BACKUP

Top quark physics at the LHC. Selected highlights

Laboratory Seminar LPNHE Sorbonne Universite Paris 24th June 2019

Francesco Spano

ROYAL

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

General top quark features

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

top quark production

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

The SM Lagrangian (2019)

The SM Lagrangian (2019)

The Standard Model: QF theory invariant under $SU(2) \times U(1) \times SU(3)$

Z=- LE ENV + i UV + h.c.

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

+ Depl2 - V(\$) + Yi yii Yi\$+ h.c.

reminder(I)

observed

Gauge fields are in kinetic terms and co n. derivative D µ

Spontaneous symmetry breaking: the Lagrangian shows the possibility that at a given energy scale, the symmetry of the observed physical states is different from the symmetry of the Lagrangian interactions, by realising one of multiple asymmetric configurations (minimum potential energy state)

spin1/2 fermions (u,c,d,s,b,..) spin-1 W&Z bosons spin-0 g₂ SU(2) • negative chirality (F_L) state **couple** to W, emerge as massive H=Higgs gauge *Z* by covariant derivative by coupling to H boson coupling • obtain mass from **assuming gauge** photon remains emerges invariant coupling terms (Yukawa massless $\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \mathbf{V} + \mathbf{H} \end{pmatrix}$ coupling) **to** ϕ : $F_L \phi f_R = y (v + H) f_L f_R$ $L_{W,Z} \sim g_2^2 (v + H)^2 W^+_{\mu} W^{-\mu}$ $\mathcal{L}_Y = -Y_{ij}^d \,\overline{Q_{Li}^I} \,\phi \, d_{Rj}^I - Y_{ij}^u \,\overline{Q_{Li}^I} \,\epsilon \,\phi^* u_{Rj}^I + \text{h.c.}$ $+g_2^2/8\cos\theta_W Z_\mu Z^\mu$ Diagonalise Y and replace ϕ from SSB $M_W = \frac{1}{2}g_2 v = \left(\frac{\sqrt{2}g^2}{8G_{\mu}}\right)^{1/2} M_Z \,\cos\theta_W = M_W$ $L_f = m_f f_L f_{R.} + y_f H f_L f_{R.} / \sqrt{2} + h.c$ fermion-Hlggs mass term interaction term _ f $m_f = y_f v / \sqrt{2}$ H $v = \frac{1}{(\sqrt{2}G_{u})^{1/2}} \longrightarrow \sqrt{-246} \text{ GeV}$

LPNHE Seminar, Sorbonne Université, 24th June 2019

Top production @ LHC: differential growth

JHEP{1208),2012:10

 Cross sections in "tails" increase more rapidly than inclusive value

R^{th,nnpdf} = 14TeV to 8 TeV xsec ratios

	Cross Section	$R^{\mathrm{th,nnpdf}}$	$\delta_{ m PDF}(\%)$	δ_{lpha_s} (%)	$\delta_{\rm scales}$ (%)
ſ	$t\bar{t}/Z$	2.12	± 1.3	-0.8 - 0.8	-0.4 - 1.1
ł	$t\bar{t}$	3.90	± 1.1	-0.5 - 0.7	-0.4 - 1.1
	$t\bar{t}(M_{tt} \ge 1 \text{ TeV})$	8.18	± 2.5	-1.3 - 1.1	-1.6 - 2.1
V	$t\bar{t}(M_{\rm tt} \ge 2 { m TeV})$	24.9	\pm 6.3	-0.0 - 0.3	-3.0 - 1.1

Top quark predictions@ LHC- the NNLO revolution : single top

 $V_{l,h,q}$ = three corrections to light quark line, heavy quark line and decay including corrections from two loop, one loop+1 real emission, two real emission

Phys. Rev. D 94, 071501 (2016)

inclusive [pb]	LO	NLO	NNLO
t quark	$143.7^{+8.1\%}_{-10\%}$	$138.0^{+2.9\%}_{-1.7\%}$	$134.3^{+1.0\%}_{-0.5\%}$
\overline{t} quark	$85.8^{+8.3\%}_{-10\%}$	$81.8^{+3.0\%}_{-1.6\%}$	$79.3^{+1.0\%}_{-0.6\%}$

2jets, 1b-jet antik⊤ R=0.5 o _{⊤,jet} >40 GeV, $ \eta_{\rm jet} $ <5 (2.4 for b-jet)									
$p_{T,lep} > 30 \text{ GeV} \eta_{lep} < 2.4$									
fidu	icial [pb]	LO	NLO	NNLO					
. 1	total	$4.07^{+7.6\%}_{-9.8\%}$	$2.95^{+4.1\%}_{-2.2\%}$	$2.70^{+1.2\%}_{-0.7\%}$					
t quark	corr. in pro.		-0.79	-0.24					
	corr. in dec.		-0.33	-0.13					
, 1	total	$2.45^{+7.8\%}_{-10\%}$	$1.78^{+3.9\%}_{-2.0\%}$	$1.62^{+1.2\%}_{-0.8\%}$					
t quark	corr. in pro.		-0.46	-0.15					
	corr. in dec.		-0.21	-0.08					

stable values reduced uncertainties

Status of Search for observation of 4 top quarks

Sub-Leading: $O(\alpha_S^2 y_t^4)$, $O(\alpha_S^2 \alpha^2)$

 σ NLO(tttt) = 11.97 fb at NLO QCD + NLO QED 13 TeV

Significance obs. (exp.) [σ]	ATLAS 36 fb ⁻¹	CMS 36 fb ⁻¹	CMS 139 fb ⁻¹		
SS/ML	3.0 (0.8) <u>1</u>	1.6 (1.0) <u>3</u>	2.6 (2.7) <u>6</u>		
1L/OS	1.0 (0.6) <u>2</u>	0.0 (0.4) 4	_		
Combination	2.8 (1.0) <u>2</u>	1.4 (1.1) <u>4</u>	_		

