text { h.c } \\
\text { fermion-HIggs } \\
m_{f}=y_{f} v / \sqrt{2} \quad
\end{gathered}
$$

## Top production @ LHC: differential growth

(Campbell et al, Rept.Prog.Phys.70:892007)
high multi-TeV
masses ~up to
O(100) $\longrightarrow \xrightarrow{\begin{array}{l}\text { Magano, Rojo, } \\ \text { JHEP }\{1208), 2012: 10\end{array}}$
$\boldsymbol{R}^{\text {th, nnpdf }}=\mathbf{1 4 T e V}$ to 8 TeV xsec ratios

| Cross Section | $R^{\text {th,nnpdf }}$ | $\delta_{\text {PDF }}(\%)$ | $\delta_{\alpha_{s}}(\%)$ | $\delta_{\text {scales }}(\%)$ |
| :---: | :---: | :---: | :---: | :---: |
| $t \bar{t} / Z$ | 2.12 | $\pm 1.3$ | $-0.8-0.8$ | $-0.4-1.1$ |
| $t t$ | 3.90 | $\pm 1.1$ | $-0.5-0.7$ | $-0.4-1.1$ |
| $t \bar{t}\left(M_{t t} \geq 1 \mathrm{TeV}\right)$ | 8.18 | $\pm 2.5$ | $-1.3-1.1$ | $-1.6-2.1$ |
| $t \bar{t}\left(M_{\mathrm{tt}} \geq 2 \mathrm{TeV}\right)$ | 24.9 | $\pm 6.3$ | $-0.0-0.3$ | $-3.0-1.1$ |

- Cross sections in "tails" increase more rapidly than inclusive value


## Top quark predictions@ LHC- the NNLO revolution : single top


$@ \sqrt{ } \mathrm{~s}=8 \mathrm{TeV}$
Phys. Rev. D 94, 071501 (2016)
$V_{l, h, q}=$ three corrections to light quark line, heavy quark line and decay including corrections from two loop, one loop+1 real emission, two real emission

| inclusive [pb] | LO | NLO | NNLO |
| :--- | :---: | :---: | :---: |
| $t$ quark | $143.7_{-10 \%}^{+8.1 \%}$ | $138.0_{-1.7 \%}^{+2.9 \%}$ | $134.3_{-0.5 \%}^{+1.0 \%}$ |
| $\bar{t}$ quark | $85.8_{-10 \%}^{+8.3 \%}$ | $81.8_{-1.6 \%}^{+3.0 \%}$ | $79.3_{-0.6 \%}^{+1.0 \%}$ |

Differential distributions also available @NNLO

$\mathrm{T}_{\text {T,jet }}>40 \mathrm{GeV},\left|\eta_{\text {jet }}\right|<5$ (2.4 for b-jet) рт, lep $>30 \mathrm{GeV}\left|\eta_{\text {lep }}\right|<2.4$

| fiducial [pb] |  | LO | NLO | NNLO |
| :--- | :--- | :---: | :---: | :---: |
| $t$ quark | total | $4.07_{-9.8 \%}^{+7.6 \%}$ | $2.95_{-2.2 \%}^{+4.1 \%}$ | $2.70_{-0.7 \%}^{+1.2 \%}$ |
|  | corr. in pro. |  | -0.79 | -0.24 |
|  | corr. in dec. |  | -0.33 | -0.13 |
| quark | total | $2.45_{-10 \%}^{+7.8 \%}$ | $1.78_{-2.0 \%}^{+3.9 \%}$ | $1.62_{-0.8 \%}^{+1.2 \%}$ |
|  | corr. in pro. |  | -0.46 | -0.15 |
|  | corr. in dec. |  | -0.21 | -0.08 |

stable values reduced uncertainties

## Standard reasons:Extreme test of SM: d $\sigma_{\mathrm{tt}} / \mathbf{d p} \mathbf{p}_{\mathbf{T}}$ "saga"- dilepton $\mathrm{V}=13 \mathrm{TeV}$

- Particle flow $\rightarrow$ individual particles using all CMS subdet $\rightarrow$ Require
- 2 opposite sign $\ell(\mathrm{e}, \mu)$, $\geqq \mathbf{2}$ jets, $\geqq \mathbf{1}$ b-tag
- $\mathbf{m}\left(\ell^{+} \ell^{-}\right)>\mathbf{2 0} \mathbf{G e V}$ and $\neq \mathbf{M z}$ ( 15 GeV window), large $\mathbf{p}_{\mathbf{T}}{ }^{\mathbf{m i s s}}(>40 \mathrm{GeV})$

Bkg: data-driven Z+jets, simulated tW,W/Z jets, other tt

Reconstruct tt system with kinematic reco
two separate $v$ 3-momenta for given assignment = weighted average of 100 smeared repetitions
keep ( $\ell$,jet) assignment with maximum $\Sigma$ weights

- Bkg-subtract \& Unfold to parton and particle level $\rightarrow d \sigma_{t t} / d X$


## Status of Search for observation of 4 top quarks


Sub-Leading: $O\left(a_{s}{ }^{2} y_{t}{ }^{4}\right), O\left(a^{2} a^{2}\right)$

$$
\sigma^{\text {NLO }(t t t t)}=11.97 \mathrm{fb} \text { at NLO QCD + NLO QED } 13 \mathrm{TeV}
$$

| Significance obs. (exp.) [ $\sigma$ ] | ATLAS $36 \mathrm{fb}^{-1}$ | CMS 36 fb-1 | CMS 139 fb-1 |
| :---: | :---: | :---: | :---: |
| SS/ML | 3.0 (0.8) 1 | 1.6 (1.0) $\underline{3}$ | 2.6 (2.7) $\underline{6}$ |
| 1L/OS | 1.0 (0.6) $\underline{2}$ | 0.0 (0.4) 4 | - |
| Combination | 2.8 (1.0) 2 | 1.4 (1.1) 4 | - |

(table and diagrams by Nedaa Alexandra Asbah)

## Standard reasons:Extreme test of SM: d $\sigma_{\mathrm{tt}} / \mathbf{d} \mathbf{p}_{\mathbf{T}}$ "saga"- dilepton $\sqrt{s}=13 \mathrm{TeV} \quad$ JHEP 02 (2019) 149

- Particle flow $\rightarrow$ individual particles using all CMS subdet $\rightarrow$ Require
- 2 opposite sign $\ell(\mathrm{e}, \mu), \geq 2$ jets, $\geqq 1$ b-tag
- $\mathbf{m}\left(\ell^{+} \ell^{-}\right)>\mathbf{2 0} \mathbf{G e V}$ and $\neq \mathbf{M z}$ (15 GeV window), large $\mathbf{p}^{\text {miss }}$ ( $>40 \mathrm{GeV}$ )

Bkg: data-driven $\mathrm{Z}+\mathrm{jets}$, simulated tW,W/Z jets, other tt

Reconstruct tt system with kinematic reco

keep ( $\ell$,jet) assignment with maximum $\Sigma$ weights

- Bkg-subtract \& Unfold to parton and particle level $\rightarrow \mathbf{d} \sigma_{t t} / d X$


## Extreme test of SM: double and triple diffxsec - dilepton+jets

CMS-TOP-18-004, submitted to Eur. Phys J. C

- 13 TeV Dilepton selection as JHEP 02 (2019) 149
- Extra jets: central, high pt jets with $\Delta R(e-j e t, l e p)=\Delta R(e-j e t, b-j e t)>0.4$
- Bkg: data-driven Z+jets, simulated tW,W/Z jets, other tt
- Reconstruct tt system with dilepton kinematic reco
 standard for 2d distributions
loose: for 3d distributions
- $\mathrm{M}_{\mathrm{tt}} \mathrm{vs}\left\{\mathrm{p}_{\mathrm{T}, \mathrm{top}}\left|\mathrm{y}_{\mathrm{top}}\right|\left|\mathrm{y}_{\mathrm{tt}}\right| \Delta \eta(\mathrm{t}, \mathrm{t}), \Delta \varphi(\mathrm{t}, \mathrm{t}), \mathrm{p}_{\mathrm{T}, \mathrm{tt}}\right\}$
- [|ytool, $\left.\mathrm{p}_{\mathrm{T}, \text { top }}\right]$

- assume $\mathbf{p}^{\text {miss }}=\mathbf{2} v+\mathrm{pz}{ }^{\text {miss }}=\mathbf{p}\left(\ell^{+} \boldsymbol{\ell}\right), \mathbf{E}\left(\ell^{+} \boldsymbol{\ell}\right)$, $\mathbf{m}(2 v)>0, \mathbf{m}(W W) \cong 2 \mathbf{M w}$
- keep ( (e,jet) assignment with maximum pt jets
- [ $\left.\mathrm{M}_{\mathrm{tt}}, \mathrm{ytt}, \mathrm{N}_{\text {extra jets }}\right] 2$ bins $(0,1)$ and 3 bins $(0,1,2)$



## Unfolding Foundations

-Unfolding: infer an unknown distribution $f(y)$ for a variable $y$ from the measured distribution $\mathrm{g}(\mathrm{s})$ by using knowledge and/or assumptions on the probability distribution that links the observation to the "true" value.

$$
E[\mathbf{n}]=\boldsymbol{\nu}=R \boldsymbol{\mu}+\beta
$$

$$
g(\mathbf{s})=\int_{\Omega} K(\mathbf{s}, \mathbf{y}) f(\mathbf{y}) d \mathbf{y}+b(\mathbf{s})
$$



## Unfolding

## the Max LKL solution

$$
\begin{gathered}
\mathcal{L}=\prod_{i=1}^{\mathbb{V}} \nu_{i}^{n_{i}} \frac{e^{-\nu_{i}}}{n_{i}!} \\
\partial \log \mathcal{L}\left(\mu_{i}\right) / \partial \mu_{i}=0 \forall i
\end{gathered}
$$

Small changes in input (can) lead to large changes in the ML estimate.
-Regularize = Reduce impact of high frequency while keeping info of high significance, stable components $\rightarrow$ reduction in variance w.r.t. ML estimator

Example $d \sigma_{t t} / d p_{T, t o p(-j e t)} l+j e t s @$ particle level (PL)- $\sqrt{s}=8 \mathrm{TeV}$



## example from ATLAS

- Select opposite sign e $\mu$, minimal use of jet/ $E_{T}{ }^{\text {miss }}$ info
- Bkg: mostly single top (Wt) data-driven fake leptons $Z$ +jets

Simultaneously fit for $\sigma_{t t}$ and $\varepsilon_{b}$ efficiency to select, reconstruct and recognize b-jet in 1-b-tag and $2-\mathrm{b}$-tag samples $\rightarrow$ minimize jet $\& \mathrm{~b}$-tag syst

| from simulation | $\begin{aligned} & N_{1}=\mathcal{L} \sigma_{\sigma_{\mathrm{t}} \epsilon_{e \mu} 2 \epsilon_{b}\left(1-C_{b} \epsilon_{b}\right)+N_{1}^{b k g}}^{N_{2}=\mathcal{L} \sigma_{\mathrm{tt}} \epsilon_{e \mu} C_{b} \epsilon_{b}^{2}+N_{2}^{b k g}} \end{aligned}$ |
| :---: | :---: |

## Extrapolate to particle (called fid) \& parton level

$$
\begin{array}{cc}
\sigma_{t \bar{t}}=818 \pm 8(\text { stat }) \pm 27(\text { syst }) \pm 19(\text { lumi }) \pm 12(\text { beam }) \mathrm{pb} & \delta \sigma_{\mathrm{t} \overline{\mathrm{t}}} / \sigma_{\mathrm{tt}} \sim \mathbf{4 . 4} \% \\
\sigma_{t \bar{t}}^{\text {fid }}=11.32 \pm 0.10(\text { stat }) \pm 0.29(\text { syst }) \pm 0.26 \text { (lumi) } & \delta \sigma_{\mathrm{t} t} / \sigma_{\mathrm{tt}} \sim \mathbf{3 . 9} \\
\text { NNLO+NNL prediction : } 832+40-\mathbf{4 6} \mathrm{pb} &
\end{array}
$$

Table 1：The $\chi^{2}$ values（taking into account data uncertainties and ignoring theoretical uncer－ tainties）and dof of the measured cross sections with respect to the predictions of various MC generators．

| Cross section variables | dof | $\chi^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | ＇POW＋PYT＇ | ＇POW＋HER＇ | ＇MG5＋PYT＇ |
| $\left[y(\mathrm{t}), p_{\mathrm{T}}(\mathrm{t})\right]$ | 15 | 57 | 18 | 35 |
| $[M(\mathrm{t} \overline{\mathrm{t}}, \mathrm{y}(\mathrm{t})]$ | 15 | 26 | 18 | 36 |
| ［M（ $\mathrm{t} \overline{\mathrm{t}}), y(\mathrm{t} \overline{\mathrm{t}})]$ | 15 | 28 | 17 | 23 |
| $[M(\mathrm{t}), \Delta \eta(\mathrm{t}, \overline{\mathrm{t}})]$ | 11 | 66 | 68 | 124 |
| $[M(\mathrm{t} \overline{\mathrm{t}}), \Delta \phi(\mathrm{t}, \overline{\mathrm{t}})]$ | 15 | 14 | 18 | 10 |
| $\left[M(\mathrm{t} \overline{\mathrm{t}}), p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})\right]$ | 15 | 21 | 22 | 29 |
| $\left[M(\bar{t}), p_{T}(\mathrm{t})\right]$ | 15 | 77 | 34 | 68 |
| $\left[N_{\text {jet }}^{0,1+}, M(\mathrm{t} ⿹ ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 \mathrm{t}), y(\mathrm{t} \overline{\mathrm{t}})\right]$ | 23 | 34 | 31 | 34 |
| $\left[N_{\text {jet }}^{0,1,2+}, M(t \bar{t}), y(t \bar{t})\right]$ | 35 | 50 | 66 | 63 |

CMS-TOP-18-004, submitted to Eur.

Phys J. C


Figure 13: The theoretical uncertainties for $\left[N_{\text {jet }}^{0,1+}, M(t \bar{t}), y(t \bar{t})\right]$ (upper) and $\left[N_{\text {jet }}^{0,1,2+}, M(t \bar{t})\right.$, $y(t \bar{t})]$ (lower) cross sections, arising from PDF, $\alpha_{S}\left(m_{\mathrm{Z}}\right)$, and $m_{\mathrm{t}}^{\text {pole }}$ variations, as well as the total theoretical uncertainties, with their bin-averaged values shown in brackets. The bins are the same as in Figs. 10 and 11.

# 1 <br> Extreme test of SM: Double differential cross section @13 TeV "Multiply" number of new regions! <br> N+Mbins 

global inconsistency in $\mathrm{p}_{\mathrm{T}, \mathrm{tt}}$ in bins of $\mathrm{N}_{\mathrm{jet}} @$ particle level vs NLO+PS

$35.8 \mathrm{fb}^{-1}(13 \mathrm{TeV})$
ow p-value for all MC descriptions
check $\mathbf{m}_{\mathrm{tt}}$ consistency as Lorentz boost increases (larger $\mathrm{p}_{\mathrm{t}, \text { op }}$ )


- "Inconsistency" reduced to "tension" by including theory uncertainties
-same @ parton


| N $_{\text {dof }}=32$ |  |  | no theorv unc. | with theorv unc. |
| :--- | :---: | ---: | :---: | :---: |
| NLO+PS | $\chi^{2}$ | p-val | $\chi^{2}$ | p-val |
| PW+PY8 | $\mathbf{7 3 . 2}$ | $<0.01$ | $\mathbf{4 7 . 4}$ | $\mathbf{0 . 0 3 9}$ |
| SHERPA | 66.5 | $<0.01$ | 57.2 | $<0.01$ |
| PW+H++ | 152 | $<0.01$ |  |  |
| MG5+PY | $\mathbf{4 8 . 9}$ | $\mathbf{0 . 0 2 8}$ |  |  |

- $\chi^{2}$ Fit (xFitter)

NLO
predictions
(MCFM
+App/GRID)
with free gluon PDF parameters

Measurements

- HERA DIS
- LHC measurements in NNPDF /CT14
with \& w/o ATLAS
$1 / \sigma_{t t} \mathrm{dott}_{\mathrm{t}} / \mathrm{dX}$ with $\mathrm{X}=$ $\left|\eta^{\ell}\right|, \mathrm{y}^{\mathrm{e}}, \mathrm{E}^{\mathrm{e}}+\mathrm{E}^{\mu}$


Adding tt info to HERA reduces uncertainty by 10 to $25 \%$


Including tt info in NNPDF ${ }^{\times}$CT14 lowers gluon pdf at high x

Looking at the future: top quark mass from $\mathbf{d} \sigma_{t t} / \mathbf{d X d Y}$

Measure $\mathrm{d}_{\sigma_{t}} / \mathrm{dXdY}$ in I+jets


- $\sigma_{\mathrm{tt}}$ depends on top quark mass $\left(\mathrm{m}_{\mathrm{top}}\right) \rightarrow$ Measure $\mathrm{m}_{\mathrm{top}}$ using $\mathrm{d} \sigma_{\mathrm{tt}} / \mathrm{dm}_{\mathrm{tt}} \mathrm{dp}_{\mathrm{T}, \text { top }}$
$\boldsymbol{m}_{\text {top, }, 1,} \mathrm{~m}_{\text {top,2, }} \boldsymbol{m}_{\text {top,3 }}$...

- Pros:Add novel information from correlation bins +use most precise predictions
- Cons(?)...requires more events, larger sensitivity to modelling?

- Minimise $\chi^{2}$ of $\mathrm{d}^{2} \sigma_{\mathrm{tt}} / \mathrm{dm}_{\mathrm{tt}} \chi_{\mathrm{dp}} \mathrm{tp}_{\text {top }} \mathrm{vs}$ NNLO $\mathrm{m}_{\text {top }}{ }^{-}$ dependent prediction


## Extreme test of SM:double differential cross sections

## Extreme test of SM: Double differential cross sections

## Absolute @ particle level

kine vs jet multiplicities and final state objects

- FxFx has up to 2 partons @NLO: it is more consistent with 2d diffxsec even without theory uncertainties
- $\mathrm{pt}, \mathrm{tt}^{\text {is only }}$ observable with global inconsistency

| Distribution | $\chi^{2} /$ dof | $p$-value | $\chi^{2} /$ dof | $p$-value | $\chi^{2} /$ dof | $p$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Additional jets | POWHEG+P8 with unc. |  | SHERPA with unc. |  | POWHEG+P8 |  |
|  | 1.52/6 | 0.958 | 27.3/6 | $<0.01$ | 10.1/6 0.121 |  |
| Additional jets vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 35.1/44 | 0.830 | 64.6/44 | 0.023 | 71.6/44 | $<0.01$ |
| Additional jets vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 27.5/36 | 0.845 | 68.9/36 | $<0.01$ | 38.8/36 | 0.345 |
| Additional jets vs. $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 64.6/29 | <0.01 | 181/29 | $<0.01$ | 175/29 <0.01 |  |
| $p_{\mathrm{T}}(\mathrm{jet})$ | 70.2/47 | 0.016 | 374/47 | <0.01 | 133/47 | $<0.01$ |
| $\mid \eta($ jet $) \mid$ | 120/70 | <0.01 | 174/70 | $<0.01$ | 171/70 | $<0.01$ |
| $\Delta R_{\mathrm{j}}$ | 60.9/66 | 0.655 | 215/66 | <0.01 | 168/66 | $<0.01$ |
| $\Delta R_{\mathrm{t}}$ | 64.0/62 | 0.405 | 229/62 | $<0.01$ | 121/62 <0.01 |  |
|  | SHERPA |  | POWHEG+H++ |  | MG5_aMC@NLO+P8 FxFx |  |
| Additional jets | 63.0/6 | $<0.01$ | 34.1/6 | $<0.01$ | 11.1/6 | 0.086 |
| Additional jets vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 88.5/44 | $<0.01$ | 230/44 | $<0.01$ | 53.4/44 | 0.156 |
| Additional jets vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 112/36 | $<0.01$ | 300/36 | $<0.01$ | 55.1/36 | 0.022 |
| Additional jets vs. $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 285/29 | $<0.01$ | 223/29 | $<0.01$ | 122/29 | <0.01 |
| $p_{\mathrm{T}}(\mathrm{jet})$ | 768/47 | $<0.01$ | 624/47 | $<0.01$ | 111/47 | $<0.01$ |
| $\mid \eta($ jet $) \mid$ | 214/70 | $<0.01$ | 259/70 | $<0.01$ | 133/70 | $<0.01$ |
| $\Delta R_{\mathrm{j}_{\mathrm{t}}}$ | 334/66 | $<0.01$ | 959/66 | $<0.01$ | 67.0/66 | 0.441 |
| $\Delta R_{\mathrm{t}}$ | 316/62 | <0.01 | 483/62 | $<0.01$ | 78.9/62 | 0.073 |

theo uncertainties available only for POWHEG+PY \& SHERPA
Additional jets $=$ jet multiplicities up to 5 additional jets with $\mathrm{PT}>30 \mathrm{GeV}$

## Extreme test of SM: Double differential cross sections

Phys. Rev. D 97, 112003 (2018) Normalised @ particle level
kine vs jet multiplicities and final state objects