(table and diagrams by Nedaa Alexandra Asbah)

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

• Bkg-subtract & Unfold to parton and particle level $\rightarrow d\sigma_{tt}/dX \Rightarrow$

Extreme test of SM: double and triple diffxsec - dilepton+jets

CMS-TOP-18-004, submitted to Eur. Phys J. C

- 13 TeV Dilepton selection as JHEP 02 (2019) 149
- Extra jets: central, high p_T jets with $\Delta R(e-jet, lep) = \Delta R(e-jet, b-jet) > 0.4$
- Bkg: data-driven Z+jets, simulated tW,W/Z jets, other tt
- Reconstruct tt system with dilepton kinematic reco

standard for 2d distributions

- M_{tt} vs { $p_{T,top} |y_{top}| |y_{tt}| \Delta \eta(t,t), \Delta \varphi(t,t), p_{T,tt}$ }
- [|y_{top}|, p_{T,top}]

13

loose: for 3d distributions

- assume $\mathbf{p}_{\mathsf{T}}^{\mathsf{miss}} = \mathbf{2} \nu + p_{\mathsf{Z}}^{\mathsf{miss}} = \mathbf{p}(\boldsymbol{\ell} + \boldsymbol{\ell}), \mathbf{E}(\boldsymbol{\ell} + \boldsymbol{\ell}),$ m(2 *v*)>0, m(WW)≧ 2 M_W
- keep (ℓ , jet) assignment with maximum p_T jets
- [M_{tt}, y_{tt}, N_{extra jets}] 2 bins (0,1) and 3 bins (0,1,2)

francesco.spano@cern.ch Top Physics @ LHC: selected highlights tspasingization to incide sy ibu whip to be destand a subration for the subration of

ASSOCIATED TO CALLED A THE PROPERTY AND A THE PROPE rchitte vards the values for the state of the state towards the values dente the source of the source of the non-diagonate of the non-diagonate of the source of the s

ependychanasinen word en de staten and the staten a fratere so the detail

where U4 jets (200 (14)) Sec a USEs ontuiting U ATLAS vol 55 2019 03002 1000 and consequently the estimate 2001 s this solution always working

Example $d\sigma_{tt}/dp_{T,top(-jet)}$ I+jets @ particle level (PL)- \sqrt{s} =8 TeV

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

Special reasons: measure *σ*_{tt} - dilepton @ √s =13 TeV

Table 1: The χ^2 values (taking into account data uncertainties and ignoring theoretical uncertainties) and dof of the measured cross sections with respect to the predictions of various MC generators.

Cross section	dof		χ^2			
variables	uu	'POW+PYT'	'POW+HER'	'MG5+PYT'		
$[y(t), p_{\mathrm{T}}(t)]$	15	57	18	35		
$[M(t\bar{t}), y(t)]$	15	26	18	36		
$[M(t\bar{t}), y(t\bar{t})]$	15	28	17	23		
$[M(t\bar{t}),\Delta\eta(t,\bar{t})]$	11	66	68	124		
$[M(t\bar{t}),\Delta\phi(t,\bar{t})]$	15	14	18	10		
[$M(tar{t})$, $p_{ m T}(tar{t})$]	15	21	22	29		
[$M(t\bar{t})$, $p_{\mathrm{T}}(t)$]	15	77	34	68		
$[N_{\rm jet}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$	23	34	31	34		
$[N_{\rm jet}^{0,1,2+}, M(t\bar{t}), y(t\bar{t})]$	35	50	66	63		

Figure 13: The theoretical uncertainties for $[N_{jet}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$ (upper) and $[N_{jet}^{0,1,2+}, M(t\bar{t}), y(t\bar{t})]$ (lower) cross sections, arising from PDF, $\alpha_S(m_Z)$, and m_t^{pole} variations, as well as the total theoretical uncertainties, with their bin-averaged values shown in brackets. The bins are the same as in Figs. 10 and 11.

Measuring SM variables: gluon PDF

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

2

Looking at the future: top quark mass from $d\sigma_{tt}/dXdY$

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

Extreme test of SM:double differential cross sections

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

Phys. Rev. D 97, 112003 (2018)

Absolute @ particle level

	Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	
		POWHEG+P8 with unc.		SHERPA	SHERPA with unc.		powheg+P8	
FXFX has up to 2	Additional jets	1.52/6	0.958	27.3/6	< 0.01	10.1/6	0.121	
partons @NLO: it is	Additional jets vs. $p_{\rm T}(t_{\rm h})$	35.1/44	0.830	64.6/44	0.023	71.6/44	< 0.01	
more consistent	Additional jets vs. $M(t\bar{t})$	27.5/36	0.845	68.9/36	< 0.01	38.8/36	0.345	
with 2d diffxsec	Additional jets vs. $p_{\rm T}(t\bar{t})$	64.6/29	< 0.01	181/29	< 0.01	175/29	< 0.01	
even without theory	$p_{\rm T}({\rm jet})$	70.2/47	0.016	374/47	< 0.01	133/47	< 0.01	
uncortaintios	$ \eta(\text{jet}) $	120/70	< 0.01	174/70	< 0.01	171/70	< 0.01	
	ΔR_{j_t}	60.9/66	0.655	215/66	< 0.01	168/66	< 0.01	
	$\Delta R_{\rm t}$	64.0/62	0.405	229/62	< 0.01	121/62	< 0.01	
p _{T,tt} is only		S	HERPA	POWHE	G+H++	MG5_aMG	C@NLO+P8 FxFx	
observable with	Additional jets	63.0/6	< 0.01	34.1/6	< 0.01	11.1/6	0.086	
global inconsistency	Additional jets vs. $p_{\rm T}(t_{\rm h})$	88.5/44	< 0.01	230/44	< 0.01	53.4/44	0.156	
	Additional jets vs. $M(t\bar{t})$	112/36	< 0.01	300/36	< 0.01	55.1/36	0.022	
	Additional jets vs. $p_{\rm T}(t\bar{t})$	285/29	< 0.01	223/29	< 0.01	122/29	< 0.01	
	$p_{\rm T}({\rm jet})$	768/47	< 0.01	624/47	< 0.01	111/47	< 0.01	
	$ \eta(\text{jet}) $	214/70	< 0.01	259/70	< 0.01	133/70	< 0.01	
	$\Delta R_{\rm jt}$	334/66	< 0.01	959/66	< 0.01	67.0/66	0.441	
	$\Delta R_{\rm t}$	316/62	< 0.01	483/62	< 0.01	78.9/62	0.073	

kine vs jet multiplicities and final state objects

theo uncertainties available only for POWHEG+PY & SHERPA

Additional jets = jet multiplicities up to 5 additional jets with p_T > 30 GeV

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

Phys. Rev. D 97, 112003 (2018)

Normalised @ particle level

	Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value
		POWHEG	+P8 with unc.	SHERPA	with unc.	РО	WHEG+P8
	Additional jets	2.20/5	0.820	26.4/5	< 0.01	12.5/5	0.029
• FxFx has up to 2	Additional jets vs. $p_{\rm T}(t_{\rm h})$	28.6/43	0.955	35.8/43	0.773	69.7/43	< 0.01
partons @NLO: it is	Additional jets vs. $M(t\bar{t})$	24.5/35	0.908	46.1/35	0.100	38.9/35	0.298
more consistent	Additional jets vs. $p_{\rm T}(t\bar{t})$	73.3/28	< 0.01	122/28	< 0.01	164/28	< 0.01
	$p_{\mathrm{T}}(\mathrm{jet})$	75.3/46	< 0.01	184/46	< 0.01	134/46	< 0.01
with 2d diffxsec	$ \eta(\text{jet}) $	141/69	< 0.01	162/69	<0.01	160/69	< 0.01
even without theory	$\Delta R_{ m j_t}$	69.9/65	0.317	157/65	<0.01	173/65	< 0.01
uncertainties	ΔR_{t}	82.2/61	0.036	163/61	<0.01	126/61	<0.01
		S	HERPA	POWHE	G+H++	MG5_aMG	C@NLO+P8 FxFx
 p_{T,tt} is only 	Additional jets	62.4/5	< 0.01	35.4/5	< 0.01	9.31/5	0.097
observable with	Additional jets vs. $p_{\rm T}(t_{\rm h})$	79.8/43	< 0.01	194/43	< 0.01	51.4/43	0.178
alohal inconsistency	Additional jets vs. $M(t\bar{t})$	86.3/35	< 0.01	287/35	< 0.01	48.2/35	0.068
giobal inconsistency	Additional jets vs. $p_{\rm T}(t\bar{t})$	282/28	< 0.01	232/28	< 0.01	112/28	< 0.01
	$p_{\mathrm{T}}(\mathrm{jet})$	692/46	< 0.01	623/46	< 0.01	112/46	< 0.01
	$ \eta(\text{jet}) $	213/69	< 0.01	255/69	< 0.01	121/69	< 0.01
	$\Delta R_{ m j_t}$	301/65	< 0.01	976/65	< 0.01	65.2/65	0.469
	$\Delta R_{ m t}$	325/61	< 0.01	506/61	< 0.01	74.7/61	0.112

kine vs jet multiplicities and final state objects

theo uncertainties available only for POWHEG+PY & SHERPA

Additional jets = jet multiplicities up to 5 additional jets with $p_T > 30 \text{ GeV}$