- FxFx has up to 2 partons @NLO: it is more consistent with 2d diffxsec even without theory uncertainties
- $\mathrm{p}_{\mathrm{T}, \mathrm{tt}}$ is only observable with global inconsistency

| Distribution | $\chi^{2} /$ dof $p$-value | $\chi^{2} /$ dof $p$-value | $\chi^{2} /$ dof $p$-value |
| :---: | :---: | :---: | :---: |
|  | POWHEG+P8 with unc. | SHERPA with unc. | POWHEG+P8 |
| Additional jets | 2.20/5 0.820 | 26.4/5 <0.01 | 12.5/5 0.029 |
| Additional jets vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 28.6/43 0.955 | 35.8/43 0.773 | 69.7/43 <0.01 |
| Additional jets vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 24.5/35 0.908 | 46.1/35 0.100 | 38.9/35 0.298 |
| Additional jets vs. $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 73.3/28 <0.01 | 122/28 $<0.01$ | 164/28 <0.01 |
| $p_{\mathrm{T}}(\mathrm{jet})$ | 75.3/46 <0.01 | 184/46 <0.01 | 134/46 <0.01 |
| $\|\eta(\mathrm{jet})\|$ | 141/69 <0.01 | $162 / 69<0.01$ | 160/69 <0.01 |
| $\Delta R_{\mathrm{j} \mathrm{t}}$ | 69.9/65 0.317 | 157/65 <0.01 | 173/65 <0.01 |
| $\Delta R_{\mathrm{t}}$ | 82.2/61 0.036 | 163/61<0.01 | 126/61 <0.01 |
|  | SHERPA | POWHEG+H++ | MG5_aMC@NLO+P8 FxFx |
| Additional jets | 62.4/5 <0.01 | 35.4/5 <0.01 | 9.31/5 0.097 |
| Additional jets vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 79.8/43 <0.01 | 194/43 <0.01 | 51.4/43 0.178 |
| Additional jets vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 86.3/35 <0.01 | $287 / 35<0.01$ | 48.2/35 0.068 |
| Additional jets vs. $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 282/28 <0.01 | 232/28 <0.01 | 112/28 <0.01 |
| $p_{\mathrm{T}}(\mathrm{jet})$ | 692/46 <0.01 | 623/46 <0.01 | 112/46 <0.01 |
| $\mid \eta($ jet $) \mid$ | 213/69 <0.01 | 255/69 <0.01 | 121/69 <0.01 |
| $\Delta R_{\mathrm{j}_{\mathrm{t}}}$ | $301 / 65<0.01$ | $976 / 65<0.01$ | 65.2/65 0.469 |
| $\Delta R_{\mathrm{t}}$ | 325/61 <0.01 | 506/61 <0.01 | 74.7/61 0.112 |

## theo uncertainties available only for POWHEG+PY \& SHERPA

Additional jets $=$ jet multiplicities up to 5 additional jets with $\mathrm{p}_{\mathrm{T}}>30 \mathrm{GeV}$

# Extreme test of SM: Double differential cross section @13 TeV 

Phys. Rev. D 97, 112003 (2018)

| Absolute @ parton | $\begin{aligned} & p_{\mathrm{T}}\left(\mathrm{t}_{\text {high }}\right) \\ & p_{\mathrm{T}}\left(\mathrm{t}_{\text {low }}\right) \end{aligned}$ | POWH | P8 with | POWHEG+P8 |  | NNLO QCD+NLO EW |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 16.4/1 | 0.173 | 27.4/12 | $<0.01$ |  |  |
|  |  | 22.4/1 | 0.033 | 42.7/12 | <0.01 |  |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 16.4/1 | 0.175 | 24.0/12 | 0.020 | 5.13/12 | 0.953 |
|  | $\left\|y\left(t_{h}\right)\right\|$ | 1.28/1 | 1.000 | 1.41/11 | 1.000 | $2.27 / 11$ | 0.997 |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\ell}\right)$ | 22.2/1 | 0.035 | 38.3/12 | <0.01 | 9.56/12 | 0.654 |
| POWHEG +PY8 inconsistency is reabsorbed if theory uncertainties are included | $\left\|y\left(\mathrm{t}_{\ell}\right)\right\|$ | 2.04/1 | 0.998 | 2.42/11 | 0.996 | 8.14/11 | 0.700 |
|  | $M(t \bar{t})$ | 7.67/1 | 0.661 | 11.6/10 | 0.314 | 24.7/10 | <0.01 |
|  | $p_{T}(\mathrm{t} \overline{\mathrm{t}})$ | 5.38/ | 0.717 | 46.5/8 | <0.01 |  |  |
|  | $\|y(t \bar{t})\|$ | 3.98/1 | 0.948 | 5.66/10 | 0.843 | 9.26/10 | 0.507 |
|  | $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 23.6/4 | 0.995 | 41.6/4 | 0.577 |  |  |
|  | $M(\bar{t} \bar{t})$ vs. $\|\mathrm{y}(\mathrm{t} \overline{\mathrm{t}})\|$ | 20.6/3 | 0.975 | 35.0/3 | 0.469 |  |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 38.9/3 | 0.188 | 59.3/3 | <0.01 |  |  |
|  |  |  | HEG+H+ | MG5_a | @ NLO |  | - |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\text {high }}\right)$ | 6.60/1 | 0.883 | 16.3/12 | 0.180 |  |  |
|  | $p_{\text {T }}\left(\mathrm{t}_{\text {low }}\right)$ | 28.5/1 | <0.01 | 15.3/12 | 0.225 |  |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 5.09/1 | 0.955 | 11.0/12 | 0.530 |  |  |
|  | $\left\|y\left(t_{h}\right)\right\|$ | 2.39/1 | 0.997 | 2.21/11 | 0.998 |  |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\ell}\right)$ | 6.55/1 | 0.886 | 17.4/12 | 0.136 | theory uncertainties available only for |  |
|  | $\left\|y\left(\mathrm{t}_{\ell}\right)\right\|$ | 2.54/1 | 0.995 | 3.99/11 | 0.970 |  |  |
|  | $M(\mathrm{t} \overline{\mathrm{t}})$ | 4.16/1 | 0.940 | 12.1/10 | 0.275 |  |  |
|  | $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 55.0/ | <0.01 | 26.8/8 | <0.01 | POWHEG+PY8 |  |
|  | $\|y(t \bar{t})\|$ | 11.9/1 | 0.292 | 8.92/10 | 0.540 |  |  |
|  | $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 57.9/4 | 0.077 | 40.2/4 | 0.634 |  |  |
|  | $M(\bar{t})$ vs $\backslash \mathrm{y}(\mathrm{t} \overline{\mathrm{f}}) \mid$ | 408/3 | 0229 | 587/3 | <001 |  |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 93.0/3 | $<0.01$ | 166/32 | <0.01 |  |  |

# Extreme test of SM: Double differential cross section @13 TeV 

Phys. Rev. D 97, 112003 (2018)

|  | Distribution | $\chi^{2} /$ dof $p$-value | $\chi^{2} /$ dof $p$-value | $\chi^{2} /$ dof $p$-value |
| :---: | :---: | :---: | :---: | :---: |
|  |  | POWHEG+P8 with unc.) | POWHEG+P8 | NNLO QCD+NLO EW |
| Normalised | $p_{\mathrm{T}}\left(\mathrm{t}_{\text {high }}\right)$ | $18.4 / 11$ 0.073 <br> $16.6 / 11$ 0.120 | $\frac{24.4 / 11}{40.011}$ |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\text {low }}\right)$ $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | $\begin{array}{ll}16.6 / 11 & 0.120 \\ 16.1 / 11 & 0.138\end{array}$ | $40.0 / 11$ $<0.01$ <br> $22.9 / 11$ 0.018 | 4.99/11 0.932 |
| @ level | $\left\|y\left(\mathrm{th}_{\mathrm{h}}\right)\right\|$ | 1.25/10 1.000 | $\begin{array}{ll}1.33 / 10 & 0.999\end{array}$ | 2.23/10 0.994 |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\ell}\right)$ | 23.6/11 0.014 | 33.0/11 $<0.01$ | 8.67/11 0.652 |
|  | $\left\|y\left(\mathrm{t}_{\ell}\right)\right\|$ | 2.03/10 0.996 | 2.29/10 $\quad 0.994$ | 8.18/10 0.611 |
|  | $M(\mathrm{t} \overline{\mathrm{t}})$ | 7.78/9 0.556 | 11.3/9 0.259 | 24.4/9 <0.01 |
|  | $p_{T}(\mathrm{tt})$ | $5.52 / 7 \quad 0.597$ | 40.9/7 $<0.01$ |  |
| - POWHEG +PY8 inconsistency is reabsorbed if theory uncertainties are included | $\|y(t \bar{t})\|$ | 3.89/9 0.919 | 5.36/9 0.802 | 9.29/9 0.411 |
|  | $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 22.7/43 0.995 | 38.8/43 0.654 |  |
|  | $M(\underline{t} \bar{t})$ vs. $\|y(t \bar{t})\|$ | 20.2/34 0.970 | 33.2/34 0.507 |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ vs. $M(\underline{\mathrm{t}})$ | 34.4/31 0.309 | 57.4/31 <0.01 |  |
|  |  | POWHEG+H++ | MG5_aMc@NLO+P8 FxFx | - |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\text {high }}\right)$ | 4.10/11 0.967 | 13.2/11 0.283 |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\text {low }}\right)$ | $17.4 / 110.096$ | 11.9/11 0.370 |  |
|  | $p_{\text {T }}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 3.61/11 0.980 | 9.95/11 0.535 |  |
|  | $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ | 1.63/10 0.998 | 1.11/10 1.000 |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\ell}\right)$ | 8.36/11 0.688 | 16.4/11 0.128 | theory uncertainties |
|  | $\left\|y\left(\mathrm{t}_{\ell}\right)\right\|$ | 1.57/10 0.999 | 2.48/10 0.991 | y |
|  | $M(\mathrm{t} \overline{\mathrm{t}})$ | $3.57 / 9 \quad 0.937$ | 7.61/9 0.574 | available only for |
|  | $p_{\mathrm{T}}(\mathrm{tt})$ | $43.4 / 7$ $<0.01$ <br> $5.94 / 9$ 0.746 | 20.5/7 < 0.01 | POWHEG+PY8 |
| consistent | $\|y(t \bar{t})\|$ | 5.94/9 0.746 | 4.65/9 0.864 |  |
| with absolute | $\left\|y\left(t_{\text {h }}\right)\right\|$ vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 32.6/43 0.877 | 27.8/43 0.965 |  |
|  | $M(t \bar{t})$ vs. $\|y(t \bar{t})\|$ | $27.2 / 34$ 0.788 <br> $679 / 31$ $<0.01$ | $40.2 / 34$ 0.214 <br> $77.9 / 31$ $<0.01$ |  |
|  | $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ vs. $M(\mathrm{tt})$ | $67.9 / 31<0.01$ | 77.9/31 <0.01 |  |

Absolute @ particle level

- POWHEG +PY8 inconsistency is reabsorbed if theory uncertainties are included
- FxFx is the most consistent already without theory uncertainties
consistent with absolute

| Distribution | $\chi^{2} /$ do | $p$-value) | $\chi^{2} /$ dof | $p$-value | $\chi^{2} /$ dof | $p$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | POWHEG+P8 with unc. |  | SHERPA with unc. |  | POWHEG+P8 |  |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 15.9/1 | 0.197 | 7.21/12 | 0.844 | 29.5/12 <0.01 |  |
| $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ | 1.96/1 | 0.999 | 1.48/11 | 1.000 | 2.23/11 | 0.997 |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\ell}\right)$ | 27.0/1 | <0.01 | 22.3/12 | 0.034 | 80.2/12 | <0.01 |
| $\left\|y\left(\mathrm{t}_{\ell}\right)\right\|$ | 4.55/1 | 0.951 | 5.07/11 | 0.928 | 4.99/11 | 0.932 |
| $M(t \bar{t})$ | 5.83/1 | 0.829 | 2.40/10 | 0.992 | 9.07/10 | 0.525 |
| $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 4.96/ | 0.761 | 28.9/8 | <0.01 | 41.2/8 | <0.01 |
| $\|y(t \bar{t})\|$ | 5.93/1 | 0.821 | 6.63/10 | 0.760 | 8.61/10 | 0.570 |
| $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 35.7/4 | 0.810 | 29.6/44 | 0.953 | 64.1/44 | 0.025 |
| $M(\mathrm{t} \overline{\mathrm{t}})$ vs. $\|y(\mathrm{t} \overline{\mathrm{t}})\|$ | 25.9/3 | 0.867 | 24.2/35 | 0.914 | 56.2/35 | 0.013 |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 47.4/3 | 0.039 | 57.2/32 | <0.01 | 73.2/32 | <0.01 |
|  |  | HERPA | POWHE | G+H++ | MG5_am | @NLO+P |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 13.5/1 | 0.335 | 32.1/12 | $<0.01$ | 17.4/12 | 0.137 |
| $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ | 2.32/1 | 0.997 | 4.89/11 | 0.936 | 3.16/11 | 0.988 |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\ell}\right)$ | 39.4/1 | <0.01 | 21.8/12 | 0.040 | 47.7/12 | <0.01 |
| $\left\|y\left(\mathrm{t}_{\ell}\right)\right\|$ | 5.54/1 | 0.902 | 4.04/11 | 0.969 | 7.22/11 | 0.781 |
| $M(\mathrm{t} \overline{\mathrm{t}})$ | 2.86/1 | 0.985 | 52.8/10 | <0.01 | 5.45/10 | 0.859 |
| $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 68.7/ | <0.01 | 46.8/8 | <0.01 | 21.3/8 | <0.01 |
| $\|y(t \bar{t})\|$ | 12.1/1 | 0.276 | 18.6/10 | 0.046 | 8.13/10 | 0.616 |
| $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 48.3/4 | 0.305 | 116/44 | <0.01 | 44.9/44 | 0.434 |
| $M(\mathrm{t} \overline{\mathrm{t}})$ vs. $\|y(\mathrm{t} \overline{\mathrm{t}})\|$ | 41.5/3 | 0.208 | 219/35 | <0.01 | 55.7/35 | 0.014 |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 66.5/3 | $<0.01$ | 152/32 | $<0.01$ | 48.9/32 | 0.028 |

## Normalised @ particle level

| Distribution | $\chi^{2} /$ dof $p$-value | $\chi^{2} /$ dof $p$-value | $\chi^{2} /$ dof $p$-value |
| :---: | :---: | :---: | :---: |
|  | POWHEG+P8 with ung. | SHERPA with unc. | POWHEG+P8 |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 14.9/11 0.186 | 6.99/11 0.800 | 29.4/11 <0.01 |
| $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ | 1.77/10 0.998 | 1.25/10 1.000 | 1.90/10 0.997 |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\ell}\right)$ | 25.3/11 $<0.01$ | 28.0/11 <0.01 | 74.0/11 <0.01 |
| $\left\|y\left(\mathrm{t}_{\ell}\right)\right\|$ | 4.50/10 0.922 | 4.88/10 0.899 | 5.00/10 0.891 |
| $M(\mathrm{t} \overline{\mathrm{t}})$ | 5.69/9 0.770 | 2.17/9 0.989 | 9.33/9 $\quad 0.407$ |
| $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 5.36/7 0.616 | 12.5/7 0.086 | 34.8/7 $<0.01$ |
| $\|y(t \bar{t})\|$ | 5.79/9 0.761 | 6.68/9 0.671 | 8.48/9 0.486 |
| $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 27.6/43 0.967 | 32.7/43 0.872 | 53.8/43 0.126 |
| $M(\mathrm{t} \overline{\mathrm{t}})$ vs. $\|y(\mathrm{t} \overline{\mathrm{t}})\|$ | 26.5/34 0.817 | 22.7/34 0.931 | 54.0/34 0.016 |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | 42.5/31 0.082 | 39.2/31 0.149 | 64.8/31 <0.01 |
|  | SHERPA | POWHEG+H++ | MG5_aMC@NLO+P8 FxFx |
| $p_{\text {T }}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 13.9/11 0.238 | 34.1/11 <0.01 | 15.2/11 0.173 |
| $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ | 1.60/10 0.999 | 3.81/10 0.955 | 2.73/10 0.987 |
| $p_{\mathrm{T}}\left(\mathrm{t}_{\ell}\right)$ | -37.3/11 <0.01 | 25.0/11 <0.01 | 40.5/11 <0.01 |
| $\left\|y\left(\mathrm{t}_{\ell}\right)\right\|$ | 5.28/10 0.872 | 3.92/10 0.951 | 5.54/10 0.853 |
| $M(t \bar{t})$ | 2.99/9 0.965 | 51.7/9 <0.01 | 4.98/9 0.836 |
| $p_{\mathrm{T}}(\mathrm{t} \overline{\mathrm{t}})$ | 59.4/7 < $<0.01$ | 43.8/7 $<0.01$ | 17.9/7 0.013 |
| $\|y(t \bar{t})\|$ | 11.3/9 0.253 | 18.2/9 0.033 | 8.37/9 0.498 |
| $\left\|y\left(\mathrm{t}_{\mathrm{h}}\right)\right\|$ vs. $p_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{h}}\right)$ | 47.7/43 0.287 | 108/43 <0.01 | 40.9/43 0.561 |
| $M(\mathrm{t} \overline{\mathrm{t}})$ vs. $\|y(\mathrm{t} \overline{\mathrm{t}})\|$ | 37.6/34 0.308 | 234/34 <0.01 | 55.5/34 0.011 |
| $p_{T}\left(\mathrm{t}_{\mathrm{h}}\right)$ vs. $M(\mathrm{t} \overline{\mathrm{t}})$ | $63.2 / 31<0.01$ | 126/31 <0.01 | 43.0/31 0.074 |

theory uncertainties available only for POWHEG+PY8 \& SHERPA

## Parton distributions functions and top quark : the connection (II)

 in c.m. frame of pp system, the parton momentum components are written$$
p_{1}^{\mu}=\frac{\sqrt{s}}{2}\left(x_{1}, 0,0, x_{1}\right) \quad p_{2}^{\mu}=\frac{\sqrt{s}}{2}\left(x_{2}, 0,0,-x_{2}\right) .
$$

Using conservation of momentum \& parsons in the leading order picture for $\mathrm{ff} \rightarrow$ $t \bar{t}$, the rapidity of the top quark pair is

$$
\begin{gathered}
y(t \bar{t})=\frac{1}{2} \ln \left(\frac{E(t \bar{t})+p_{z}(t \bar{t})}{E(t \bar{t})-p_{z}(t \bar{t})}\right)=\frac{1}{2} \ln \left(\frac{x_{1}}{x_{2}}\right) \\
\hat{s}=x_{1} x_{2} s=M(t \bar{t})
\end{gathered}
$$

$$
x_{1}=\frac{M(t \bar{t})}{\sqrt{s}} e^{y} \quad x_{2}=\frac{M(t \bar{t})}{\sqrt{s}} e^{-y}
$$

- maximum probed $x$ at 13 $\mathbf{T e V}$ is $\sim 0.25$ given the bins of the rapidity and tt mass distributions ranges



## The Top $\mathrm{p}_{\mathrm{t}}$ saga, including the new chapter @13 TeV

## What we measured at $\sqrt{ } \mathrm{s}=7,8 \mathrm{TeV}: \boldsymbol{X}$ in $\boldsymbol{d} \boldsymbol{\sigma}_{(t t / t)} / \boldsymbol{d} \boldsymbol{X}$

## Overview of current results at LHC

- Increasing variety of differential cross section results
- More measurements in fiducial PS, exploiting particle-level object definition and pseudo-top
- Pioneering results in boosted regime, first absolute differential cross sections appearing

higher order corrections (radiation)
sensitive to resonant\& non resonant new phys 5-10\% 3-6\%


## parton level

## ATLAS vs CMS vs NNLO Theory :1/ $\sigma_{\mathrm{tt}} \mathrm{d} \sigma_{\mathrm{tt}} / \mathrm{d} p_{T, \text { top }} @ \sqrt{\mathrm{~s}}=8 \mathrm{TeV}$

parton level

- ATLAS \& CMS measurements are generally consistent with each other
- CMS shows slight slope
- Using latest predictions with dynamic factorisation \& renormalization scale

Qualitative statement, no statistical test performed yet


The Top pt saga: NLO+PS @13 TeV
PT,top
Parton level vs NLO+PS

softer, but compatible with standard model within uncertainties measurement and theory.