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

	Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2 /dof <i>p</i> -value
	(POWHEG	+P8 with und.	РО	wheg+P8	NNLO QCD+NLO EW
Absolute	$p_{\mathrm{T}}(t_{\mathrm{high}})$	16.4/12	0.173	27.4/12	< 0.01	
	$p_{\mathrm{T}}(t_{\mathrm{low}})$	22.4/12	0.033	42.7/12	< 0.01	
@ parton	$p_{\mathrm{T}}(\mathfrak{t}_{\mathrm{h}})$	16.4/12	0.175	24.0/12	0.020	5.13/12 0.953
ı Tarral	$ y(\mathbf{t}_{\mathbf{h}}) $	1.28/11	1.000	1.41/11	1.000	2.27/11 0.997
ievei	$p_{ m T}({ m t}_\ell)$	22.2/12	0.035	38.3/12	< 0.01	9.56/12 0.654
	$ y(t_\ell) $	2.04/11	0.998	2.42/11	0.996	8.14/11 0.700
	$M(t\bar{t})$	7.67/10	0.661	11.6/10	0.314	24.7/10 <0.01
	$p_{ m T}({ m t}ar{ m t})$	5.38/8	0.717	46.5/8	< 0.01	
	$ y(t\bar{t}) $	3.98/10	0.948	5.66/10	0.843	9.26/10 0.507
	$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	23.6/44	0.995	41.6/44	0.577	
inconsistency is	$M(t\bar{t}) vs. y(t\bar{t}) $	20.6/35	0.975	35.0/35	0.469	
reabsorbed if	$p_{\rm T}({ m t_h})$ vs. $M({ m t\bar{t}})$	38.9/32	0.188	59.3/32	< 0.01	
theory		POW	heg+H++	MG5_aMG	C@NLO+P8 Fx	Fx —
uncertainties are	$p_{\mathrm{T}}(\mathfrak{t}_{\mathrm{high}})$	6.60/12	0.883	16.3/12	0.180	
included	$p_{\rm T}({\rm t_{low}})$	28.5/12	< 0.01	15.3/12	0.225	
	$p_{\mathrm{T}}(\mathfrak{t}_{\mathrm{h}})$	5.09/12	0.955	11.0/12	0.530	
	$ y(t_h) $	2.39/11	0.997	2.21/11	0.998	
	$p_{ m T}({ m t}_\ell)$	6.55/12	0.886	17.4/12	0.136	theory uncertainties
	$ y(t_\ell) $	2.54/11	0.995	3.99/11	0.970	
	$M(t\bar{t})$	4.16/10	0.940	12.1/10	0.275	available only for
	$p_{ m T}({ m t}ar{ m t})$	55.0/8	< 0.01	26.8/8	< 0.01	POWHEG+PY8
	$ y(t\bar{t}) $	11.9/10	0.292	8.92/10	0.540	
	$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	57.9/44	0.077	40.2/44	0.634	
	$\frac{M(tt) vs y(t\bar{t}) }{(t\bar{t})}$	408/35	0 229	587/35	< 0.01	
	$p_{\rm T}({\rm t_h})$ vs. $M({\rm t\bar{t}})$	93.0/32	<0.01	166/32	< 0.01	

Phys. Rev. D 97, 112003 (2018)

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

<u>Phys. Rev. D 97, 112003 (2018)</u>

	Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2 /dof <i>p</i> -value
		POWHEG	G+P8 with unc.	РО	WHEG+P8	NNLO QCD+NLO EW
Normalised	$p_{\mathrm{T}}(t_{high})$	18.4/11	0.073	24.4/11	0.011	
	$p_{\rm T}({\rm t_{low}})$	16.6/11	0.120	40.0/11	< 0.01	
@ parton	$p_{\mathrm{T}}(\mathrm{t_h})$	16.1/11	0.138	22.9/11	0.018	4.99/11 0.932
	$ y(\mathbf{t}_{\mathbf{h}}) $	1.25/10	1.000	1.33/10	0.999	2.23/10 0.994
level	$p_{ m T}({ m t}_\ell)$	23.6/11	0.014	33.0/11	< 0.01	8.67/11 0.652
	$ y(t_\ell) $	2.03/10	0.996	2.29/10	0.994	8.18/10 0.611
	$M(t\overline{t})$	7.78/9	0.556	11.3/9	0.259	24.4/9 <0.01
	$p_{ m T}(tar{ m t})$	5.52/7	0.597	40.9/7	< 0.01	
	$ y(t\overline{t}) $	3.89/9	0.919	5.36/9	0.802	9.29/9 0.411
• POWHEG +PY8	$ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	22.7/43	0.995	38.8/43	0.654	
inconsistency is	$M(t\bar{t}) vs. y(t\bar{t}) $	20.2/34	0.970	33.2/34	0.507	
reabsorbed if	$p_{\rm T}({\rm t_h}) vs. M({\rm t\bar{t}})$	34.4/31	0.309	57.4/31	<0.01	
theory		POW	HEG+H++	MG5_aM	C@NLO+P8 FxF	x —
uncertainties are	$p_{\mathrm{T}}(t_{\mathrm{high}})$	4.10/11	0.967	13.2/11	0.283	
included	$p_{\mathrm{T}}(t_{\mathrm{low}})$	17.4/11	0.096	11.9/11	0.370	
	$p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	3.61/11	0.980	9.95/11	0.535	
	$ y(t_h) $	1.63/10	0.998	1.11/10	1.000	
	$p_{ m T}({ m t}_\ell)$	8.36/11	0.680	16.4/11	0.128	theory uncertainties
	$ y(t_\ell) $	1.57/10	0.999	2.48/10	0.991	
	$M(t\overline{t})$	3.57/9	0.937	7.61/9	0.574	available only for
	$p_{\mathrm{T}}(\mathrm{t}\mathrm{ar{t}})$	43.4/7	< 0.01	20.5/7	<0.01	POWHFG+PY8
consistent	$ y(t\bar{t}) $	5.94/9	0.746	4.65/9	0.864	
	$ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	32.6/43	0.877	27.8/43	0.965	
with absolute	$M(tt) vs. y(t\bar{t}) $	27.2/34	0.788	40.2/34	0.214	
	$p_{\rm T}({\rm t_h})$ vs. $M({\rm tt})$	67.9/31	< 0.01	77.9/31	< 0.01	