All Had : no slope and consistent larger stat uncertainties no theory uncertainty

LPNHE Seminar, Sorbonne Université, 24th June 2019

## The Top pt saga: dilepton <br> NLO+PS @13 TeV

CMS-PAS-TOP-17-014



| $\mathrm{N}_{\text {dof }}$ =5 o 6 | normalised |  | absolute |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NLO+PS | $\chi^{2}$ | p-val | $\chi^{2}$ | p-val |
| PW+PY8 | 63.5 | $<10^{-3}$ | $\mathbf{5 1}$ | $<10^{-3}$ |
| PW+H++ | 10 | 0.087 | 8 | $\mathbf{0 . 2 3 9}$ |
| MG5+PY8 | 28 | $<10^{-3}$ | $\mathbf{1 8}$ | $\mathbf{0 . 0 0 7}$ |

no theory uncertainties included

# mind $p_{T}$ range: up to 500 GeV Dilepton differential 

## CMS-TOP-17-014




June 2018
$13 \mathrm{TeV} \mathrm{e} \mu 35.9 \mathrm{fb}^{-1}$ (2016)

- Parton level in the full phase space
- Particle level, within a phase space close to experimental acceptance (fiducial phase-space)

- PowhegV2+Pythia8 (NLO) chosen as default generator setup in ATLAS and CMS for Run2:
* Reasonable agreement except in top quark "direct" observables $\mathrm{p}_{\mathrm{T}}$, $p_{T}{ }^{\text {tt }}, m_{t t}$
* Need for full NNLO MC + PS predictions
- Similar results in $\mathrm{e} \mu$ ATLAS: Eur. Phys. J. C77 (2017) 299


## particle level

## Extreme test of SM: the top pד "saga" @13TeV

## Particle level vs NLO+PS



- Tension with most NLO+PS predictions: slope w.r.t measurement


## Extreme test of SM: the top $\mathrm{p}_{\mathrm{T}}$ "saga"

Particle level vs NLO+PS

## Extreme test of SM: the top $\mathrm{p}_{\mathrm{T}}$ "saga"

Particle level vs NLO+PS

Reco level

Particle level vs NLO+PS


- Measurements agree with predictions

The Top pt saga: dilepton NLO+PS @13 TeV CMS-PAS-TOP-17-014


| $\mathrm{N}_{\text {dof }}$ =5 o 6 | normalised |  | absolute |  |
| :---: | :---: | :---: | :---: | :---: |
| NLO+PS | $\chi^{2}$ | p-val | $\chi^{2}$ | p-val |
| PW+PY8 | $\mathbf{1 2 8}$ | $<10^{-3}$ | $\mathbf{5 2}$ | $<10^{-3}$ |
| PW+H++ | $\mathbf{6}$ | $\mathbf{0 . 3 0 6}$ | $\mathbf{3}$ | $\mathbf{0 . 8 3 0}$ |
| MG5+PY8 | $\mathbf{4 5}$ | $<10^{-3}$ | $\mathbf{1 7}$ | $\mathbf{0 . 0 0 8}$ |

## particle level

## Extreme test of SM: the top pד "saga" @13TeV

## Particle level vs NLO+PS



- Tension with most NLO+PS predictions: slope w.r.t measurement


## Extreme test of SM: the top $\mathrm{p}_{\mathrm{T}}$ "saga"

Particle level vs NLO+PS

## Extreme test of SM: the top $\mathrm{p}_{\mathrm{T}}$ "saga"

Particle level vs NLO+PS

Reco level

Particle level vs NLO+PS


- Measurements agree with predictions

The Top pт saga: dilepton NLO+PS @13 TeV CMS-PAS-TOP-17-014


| $\mathrm{N}_{\text {dof }}$ =5 o 6 | normalised |  | absolute |  |
| :---: | :---: | :---: | :---: | :---: |
| NLO+PS | $\chi^{2}$ | p-val | $\chi^{2}$ | p-val |
| PW+PY8 | $\mathbf{1 2 8}$ | $<10^{-3}$ | $\mathbf{5 2}$ | $<10^{-3}$ |
| PW+H++ | $\mathbf{6}$ | $\mathbf{0 . 3 0 6}$ | $\mathbf{3}$ | $\mathbf{0 . 8 3 0}$ |
| MG5+PY8 | $\mathbf{4 5}$ | $<10^{-3}$ | $\mathbf{1 7}$ | $\mathbf{0 . 0 0 8}$ |

CMS-TOP-16-013, $2.5 \mathrm{fb}^{-1}, 13 \mathrm{TeV}$
In all-jets final state

## ALL HADRONIC CMS @ 13 TeV (still preliminary)

## Resolved

- Selection: at least 6 jets, 2 b tagged.
- Perform kinematic fit for $t \bar{t}$ reconstruction (based on $W$ and top mass constrains)
- Accept events with $150<m_{\mathrm{t}}^{\text {fit }}<200 \mathrm{GeV}$, and fit probability greater than 0.02 .


## Boosted

- 1 jet $p_{\mathrm{T}}>200 \mathrm{GeV}$ and 1 jet $p_{\mathrm{T}}>450 \mathrm{GeV}$
- each jet: softdrop mass $>50 \mathrm{GeV}, \mathrm{b}$ tagged subjet, n -jettiness requirements.



Template Fit: Signal template from MC, background template from data by inverting $b$ tagging.


Soft $p_{\mathrm{T}}(\mathrm{t})$ confirmed in all-jets channel and persisting in boosted regime.

## Summary differential cross sections

- Measurements at 7,8 , and 13 TeV in various $t \bar{t}$ decay channels.
- $p_{\mathrm{T}}(\mathrm{t})$ observed softer, but compatible with standard model within uncertainties in measurement and theory.
- Persistent in boosted regime $p_{\mathrm{T}}(\mathrm{t})>400 \mathrm{GeV}$.



## top pair associated production

- The top quark couples to other SM fields through its gauge and Yukawa interactions
- $\mathrm{t} \rightarrow \mathrm{Wb}$ coupling measured already at the Tevatron

High statistics top physics at the LHC: $t \bar{t}+$ bosons ( $\gamma, \mathrm{Z}$ and H ) becomes accessible!
 First evidence on the coupling of the top quark to these particles from production rate Important Standard Model test: new physics modifies the structure of the EW couplings

## see inclusive top cross section

\& d $\sigma / d X$ with jets
(Lecture 5)

tt+photon: latest ATLAS



Eur. Phys. J. C 79 (2019) 382

$$
\sigma_{\text {fid. }}^{\mathrm{SL}}=521 \pm 9 \text { (stat.) } \pm 41 \text { (syst.) fb }
$$

$$
\text { in agreement with NLO prediction: } \sigma_{\text {fid. }}^{\text {pred }}=495 \pm 99 \mathrm{fb}
$$

$$
\sigma_{\text {fid. }}^{\mathrm{DL}}=69 \pm 3(\text { stat. }) \pm 4(\text { syst. }) \mathrm{fb}
$$

$$
\text { in agreement with NLO prediction: } \sigma_{\text {fid. }}^{\text {pred }}=63 \pm 9 \mathrm{fb}
$$




multi-lepton ( $2 \ell, 3 \ell, 4 \ell$ )
CMS (75/fb)


## ATLAS (36/fb)

$$
\begin{aligned}
& \sigma_{t \bar{Z} Z}=0.95 \pm 0.08 \text { (stat.) } \pm 0.10 \text { (syst.) } \mathrm{pb} \\
& \sigma_{t \bar{t} W}=0.87 \pm 0.13 \text { (stat.) } \pm 0.14 \text { (syst.) pb }
\end{aligned}
$$

Phys. Rev. D 99 (2019) 072009


$$
\begin{aligned}
\sigma_{t \bar{t} W} & =0.777_{-0.11}^{+0.12}(\text { stat. })_{-0.12}^{+0.13} \text { (syst.) } \mathrm{pb} \\
\sigma_{t \bar{t} Z} & =0.99_{-0.08}^{+0.09} \text { (stat.) }{ }_{-0.10}^{+0.12} \text { (syst.) } \mathrm{pb}
\end{aligned}
$$



LPNHE Seminar, Sorbonne Université, 24th June 2019

## Phys. Rev. D 99 (2019) 072009

Table 8: List of relative uncertainties in the measured cross sections of the $t \bar{t} Z$ and $t \bar{t} W$ processes from the fit, grouped in categories. All uncertainties are symmetrized. The sum in quadrature may not be equal to the total due to correlations between uncertainties introduced by the fit.

| Uncertainty | $\sigma_{t \bar{t} Z}$ |  |
| :--- | :---: | :--- |$\sigma_{t \bar{t} W}$.

## Top Properties : Spin correlations

## Standard reasons:Top quark (t) properties

top quark decays before its spin flips $\rightarrow$ Spin information is passed to decay products
undiluted by hadronization $\rightarrow$ angles of $t \bar{t}$ decay products are correlated

- is top polarised in single top production? SM says YES
- are $t$ and anti-t angular distribution different ? SM says yes @NLO
- is CP violation visible in b-decay from tt? SM says yes at $<10^{-2}$
- is top quark unpolarised in pp $\rightarrow$ t $\bar{t}$ production? SM says yes
- Are tt̄ spins correlated in pp $\rightarrow$ tt production? SM says YES All angular properties are found to be consistent with SM


## The spin of the top quark


individual top quark
$\underset{\text { Production time }<}{1 / m_{\mathrm{t}}<1 / \Gamma_{\mathrm{t}}<1 / \Lambda}<\underset{\text { Lifetime }}{<\text { Hadronization time }} \ll \mathrm{m}_{\mathrm{t}} / \Lambda^{2}$

- chiral coupling in SM Wtb vertex enhances specifically polarized W-boson and b-quark
- in $\mathrm{qq} / \mathrm{gg} \mathrm{tt}$ interaction at pp collider
top quark pairs
- top and anti-top quarks are ~unpolarised (as the initial g and q)
single top
- the spins of $t$ and $t$ are correlated
- Angular distribution of top quark decay products follows the predictions of the top quark spin (differently from b quark in which B meson decays isotropically)
- Top quark polarization and (and consequently its spin) is directly observable by such angular distributions
- Observation of the top quark spin is strongly linked to its production and decay process


## The spin of the top quark in $\mathrm{pp} \rightarrow \mathrm{tt}$

- Top is narrow resonance: $\Gamma_{t} / m_{t} \ll 1 \rightarrow$ the $q \bar{q} / g g \mathrm{tt}^{-1}$ production amplitude is factorizable in decay and production in the leading pole approx

$\rho_{a b, \bar{a} \bar{b}}$ Hermitian production spin density matrix $\rightarrow$ if spin top $=1 / 2$,Pauli matrices are a basis

$$
\begin{gathered}
\rho_{a b, \bar{a} \bar{b}} \equiv \frac{1}{4} M^{00}\left(\delta_{a b} \delta_{\bar{a} \bar{b}}+P^{i} \sigma_{a b}^{i} \delta_{\bar{a} \bar{b}}+\bar{P}^{\bar{i}} \delta_{a b} \sigma_{\bar{a} \bar{b}}^{\bar{i}}+\widehat{C}^{i \bar{i}} \sigma_{a b}^{i} \sigma_{\bar{a} \bar{b}}^{\bar{i}}\right) \\
P_{i}=\left\langle 2 S_{i}\right\rangle \text { top quark polarization S, top quark spin } \\
\widehat{C}_{i \bar{i}}=\left\langle 4 S_{i} \bar{S}_{\bar{i}}\right\rangle \text { top-anti-top spin correlation }
\end{gathered}
$$

$\lambda_{a b}$ is the decay spin density matrix; if integrated over all decay product phase space, but one

$$
\tilde{\lambda}(\vec{e})_{a b} \sim \delta_{a b}+\alpha_{i} \vec{e}_{i} \cdot \vec{\sigma}_{a b}
$$

Including production and integrated decay density matrix in $|\mathrm{ME}|^{2}$ gives

$$
\frac{d \sigma}{d^{2} \vec{e}_{i} d \vec{e}_{j}} \sim 1+\alpha_{i} \vec{P} \vec{e}_{i}+\alpha_{j} \vec{P} \vec{e}_{j}+\alpha_{i} \alpha_{j} \vec{e}_{i} \widehat{C}_{j}
$$

## The spin of the top quark in pp collisions

- Going from generalized quantities to observable quantities requires the choice of the spin quantization axis : define spin axis as $z$ direction an use associated polar coordinates

$$
\begin{gathered}
\text { in tt production } \\
\frac{1}{\sigma} \frac{d^{2} \sigma}{d \cos \theta_{i} d \cos \theta_{j}}=\frac{1}{4}\left(1+\alpha_{i} B_{1} \cos \theta_{i}+\alpha_{j} B_{2} \cos \theta_{j}+\alpha_{i} \alpha_{j} C \cos \theta_{i} \cos \theta_{j}\right) \\
\\
\\
\text { top quark } \\
\text { polarisation }
\end{gathered} \begin{gathered}
\text { anti-top quark } \\
\text { polarisation }
\end{gathered} \quad \begin{aligned}
& \text { top-anti-top } \\
& \text { spin correlation }
\end{aligned}
$$

- Degree of top quark polarization
- single top : strong polarization
- $t t^{-}$production: B coefficents vanish at LO (pair invariance) : tt almost unpolarized
- Degree of top quark pair spin correlations: depends on choice of spin quantization axis

The Wtb vertex in $\boldsymbol{t} \overline{\boldsymbol{t}}$ prod \& decay:
full spin density matrix

## JHEP12(2015)026

$$
\begin{gathered}
<\mid \text { MatrixEl(tt)| }{ }^{2}>\Rightarrow \frac{1}{\sigma} \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} \cos \theta_{+}^{a} \mathrm{~d} \cos \theta_{-}^{b}}=\frac{1}{4}\left(1+B_{+}^{a} \cos \theta_{+}^{a}+B_{-}^{b} \cos \theta_{-}^{b}-C(a, b) \cos \theta_{+}^{a} \cos \theta_{-}^{b}\right) \\
\mathrm{a}, \mathrm{~b}=\{\mathrm{k}, \mathrm{n}, \mathrm{r}\} \quad \text { +=top decay -=anti-top decay }
\end{gathered}
$$

$\cos \theta^{\mathrm{a}, \mathrm{b}_{ \pm}}$: 6 angles: 2 lepton directions in top/anti-top parent rest frame w.r.t 3 spin quantization axes (a or b)
dilepton events

- $\mathbf{k}$ : top quark direction in $t \bar{t}$ rest frame
- $\mathrm{n}: \perp$ to k \& laboratory beam direction
- $\mathbf{r}$ : $\perp$ to $k$ and $n$


15 spin density matrix elements

- approximate CP symmetry of SM $\rightarrow$
- $\mathrm{C}(\mathrm{i}, \mathrm{j})$ is symmetric
- top and anti top quarks have same polarisation coefficients
- QCD invariant under $\mathrm{P} \rightarrow$ only $P$ even and CP even coefficients are allowed


## Spin correlation: beyond the Standard Model

- Measured spin correlation can alter due to
- Different decays
- Different production
- Spin correlation: test full chain from production to decay



## Spin density matrix elements are consistent with SM predictions

## Spin correlation with $\Delta \varphi$

- Dilepton selection: ATLAS: 2 OS $\ell$ (e $\mu$ only), $\geq 1$ b-jet,
- lepton has highest spin analysing power
- Derive $\Delta \varphi$ difference in azimuthal angle between leptons in lab frame
- no event reco, use lepton reco and resol
- Reconstruct tt final state :
- constrains by mw and mtop ,
- test different $\eta$ assumptions for $2 v$ : select assumption highest weight based on $\mathrm{E}^{\text {miss }}$ expected resolution
- Subtract bkg and unfold


## Spin correlation with $\Delta \varphi$

$\sqrt{s}=13 \mathrm{TeV}$

- Dilepton selection: ATLAS: 2 OS $\ell$ (e $\mu$ only), $\geq 1$ b-jet,
- lepton has highest spin analysing power
- Derive $\Delta \varphi$ difference in azimuthal angle between leptons in lab frame

- no event reco, use lepton reek and resol




## ATLAS comparisons (I)

## MCFM with NLO in decay



Parton level $\Delta \phi\left(l^{+}, \Gamma\right) / \pi[\mathrm{rad} / \pi]$

## reweight top P to match NNLO



## Add NNLO prediction



## ATLAS comparisons (II)

## NNLO inclusive



## NLO+EWK corr



## Spin correlation with $\Delta \varphi$

- spin correlation sensitivity to $\Delta \varphi$ is enhanced at low $\mathrm{m}_{\mathrm{tt}}$


Parton level $\Delta \phi\left(l^{+}, \Gamma\right) / \pi[\mathrm{rad} / \pi]$


Mahlon and Parke
Phys. Rev. D 81, 074024


- Reconstruct tt final state : with constrains by mw and motion , test different eta assumptions for nus, select highest weight based on ETmiss expected resolution
- Subtract bkg and unfold


## Top quark mass

## W mass from ATLAS



$m_{w}$ and $m_{\text {top }}$ are from ATLAS measurements

## Special reasons:Measure the top quark mass

most recent ATLAS from all data @ $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$
Select $\ell+>=4 j e t s$ events (subtract $W+j e t s$, fakes, dibosons \&sigle top top), require 2 b-jets
Likelihood-based kinematic fit (mw \& mtop constr)

Kine variables $\rightarrow$ Boosted Decision Tree $\rightarrow$ discriminant to select correct jet/lepton assignment.

likelihood-fit $3 \mathrm{~m}_{\text {top }}$ sensitive variables to data

- mtop $^{\text {reco }}$
sensitive to
$\mathrm{m}_{\text {top }}$, JSF, bJSF

Eur. Phys. J. C79 (2019) 290

- $\mathbf{R}=\sum \mathrm{p}_{\mathrm{T}, \mathrm{b}-\mathrm{jets}} /$ $\sum p_{T, j e t s \_i n \_} w$ sensitive to bJSF


- $\mathbf{m}_{\text {top }}+2$ scale factors: jet and b-jet-to-light-jet energy $\rightarrow$ reduce dominant jet \& b-jet uncertainties


## Special reasons:Measure the top quark mass

- Optimize fit w.rt. BDT: 19\% improvement

- Combine with dilepton and all jets result


Eur. Phys. J. C79 (2019) 290



- $\mathbf{R}=\Sigma \mathbf{p}_{\mathrm{T}, \mathrm{b} \text {-jets }} /$ $\sum \mathbf{p}_{\text {T,jets_in_w }} \mathbf{w}$

LPNHE Seminar, Sorbonne Université, 24th June 2019

Table 3 Systematic uncertainties in $m_{\text {top }}$. The measured values of $m_{\text {top }}$ are given together with the statistical and systematic uncertainties in GeV for the standard and the BDT event selections. For comparison, the result in the $t \bar{t} \rightarrow$ lepton + jets channel at $\sqrt{s}=7 \mathrm{TeV}$ from Ref. [9] is also listed. For each systematic uncertainty listed, the first value corresponds to the uncertainty in $m_{\text {top }}$, and the second to the statistical precision in this uncertainty. An integer value of zero means that the corresponding uncertainty is negligible and therefore not evaluated. Statistical uncertainties quoted as 0.00 are smaller than 0.005 . The statistical uncertainty in the total systematic uncertainty is calculated from uncertainty propagation. The last line refers to the sum in quadrature of the statistical and systematic uncertainties

| Event selection | $\sqrt{s}=7 \mathrm{TeV}$ <br>  <br>  <br> Standard | $\sqrt{s}=8 \mathrm{TeV}$ |  |
| :--- | :--- | :--- | :--- |
| $m_{\text {top result }[\mathrm{GeV}]}$ | 172.33 | 171.90 | BDT |
| Statistics | 0.75 | 0.38 | 172.08 |
| - Stat. comp. ( $m_{\text {top }}$ ) | 0.23 | 0.12 | 0.39 |
| - Stat. comp. (JSF) | 0.5 | 0.11 | 0.11 |
| - Stat. comp. (bJSF) | 0.67 | 0.34 | 0.11 |
| Method | $0.11 \pm 0.10$ | $0.04 \pm 0.11$ | 0.35 |
| Signal Monte Carlo generator | $0.22 \pm 0.21$ | $0.50 \pm 0.17$ | $0.16 \pm 0.11$ |
| Hadronization | $0.18 \pm 0.12$ | $0.05 \pm 0.10$ | $0.15 \pm 0.10$ |
| Initial- and final-state QCD radiation | $0.32 \pm 0.06$ | $0.28 \pm 0.11$ | $0.08 \pm 0.11$ |
| Underlying event | $0.15 \pm 0.07$ | $0.08 \pm 0.15$ | $0.08 \pm 0.15$ |
| Colour reconnection | $0.11 \pm 0.07$ | $0.37 \pm 0.15$ | $0.19 \pm 0.15$ |
| Parton distribution function | $0.25 \pm 0.00$ | $0.08 \pm 0.00$ | $0.09 \pm 0.00$ |
| Background normalization | $0.10 \pm 0.00$ | $0.04 \pm 0.00$ | $0.08 \pm 0.00$ |
| W+jets shape | $0.29 \pm 0.00$ | $0.05 \pm 0.00$ | $0.11 \pm 0.00$ |
| Fake leptons shape | $0.05 \pm 0.00$ | 0 | 0 |
| Jet energy scale | $0.58 \pm 0.11$ | $0.63 \pm 0.02$ | $0.54 \pm 0.02$ |
| Relative $b$-to-light-jet energy scale | $0.06 \pm 0.03$ | $0.05 \pm 0.01$ | $0.03 \pm 0.01$ |
| Jet energy resolution | $0.22 \pm 0.11$ | $0.23 \pm 0.03$ | $0.20 \pm 0.04$ |
| Jet reconstruction efficiency | $0.12 \pm 0.00$ | $0.04 \pm 0.01$ | $0.02 \pm 0.01$ |
| Jet vertex fraction | $0.01 \pm 0.00$ | $0.13 \pm 0.01$ | $0.09 \pm 0.01$ |
| $b$-tagging | $0.50 \pm 0.00$ | $0.37 \pm 0.00$ | $0.38 \pm 0.00$ |
| Leptons | $0.04 \pm 0.00$ | $0.16 \pm 0.01$ | $0.16 \pm 0.01$ |
| Missing transverse momentum | $0.15 \pm 0.04$ | $0.08 \pm 0.01$ | $0.05 \pm 0.01$ |
| Pile-up | $0.02 \pm 0.01$ | $0.14 \pm 0.01$ | $0.15 \pm 0.01$ |
| Total systematic uncertainty | $1.04 \pm 0.08$ | $1.07 \pm 0.10$ | $0.82 \pm 0.06$ |
| Total | $1.28 \pm 0.08$ | $1.13 \pm 0.10$ | $0.91 \pm 0.06$ |