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

	Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value
Absolute		POWHEG	+P8 with unc.	SHERPA	with unc.	РО	wheg+P8
	$p_{\mathrm{T}}(\mathrm{t_h})$	15.9/12	0.197	7.21/12	0.844	29.5/12	<0.01
@ particle	$ y(\mathbf{t}_{\mathrm{h}}) $	1.96/11	0.999	1.48/11	1.000	2.23/11	0.997
	$p_{ m T}({ m t}_\ell)$	27.0/12	< 0.01	22.3/12	0.034	80.2/12	< 0.01
ievei	$ y(t_\ell) $	4.55/11	0.951	5.07/11	0.928	4.99/11	0.932
	$M(tar{t})$	5.83/10	0.829	2.40/10	0.992	9.07/10	0.525
• POWHEG +PY8	$p_{\mathrm{T}}(\mathrm{t}ar{\mathrm{t}})$	4.96/8	0.761	28.9/8	< 0.01	41.2/8	< 0.01
inconsistency is	$ y(t\bar{t}) $	5.93/10	0.821	6.63/10	0.760	8.61/10	0.570
recharked if	$ y(\mathbf{t}_{\mathbf{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathbf{h}})$	35.7/44	0.810	29.6/44	0.953	64.1/44	0.025
	$M(t\bar{t})$ vs. $ y(t\bar{t}) $	25.9/35	0.867	24.2/35	0.914	56.2/35	0.013
theory	$p_{\mathrm{T}}(\mathrm{t_h})$ vs. $M(\mathrm{t\bar{t}})$	47.4/32	0.039	57.2/32	< 0.01	73.2/32	< 0.01
uncertainties are		S	HERPA	POWHE	G+H++	MG5_aMG	C@NLO+P8 FxFx
included	$p_{\rm T}(t_{\rm h})$	13.5/12	0.335	32.1/12	< 0.01	17.4/12	0.137
	$ y(t_h) $	2.32/11	0.997	4.89/11	0.936	3.16/11	0.988
 FxFx is the most 	$p_{\rm T}({\rm t}_{\ell})$	39.4/12	< 0.01	21.8/12	0.040	47.7/12	< 0.01
consistent already	$ y(t_{\ell}) $	5.54/11	0.902	4.04/11	0.969	7.22/11	0.781
without theory	$M(t\bar{t})$	2.86/10	0.985	52.8/10	< 0.01	5.45/10	0.859
uncertainties	$p_{\rm T}({ m t}{ m t})$	68.7/8	< 0.01	46.8/8	< 0.01	21.3/8	< 0.01
	$ y(t\bar{t}) $	12.1/10	0.276	18.6/10	0.046	8.13/10	0.616
	$ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	48.3/44	0.305	116/44	< 0.01	44.9/44	0.434
consistent	$M(t\bar{t})$ vs. $ y(t\bar{t}) $	41.5/35	0.208	219/35	< 0.01	55.7/35	0.014
with absolute	$p_{\rm T}({ m t_h})$ vs. $M({ m t\bar{t}})$	66.5/32	<0.01	152/32	< 0.01	48.9/32	0.028

theory uncertainties available only for POWHEG+PY8 & SHERPA francesco.spano@cern.ch Top Physics @ LHC: selected highlights

Normalicod							
Normanseu	Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value
@ particle		POWHEG	+P8 with und.	SHERPA	with unc.	РО	WHEG+P8
laval	$p_{\mathrm{T}}(\mathfrak{t}_{\mathrm{h}})$	14.9/11	0.186	6.99/11	0.800	29.4/11	< 0.01
level	$ y(\mathbf{t}_{\mathbf{h}}) $	1.77/10	0.998	1.25/10	1.000	1.90/10	0.997
	$p_{ m T}({ m t}_\ell)$	25.3/11	< 0.01	28.0/11	< 0.01	74.0/11	< 0.01
	$ y(\mathfrak{t}_\ell) $	4.50/10	0.922	4.88/10	0.899	5.00/10	0.891
・POWHEG +PY8	$M(tar{t})$	5.69/9	0.770	2.17/9	0.989	9.33/9	0.407
inconsistency is	$p_{ m T}({ m t}ar{ m t})$	5.36/7	0.616	12.5/7	0.086	34.8/7	< 0.01
reabsorbed if	$ y(t\bar{t}) $	5.79/9	0.761	6.68/9	0.671	8.48/9	0.486
theory	$ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	27.6/43	0.967	32.7/43	0.872	53.8/43	0.126
uncortaintios aro	$M(t\bar{t}) vs. y(t\bar{t}) $	26.5/34	0.817	22.7/34	0.931	54.0/34	0.016
included	$p_{\rm T}({ m t_h})$ vs. $M({ m t\bar{t}})$	42.5/31	0.082	39.2/31	0.149	64.8/31	< 0.01
IIICIUUEU		S	HERPA	POWHE	G+H++	MG5_aMG	C@NLO+P8 FxFx
• EvEx is the most	$p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	13.9/11	0.238	34.1/11	< 0.01	15.2/11	0.173
	$ y(\mathbf{t}_{\mathbf{h}}) $	1.60/10	0.999	3.81/10	0.955	2.73/10	0.987
consistent already	$p_{ m T}({ m t}_\ell)$	37.3/11	< 0.01	25.0/11	< 0.01	40.5/11	< 0.01
without theory	$ y(t_\ell) $	5.28/10	0.872	3.92/10	0.951	5.54/10	0.853
uncertainties	$M(tar{t})$	2.99/9	0.965	51.7/9	< 0.01	4.98/9	0.836
	$p_{ m T}({ m t}ar{ m t})$	59.4/7	< 0.01	43.8/7	< 0.01	17.9/7	0.013
	$ y(t\bar{t}) $	11.3/9	0.253	18.2/9	0.033	8.37/9	0.498
	$ y(\mathbf{t}_{\mathrm{h}}) $ vs. $p_{\mathrm{T}}(\mathbf{t}_{\mathrm{h}})$	47.7/43	0.287	108/43	< 0.01	40.9/43	0.561
consistent	$M(t\bar{t}) vs. y(t\bar{t}) $	37.6/34	0.308	234/34	< 0.01	55.5/34	0.011
	$p_{\rm T}({ m t_h})$ vs. $M({ m t\bar{t}})$	63.2/31	< 0.01	126/31	< 0.01	43.0/31	0.074
with adsolute							

theory uncertainties available only for POWHEG+PY8 & SHERPA

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

Parton distributions functions and top quark : the connection (II)

In c.m. frame of pp system, the parton momentum components are written

$$p_1^{\mu} = \frac{\sqrt{s}}{2}(x_1, 0, 0, x_1) \quad p_2^{\mu} = \frac{\sqrt{s}}{2}(x_2, 0, 0, -x_2) \; .$$

Using conservation of momentum & _ parsons in the leading order picture for ff \rightarrow tt, the rapidity of the top quark pair is

$$y(t\overline{t}) = \frac{1}{2} \ln(\frac{E(t\overline{t}) + p_z(t\overline{t})}{E(t\overline{t}) - p_z(t\overline{t})}) = \frac{1}{2} \ln(\frac{x_1}{x_2})$$
$$\hat{s} = x_1 x_2 s = M(t\overline{t})$$

 $x_1 = \frac{M(t\bar{t})}{\sqrt{s}}e^y \quad x_2 = \frac{M(t\bar{t})}{\sqrt{s}}e^{-y}$

 maximum probed x at 13 TeV is ~0.25 given the bins of the rapidity and tt mass distributions ranges (assume massless partons)

The Top p_T saga, including the new chapter @13 TeV

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

What we measured at $\sqrt{s}=7,8$ TeV: **X** in $d\sigma_{(tt/t)}/dX$

Overview of current results at LHC

- Increasing variety of differential cross section results
 - More measurements in fiducial PS, exploiting particle-level object definition and pseudo-top
 - Pioneering results in boosted regime, first absolute differential cross sections appearing

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

parton level

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

ATLAS vs CMS vs NNLO Theory :1/ $\sigma_{tt} d\sigma_{tt}/dp_{T,top} @ \sqrt{s} = 8 \text{ TeV}$

parton level

• ATLAS & CMS measurements are generally consistent with each other

- CMS shows slight slope
- Using latest predictions with dynamic factorisation & renormalization scale

Qualitative statement, no statistical test performed yet

The Top p⊤ saga: NLO+PS @13 TeV

рт, top

Parton level vs NLO+PS

francesco.spano@cern.ch Top Physics @ I HC: selected highlights

The Top p⊤ saga: dilepton NLO+PS @13 TeV

<u>cesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

mind p_T range: up to 500 GeV **Dilepton differential CMS-TOP-17-014**

Javier Fdez.

francesco.spano@cern.ch

June 2018

Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

12

particle level

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

Extreme test of SM: the top p_T "saga"

Particle level vs NLO+PS

Tension with most NLO+PS predictions: slope w.r.t measurement

Extreme test of SM: the top p_T "saga"

Particle level vs NLO+PS

- Tension with most NLO+PS predictions: slope w.r.t measurement.
- Less tension than in "resolved", larger statistical uncertainties

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

. .

N _{dof} =5 0 6	normalised		absolute		
NLO+PS	χ 2	p-val	χ 2	p-val	
PW+PY8	128	<10 ⁻³	52	<10 ⁻³	
PW+H++	6	0.306	3	0.830	
MG5+PY8	45	<10 ⁻³	17	0.008	

no theory uncertainties included

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

particle level

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

43

Extreme test of SM: the top p_T "saga"

Particle level vs NLO+PS

Tension with most NLO+PS predictions: slope w.r.t measurement

Extreme test of SM: the top p_T "saga"

Particle level vs NLO+PS

- Tension with most NLO+PS predictions: slope w.r.t measurement.
- Less tension than in "resolved", larger statistical uncertainties

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

• -

N _{dof} =5 o 6	normalised		absolute		
NLO+PS	χ 2	p-val	χ 2	p-val	
PW+PY8	128	<10 ⁻³	52	<10 ⁻³	
PW+H++	6	0.306	3	0.830	
MG5+PY8	45	< 10 ⁻³	17	800.0	

no theory uncertainties included

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

In all-jets final state

ALL HADRONIC CMS @ 13 TeV (still preliminary) 2 900 800

Resolved

- Selection: at least 6 jets, 2 b tagged.
- Perform kinematic fit for $t\overline{t}$ reconstruction (based on W and top mass constrains)
- Accept events with $150 < m_{\rm t}^{\rm fit} < 200 \,{\rm GeV}$, and fit probability greater than 0.02.

Boosted

- 1 jet $p_{\mathrm{T}} > 200 \,\mathrm{GeV}$ and 1 jet $p_{\mathrm{T}} > 450 \,\mathrm{GeV}$
- each jet: softdrop mass > 50 GeV, b tagged subjet, n-jettiness requirements.

Leading jet mass (GeV) Template Fit: Signal template from MC, background template from data by inverting b tagging.

Soft $p_{\rm T}(t)$ confirmed in all-jets channel and persisting in boosted regime.