## Extract $\mathbf{m}_{\text {top }}$ by minimising


@ particle level

$$
\chi^{2}\left(m_{t o p}\right)=\left(\mathbf{X}-\mathbf{P}\left(m_{t o p}\right)\right)^{\mathrm{T}} \mathbf{C}^{-1}\left(\mathbf{X}-\mathbf{P}\left(m_{t o p}\right)\right)
$$

- X=measured $\mathrm{d} \sigma_{\mathrm{tt}} / \mathrm{dX}, \mathrm{P}=$ predictions:NLO + PS or fixed order NLO (pole scheme)
- $\mathbf{C =}$ covariance matrix

- Final $\mathbf{m}^{\text {pole }}$ : combined (8 dist.) NNPDF fit
- Add $\delta m_{t}^{\text {pole }}$ : PDF ( 0.3 GeV ), dynamic vs static scale ( 1.1 GeV ), $\delta \alpha_{\mathrm{s}} \sim$ negligible

$$
\begin{gathered}
m_{t}^{\text {pole }}=173.2 \pm 0.9 \pm 0.8 \pm 1.2 \mathrm{GeV} \quad \delta \mathrm{~m}_{\mathrm{t}} / \mathrm{m}_{\mathrm{t}} \sim 0.5 \% \\
\text { stat exp theo }
\end{gathered}
$$

Comparable to $\delta m_{t} / m_{t} \sim 0.28 \%$ from standard method(NLO+PS template@reco level)

## Top Yukawa coupling

- @ threshold tt-production, Higgs boson mediator in Htt loop at $\alpha_{\mathrm{s}}{ }^{2} \alpha$ $\rightarrow \mathrm{d} \sigma_{\mathrm{tt}} / \mathrm{dX}$ depends on $\mathrm{Yt}^{2}$


- Bkg: data driven multi jets (from control region), simulated single top , W/Z+jets,
- Reconstruct tt system by likelihood discriminant: extend to 3-jets!
- b-jets with largest b-tag weight $\rightarrow$ b-quarks (2 possibilities)
$\geqq 4$ jets
- Derive $v$ momentum: point on ellipse in 3mom $v$ space from ( $\mathrm{mw}_{\mathrm{w}, \mathrm{m}_{\text {top }} \text { ) intersection }}$ with minimum $\mathbf{D}_{v, \text { min }}$, distance of $(\mathrm{x}, \mathrm{y})$ projection from $\mathrm{pT}^{\text {miss }}$
- m(b, $\ell)>\mathrm{m}_{\text {top }} \rightarrow$ discard assignment
- Define discriminant
prob to reconstruct $: m w$ and mton $: \begin{array}{c:c}\text { correct } \mathbf{D}_{v, \text { min }} \\ :\end{array}$ 84\% (69\%)correct in 4-(5-)jets choose jet assignment with maximum discriminant
- find $\mathbf{D}_{v, \text { min }}$ for b-jet assignment
- Discard assignment with no $\mathrm{D}_{v, \text { min }}$
- Define discriminant



## Top Yukawa from $d N / d M_{t t} d\left(y_{t}-y_{a n t i-t}\right)$

Inclusion of 3-jets events: higher yield at sensitive low $\mathbf{M}_{\mathrm{tt}}$, reduce migration in $\mathbf{N}_{\mathrm{jet}}$ $\rightarrow$ smaller JES/Had uncertainties

- Build binned likelihood for $\mathbf{d N} / \mathbf{d} \mathbf{M}_{\mathbf{t t}} \mathbf{d}\left(\mathbf{y}_{\mathbf{t}}-\mathbf{y}_{\text {anti-t }}\right)$ as function of EW correction strength, $\mathrm{R}=\mathrm{N}_{\mathrm{tt}}\left(\mathrm{Y}_{\mathrm{t}}\right) / \mathrm{N}_{\mathrm{tt}}(\mathrm{POWHEG})$, a bin-dependent quadratic function of $\mathrm{Y}_{\mathrm{t}}$ for 3,4,5 iets and all events

$$
\mathcal{L}=\prod_{\text {bin } \in\left(M_{\tilde{\pi}, \mid}\left|\Delta y_{\tilde{f} \mid}\right|\right)} \mathcal{L}_{\text {bin }}=\prod_{\text {bin }} \operatorname{Pois}\left(n_{\mathrm{obs}}^{\mathrm{bin}} \mid s^{\mathrm{bin}}(\theta) \times R^{\mathrm{bin}}\left(Y_{\mathrm{t}}\right)+b^{\mathrm{bin}}(\theta)\right) \times \rho(\theta \mid \tilde{\theta}) \longrightarrow \begin{aligned}
& \text { Gaussian for } \\
& \text { nuisance par } \rightarrow \\
& \text { syst uncertainties }
\end{aligned}
$$

- Scan likelihood to find minimum and upper limit: $Y_{t}<1.67$ @ 95\% CL



Table 3: The expected and observed $95 \%$ CL limits on $Y_{t}$

| Channel | Expected 95\% CL | Observed 95\% CL |
| :--- | :---: | :---: |
| 3 jets | $Y_{\mathrm{t}}<2.17$ | $Y_{\mathrm{t}}<2.59$ |
| 4 jets | $Y_{\mathrm{t}}<1.88$ | $Y_{\mathrm{t}}<1.77$ |
| 5 jets | $Y_{\mathrm{t}}<2.03$ | $Y_{\mathrm{t}}<2.23$ |
| Combined | $Y_{\mathrm{t}}<1.62$ | $Y_{\mathrm{t}}<1.67$ |

## Searches for BSM with top

## Example: Search for $\mathbf{t t H}, \mathrm{H} \rightarrow \mathbf{b b} @ \sqrt{ } \mathrm{~s}=13 \mathrm{TeV}$

Given model for probability distributions for signal, bkg, systematic uncertainties (det $\otimes$ theory) build likelihood-based variable $f(\mu)$ to

- in the bkg only hypothesis ( $\mu=0$ ), derive the probability to observe a more discrepant f -value than the observed one $\rightarrow$ test bkg hypothesis
- in the sig+bkg hypothesis, derive [0,upper limit] interval that covers the "true" $\boldsymbol{\mu}$ value $95 \%$ of the times $\rightarrow$ test signal hypothesis
- Estimate signal strength from maximum likelihood fit
upper limit
sig+bkg assumption
bkg only assumption

signal strength
assume

|  | ATLAS Preliminary |  | $\sqrt{s}=13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$ |
| :---: | :---: | :---: | :---: |
| 125 GeV |  |  | $\begin{aligned} & m_{H}=125 \mathrm{GeV} \\ & \text { tot (stat syst) } \end{aligned}$ |
| Dilepton (two- $\mu$ combined fit) | ■ - | -0.2 | ${ }_{-1.05}^{+1.02}\left(\begin{array}{cc}+0.54 \\ -0.52 & +0.87 \\ -0.91\end{array}\right)$ |
| Single Lepton (two- $\mu$ combined fit) | - -1 | 0.9 | ${ }_{-0.62}^{+0.65}\left(\begin{array}{cc}+0.31 & +0.57 \\ -0.31 & -0.54\end{array}\right)$ |
| Combined | --1 | 0.8 | ${ }_{-0.61}^{+0.64}\left(\begin{array}{c}+0.29 \\ -0.29\end{array}+0.57\right)$ |
|  | $\begin{array}{lll}-1 & 0 & 1\end{array}$ | 2 | 456 |
| Best fit $\mu=\sigma^{\mathrm{ttH}} / \sigma_{\mathrm{SM}}^{\mathrm{ttH}}$ |  |  |  |

1.4 sigma significance w.r.t bkg only, excludes $\mu_{\mathrm{ttH}}>2$ at $95 \% \mathrm{CL}$

## Confidence Interval

## What is a "Confidence Interval?

- you see them all the time:

Want to say there is a $68 \%$ chance that the true value of $\left(\mathrm{mw}, \mathrm{m}_{\mathrm{t}}\right)$ is in this interval

- but that's P(theory|data)!

Correct frequentist statement is that the interval covers the true value $68 \%$ of the time

- remember, the contour is a function of the data, which is random. So it moves around from experiment to experiment

- Bayesian "credible interval" does mean probability parameter is in interval. The procedure is very intuitive:

$$
P(\theta \in V)=\int_{V} \pi(\theta \mid x)=\int_{V} d \theta \frac{f(x \mid \theta) \pi(\theta)}{\int d \theta f(x \mid \theta) \pi(\theta)}
$$

## Discovery in pictures

Discovery: test b-only (null: s=0 vs. alt: $s>0$ )

- note, one-sided alternative. larger N is "more discrepant"



## Upper limits in pictures

## What is meant by "95\% upper limit" ?

See the picture below?

- ie. increase s, until the probability to have data "more discrepant" is < 5\%


< more discrepant $\quad$ N events


## The sensitivity problem

The physicist's worry about limits in general is that if there is a strong downward fluctuation, one might exclude arbitrarily small values of $s$

- with a procedure that produces proper frequentist $95 \%$ confidence intervals, one should expect to exclude the true value of $s 5 \%$ of the time, no matter how small $s$ is!

$N$ events


## $C L_{s}$

To address the sensitivity problem, CLs was introduced

- common (misused) nomenclature: $\mathrm{CL}_{\mathrm{s}}=\mathrm{CL}_{\mathrm{s}+\mathrm{b}} / \mathrm{CL}_{\mathrm{b}}$
- idea: only exclude if $\mathrm{CL}_{\mathrm{s}}<5 \%$ (if $C L_{b}$ is small, $\mathrm{CL}_{s}$ gets bigger)

CLs is known to be "conservative" (over-cover): expected limit covers with $97.5 \%$

- Note: CLs is NOT a probability

$N$ events

$$
C L_{s}(\mu)=\frac{p_{\mu}}{1-p_{b}}
$$

the 95\% CL for mu is determined when prob to have higher vaule of test stat for the sign+bkg hypo is $5 \%$ of the prob to have higher test stat for the bkg option: so it means that the bkg only hypothesis can be rare i.e. its tail is small, but the sig+bkg is much rarer as its tail is only $5 \%$ of the bkg only tail.