2.53 fb⁻¹ (13 TeV

 Data Signal □QCD ©Fit Unc

300

 Data Signal Fit Unc.

250

Reconstructed top mass (GeV)

200

150

200

CMS

700Ē

500 400Ē

300 200

100

> 250 CMS 9 200 Prelimin \$ 200 Stressed Stress

Events 600Ē

Summary differential cross sections

- Measurements at 7, 8, and 13 TeV in various $t\bar{t}$ decay channels.
- *p*_T(t) observed softer, but compatible with standard model within uncertainties in measurement and theory.
- Persistent in boosted regime $p_{\rm T}(t) > 400 \,{\rm GeV}$.

top pair associated production

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

50

tt+photon: latest ATLAS

ATLAS $\sqrt{s} = 13$ TeV, 36.1 fb ⁻¹			Total Statistical Theory
		Total	(stat sys)
e+jets		1.07 ^{+0.0} -0.0	9 (+0.03 +0.08) 8 (-0.03 -0.08)
μ +jets	H H	1.01 +0.0 -0.0	9 (+0.03 +0.09) 9 (-0.03 -0.08)
$\mu\mu$	₩	1.11 +0.1 -0.1	3 (+0.09 +0.10) 2 (-0.08 -0.08)
eμ	H-O-H	1.09 ^{+0.0} -0.0	8 (+0.05 +0.06) 8 (-0.05 -0.06)
ee	H-+-H	1.00 +0.1 -0.1	4 (+0.10 +0.10) 3 (-0.09 -0.09)
Single-lepton	H-M-H	1.05 +0.0 -0.0	8 (+0.02 +0.08) 8 (-0.02 -0.08)
Dilepton	H●H	1.09 ^{+0.0} -0.0	8 (+0.04 +0.06) 7 (-0.04 -0.06)
Combined (5 channels)	Her	1.06 +0.0 -0.0	6 (+0.02 +0.06) 6 (-0.02 -0.06)
.0 0.5	1.0	1.5	2.0
			$\sigma_{t\bar{t}\gamma}/\sigma_{t\bar{t}\gamma}^{NLO}$

Eur. Phys. J. C 79 (2019) 382

$$\sigma_{\text{fid.}}^{\text{SL}} = 521 \pm 9 \text{ (stat.)} \pm 41 \text{ (syst.) fb}$$

in agreement with NLO prediction: $\sigma_{\rm fid.}^{\rm pred} = 495 \pm 99 ~{\rm fb}$

$$\sigma_{\text{fid.}}^{\text{DL}} = 69 \pm 3 \text{ (stat.)} \pm 4 \text{ (syst.) fb}$$

in agreement with NLO prediction: $\sigma_{\rm fid.}^{\rm pred} = 63 \pm 9 ~{\rm fb}$

tt+W ATLAS (36/fb) Phys. Rev. D 99 (2019) 072009

Table 8: List of relative uncertainties in the measured cross sections of the $t\bar{t}Z$ and $t\bar{t}W$ processes from the fit, grouped in categories. All uncertainties are symmetrized. The sum in quadrature may not be equal to the total due to correlations between uncertainties introduced by the fit.

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
Simulated sample statistics	2.0%	5.3%
Data-driven background statistics	2.5%	6.3%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	3.2%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8 <u>.5</u> %
Total systematic	10%	16%
Statistical	8.4%	15%
Total	13%	22%

Top Properties : Spin correlations

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

55

Standard reasons: Top quark (t) properties

francesco.spano@cern.ch

Top quark properties measurements with ATLAS at LHC

EPS, Venice, 5th-12th July 2017

The spin of the top quark

 $1/m_t$ $< 1/\Lambda$ $< 1/\Gamma_t$ < Hadronization time < Spin decorrelation time Production time < Lifetime

individual top quark

b

Spin for

top quark pairs

> single top

- chiral coupling in SM Wtb vertex enhances specifically polarized W-boson and b-quark
- in qq/gg tt interaction at pp collider
 - top and anti-top quarks are ~unpolarised (as the initial g and g)
 - the spins of t and t are correlated

 Angular distribution of top quark decay products follows the predictions of the top quark spin (differently from b quark in which B meson decays isotropically)

 m_t/Λ^2

<

- Top quark polarization and (and consequently its spin) is directly observable by such angular distributions
- Observation of the top quark spin is strongly linked to its production and decay process

francesco.spano@cern.ch Heavy Quark Physics with LHC multipurpose det. - Lect.9 Dottorato in Fisica - UniRoma La Sapienza - AA 2016-2017 58

The spin of the top quark in pp collisions

B Lemmer, <u>arXiv 1410.1791</u>

JA Saavedra @ Top2014

 Going from generalized quantities to observable quantities requires the choice of the spin quantization axis : define spin axis as z direction an use associated polar coordinates

 $\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_i d \cos \theta_j} = \frac{1}{4} \begin{pmatrix} 1 + \alpha_i B_1 \cos \theta_i + \alpha_j B_2 \cos \theta_j + \alpha_i \alpha_j C \cos \theta_i \cos \theta_j \end{pmatrix}$ top quark anti-top quark top-anti-top polarisation polarisation spin correlation

- Degree of top quark polarization
 - single top : strong polarization
 - tt production: B coefficents vanish at LO (pair invariance) : tt almost unpolarized
- Degree of top quark pair spin correlations: depends on choice of spin quantization axis