## Follow LHC-HCG Combination Procedures

$$
h^{\lambda(\mu)=\frac{L(\mu, \hat{\hat{\theta}}(\mu))}{L(\hat{\mu}, \hat{\theta})}} C_{L_{s}}=\frac{\mathrm{p}_{\mu}}{1-\mathrm{p}_{b}}
$$


$\mathrm{CL}_{\mathrm{s}}$ to test signal hypothesis
$\mathrm{p}_{0}$ to test background hypothesis
$\hat{\mu}$ to estimate signal strength


## CMS top tagging

- top tagged jet: anti- $\mathrm{k}_{\mathrm{T}}(\mathrm{R}=0.8)$ jet with
- T3 $_{32}<0.65$
- $105<\mathrm{m}_{\text {jet,SoftDrop }}<\mathbf{2 1 0} \mathbf{G e V}$
*soft drop with $\beta=0, \mathbf{Z}_{\text {cut }}=0.1$
* $\mathrm{RO}=0.8$


# Recognising "highly boosted " top quarks 

## Math Appendix : Mass, Pт and DR

As we know that for any 4momentum

$$
E=m_{T} \cosh y, p_{x}, p_{y}, p_{z}=m_{T} \sinh y
$$

where

$$
m_{T}^{2}=m^{2}+p_{x}^{2}+p_{y}^{2} . \quad \text { and }
$$

The invariant mass $M$ of the two-particle system

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\ln \left(\frac{E+p_{z}}{m_{T}}\right)=\tanh ^{-1}\left(\frac{p_{z}}{E}\right) .
$$

$$
\begin{aligned}
& M^{2}=m_{1}^{2}+m_{2}^{2}+2\left[E_{T}(1) E_{T}(2) \cosh \Delta y-\boldsymbol{p}_{T}(1) \cdot \boldsymbol{p}_{T}(2)\right], \\
& \text { where } \\
& E_{T}(i)=\sqrt{\left|\boldsymbol{p}_{T}(i)\right|^{2}+m_{i}^{2}}, \\
& \text { This can be re-written as } \\
& M^{2}=m_{1}^{2}+m_{1}^{2}+2\left[E_{T}(1) E_{T}(2) \cosh \left(D_{y}\right)-\rho_{T}(1) \rho_{T}(2) \cos (D P h i)\right.
\end{aligned}
$$

Now if 1) the masses of the particles are small w.r.t. their momenta and 2) the splitting is quasi collinear i.e. cosDPhi $\sim 1-(\mathrm{DPhi})^{2} / 2$ and $\cosh (\mathrm{Dy}) \sim 1+\mathrm{Dy}^{2} / 2$, so $\mathrm{E}_{\mathrm{T}}(\mathrm{l}) \sim \mathrm{pt}_{\mathrm{T}}(\mathrm{i})$
http://en.wikipedia.org/wiki/Hyperbolic function

$$
M^{2} \sim 2\left[p_{T}(1) p_{T}(2)\left(1+D^{2} / 2-1+\left(D P_{i}\right)^{2} / 2\right)\right]=p_{T}(1) p_{T}(2)\left(\operatorname{Dy}^{2} / 2+\left(\operatorname{DPhi}^{2}\right)=p_{T}(1) p_{T}(2)\left(D_{R}(1,2)\right)^{2}\right.
$$

So
Labelling $i$ and $j$ such that $p_{t j}<p_{t i}$ and defining $z=p_{t j} / p_{t}$

$$
\left(p_{t}=p_{t i}+p_{t j}\right)
$$

$$
\begin{aligned}
m^{2} & \simeq z(1-z) p_{t}^{2} \Delta R_{i j}^{2} \\
d_{i j} & =z^{2} p_{t}^{2} \Delta R_{i j}^{2} \simeq \frac{z}{(1-z)} m^{2}
\end{aligned}
$$

## How to tag a boosted hadronic top quark?

Look into the jet substructure
(see Jose Juknevich, TOP2013)
 Use jet mass and product of $p^{*}$ angular separation of two hardest jet constituents from jet algorithm

## Declustering

Discard soft coherent radiation ("grooming") to reveal boosted objects:redefine jets

Soft-Drop mass, YSpliiter, ATLAS
TopTagger, Mass-Drop, CMS Top Tagger, HEPTopTagger, Trimming, Pruning...

## Pattern/Matrix El./Jet shapes

Recognize energy pattern in unchanged jet

TopTemplate Tagger, Shower deconstruction, N_subjettiness ratio...

## How to tag a boosted hadronic top quark? (II): Examples

Declustering: redefine jet

## Soft-drop Mass JHEPO5(2014)146

- Revert jet making steps $\rightarrow$ at each iter. break jet J in 2 subjets $\mathrm{j}_{1}$ and $\mathrm{j}_{2}$
- if $\frac{\min \left(p_{T 1}, p_{T 2}\right)}{p_{T 1}+p_{T 2}}>z_{\mathrm{cut}}\left(\frac{\Delta R_{12}}{R_{0}}\right)^{\beta}$ tune $\beta \mathbf{Z}_{\text {cut }}$
stop: $J$ is the final jet.
Otherwise keep \& decluster higher $\mathrm{p}_{\mathrm{T}}$ subjet
Recursively removes soft (small- $\mathrm{p}_{\mathrm{T}}$ ), wide angle (large $\Delta R$ ) radiation from initial state, pile up, rest of event

Mass of final jet closer to top mass, light quark/gluon jet peak lower




## How to tag a boosted hadronic top quark? (II): Examples

Example for $N=3$


How to tag a boosted hadronic top quark? (II): Performance

efficiency to tag top jet $\varepsilon$ s vs efficiency to mistake a light quark/gluon jet $\varepsilon_{\text {в }}$

(or rejection against light-gluon jet)
(Receiver Operating Characteristic curve)
sensitivity to energy from superposed collisions (pile-up)
efficiency to select the top final state vs
bkg

CMS-PAS-15-JME-15-002

CMS


Combination of different tagging schemes improves performance

## Search for excess in "boosted" tt̄ production vs $\mathrm{M}_{\mathrm{tt}}$

- single lepton trigger

JHEP 07 (2017) 001

- exactly 1 high $\mathbf{p}_{\mathbf{T}}(>50 \mathrm{GeV})$ central lepton (e, $\mu$ ) with 2d isolation vs fake leptons: $\Delta \mathrm{R}$ (lep, j) $>0.4$ or $\mathrm{p}_{\text {T,re( }}(\mathrm{lep}, \mathrm{j})>20 \mathrm{GeV}$ - $\mathbf{~ 9 0 \%}$ to $94 \%$ efficient
$\mathrm{j}=\Delta \mathrm{R}$-closest-to-lep anti-kT $(\mathrm{R}=0.4)$ jet
- very high $E_{T}$ miss $\left(p_{T}{ }^{\text {lep }}+E_{T}\right.$ miss $)$ $>120$ (150) GeV in e( $\boldsymbol{\mu}$ ) channel
- $\geq 2$ small-R anti- $\mathrm{k}_{\top}(\mathrm{R}=0.4)$ jet with leading $\mathrm{p}_{\mathrm{T}}>250(150 \mathrm{GeV})$ in $\mathrm{e}(\mu)$ chan, $\mathrm{P}_{\mathrm{T}}>30 \mathrm{GeV}$ for all jets
- only zero or 1 large-R top tagged jet: anti- $\mathrm{k}_{\mathrm{T}}(\mathrm{R}=0.8)$ with $\mathrm{T}_{32}<0.69$ and
$110<\mathrm{m}_{\mathrm{jet}, \mathrm{SoftDrop}}<210 \mathrm{GeV}$ (50\% $\varepsilon_{\mathrm{s}}, 3 \% \varepsilon_{\mathrm{B}}$ ) (orth. to fully had)
- b-tag on anti- $\mathrm{k}_{\top}(\mathrm{R}=0.4)$ ( $65 \%$ eff)

6 selection regions

| 2 flavours x | 1 top taq 0 t-taq \& 1 b-taq 0 t-tag \& 0 b-tag |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | events | 394 | 10447 | 8971 |
|  | tt purity(\%) | 85 | 82 | 24 |

I+jets qqlvbb

```
ingredients for leptonic W
```


(figure by A Ovcharova (UCSB))
ingredients for hadronic \& leptonic top

## EFT

## Effective field theory in a nutshell

We are all Wilsonians now ! (JPreskill, Caltech)

- Current absence of "light " new states in SM $\rightarrow$ possible new physics at higher scales/masses than observed
- Effective Field Theory: ultraviolet divergences = manifestation of new phys. Renormalisation= Lagrangian is "new phys scale"-dependent $\leftarrow$ absorb effects of fluctuations/momenta between observed and high new phys. scale in few parameters
(F Maltoni, LHCTopWG open meeting Nov 2016)
- SM measurements "searches for deviations predictions of SM in $\operatorname{dim}=4$.
dimensionless Wilson coefficients

$$
\mathcal{L}_{S M}^{(6)}=\mathcal{L}_{S M}^{(4)}+\sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}+\ldots
$$

- Parametric new degrees of freedom in terms of old
the BSM ambitions of the LHC Higgs/Top/SM physics programmes can be recast in a simple and powerful wav in terms of one statement:
determination of the couplings of the sm $\mathcal{L}$ UP to dim=6


## Initial attempt:Top Fitter

Fit $\sim 40$ measurements from LHC \& Tevatron ( five 1dim differential xsec for tt and single top too ) to predictions to derive 12 couplings

Predictions as polynomials

$$
f_{b}\left(\left\{C_{i}\right\}\right)=\alpha_{0}^{b}+\sum_{i} \beta_{i}^{b} C_{i}+\sum_{i \leq j} \gamma_{i, j}^{b} C_{i} C_{j}+\ldots
$$



Including covariances where provided by experiments otherwise $\rho_{\mathrm{i}, \mathrm{j}}=\boldsymbol{\delta}_{\mathrm{i}, \mathrm{j}}$
fit each operator one at the time fit globally and marginalise over all other parameters

## Buckley et al, TopFitterColl, arxiv:1612.02294

Phys.Lett.B 763 (2016) 9


All operators are consistent with zero at 95\% CL

Initial attempt:Top Fitter
Buckley et al, TopFitterColl, arxiv:1612.02294

Fractional improvement on 95\% CL confidence interval
Present bound on coefficients are weak: resulting Scale close to high energy range of $\mathrm{d} \sigma_{\mathrm{t}} / \mathrm{dX}$ where EFT breaks down


Isolate region that are most sensitive to tails : fit resolved and boosted
More data give modest gain in boosted.
$10 \%$ sys improvement \& 300/fb
$10 \%$ sys improvement \& 3000/fb

Resolved selection


Boosted selection