The *Wtb* vertex in *t* \bar{t} prod & decay: full **spin density matrix**

JHEP12(2015)026

francesco.spano@cern.ch

Top guark properties measurements with ATLAS at LHC

ROYAL

Spin correlation: beyond the Standard Model

- Measured spin correlation can alter due to
 - Different decays
 - Different production
- Spin correlation: test full chain from production to decay

Spin density matrix elements are consistent with SM predictions

francesco.spano@cern.ch Heavy Quark Physics with LHC multipurpose det. - Lect.9 Dottorato in Fisica - UniRoma La Sapienza - AA 2016-2017 61

Spin correlation with $\Delta \varphi = 13$ TeV

g

000

Use angle

- Dilepton selection: ATLAS: 2 OS ℓ (eµ only), ≥ 1
 b-jet,
 - lepton has highest spin analysing power
- \bullet Derive $\Delta \varphi$ difference in azimuthal angle between leptons in lab frame
 - no event reco, use lepton reco and resol
- Reconstruct tt final state :
 - $\bullet \, constrains \, by \, m_W \, and \, \, m_{top}$,
 - test different η assumptions for 2ν : select assumption highest weight based on E_T^{miss} expected resolution
- Subtract bkg and unfold

francesco.spano@cern.ch Heavy Quark Physics with LHC multipurpose det. - Lect.9 Dot

ATLAS comparisons (I) MCFM with NLO in decay

Add NNLO prediction

francesco.spano@cern.ch Heavy Quark Physics with LHC multipurpose det. - Lect.9

ATLAS comparisons (II)

Spin correlation with $\Delta \varphi$

• spin correlation sensitivity to $\Delta \varphi$ is enhanced at low m_{tt}

- Reconstruct tt final state : with constrains by mw and motion , test different eta assumptions for nus, select highest weight based on ETmiss expected resolution
 - Subtract bkg and unfold

Top quark mass

francesco.spano@cern.ch Heavy quarks with multipurpose detectors at LHC - Lect. 7 Dottorato in Fisica - UniRoma La Sapienza - AA 2016-2017 67

W mass from ATLAS

<u>arXiv:1701.07240</u>

francesco.spano@cern.ch Heavy Quark Physics with LHC multipurpose det.-Lect.1 Dottorato in Fisica - UniRoma La Sapienza - AA 2016-2017 68

Special reasons: Measure the top quark mass

Special reasons: Measure the top quark mass

Eur. Phys. J. C79 (2019) 290 Measuring SM variables: top mass

Table 3Systematic uncertainties in m_{top} . The measured values of m_{top} are given together with the statistical and systematic uncertainties in GeV for the standard and the BDT event selections. For comparison, the result in the $t\bar{t} \rightarrow \text{lepton} + \text{jets}$ channel at $\sqrt{s} = 7$ TeV from Ref. [9] is also listed. For each systematic uncertainty listed, the first value corresponds to the uncertainty in m_{top} , and the second to the statistical precision in this uncertainty. An integer value of zero means that the corresponding uncertainty is negligible and therefore not evaluated. Statistical uncertainties quoted as 0.00 are smaller than 0.005. The statistical uncertainty in the total systematic uncertainty is calculated from uncertainty propagation. The last line refers to the sum in quadrature of the statistical and systematic uncertainties

Event selection	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	
	Standard	Standard	BDT
$m_{\rm top}$ result [GeV]	172.33	171.90	172.08
Statistics	0.75	0.38	0.39
- Stat. comp. (m_{top})	0.23	0.12	0.11
- Stat. comp. (JSF)	0.25	0.11	0.11
- Stat. comp. (bJSF)	0.67	0.34	0.35
Method	0.11 ± 0.10	0.04 ± 0.11	0.13 ± 0.11
Signal Monte Carlo generator	0.22 ± 0.21	0.50 ± 0.17	0.16 ± 0.17
Hadronization	0.18 ± 0.12	0.05 ± 0.10	0.15 ± 0.10
Initial- and final-state QCD radiation	0.32 ± 0.06	0.28 ± 0.11	0.08 ± 0.11
Underlying event	0.15 ± 0.07	0.08 ± 0.15	0.08 ± 0.15
Colour reconnection	0.11 ± 0.07	0.37 ± 0.15	0.19 ± 0.15
Parton distribution function	0.25 ± 0.00	0.08 ± 0.00	0.09 ± 0.00
Background normalization	0.10 ± 0.00	0.04 ± 0.00	0.08 ± 0.00
W+jets shape	0.29 ± 0.00	0.05 ± 0.00	0.11 ± 0.00
Fake leptons shape	0.05 ± 0.00	0	0
Jet energy scale	0.58 ± 0.11	0.63 ± 0.02	0.54 ± 0.02
Relative <i>b</i> -to-light-jet energy scale	0.06 ± 0.03	0.05 ± 0.01	0.03 ± 0.01
Jet energy resolution	0.22 ± 0.11	0.23 ± 0.03	0.20 ± 0.04
Jet reconstruction efficiency	0.12 ± 0.00	0.04 ± 0.01	0.02 ± 0.01
Jet vertex fraction	0.01 ± 0.00	0.13 ± 0.01	0.09 ± 0.01
<i>b</i> -tagging	0.50 ± 0.00	0.37 ± 0.00	0.38 ± 0.00
Leptons	0.04 ± 0.00	0.16 ± 0.01	0.16 ± 0.01
Missing transverse momentum	0.15 ± 0.04	0.08 ± 0.01	0.05 ± 0.01
Pile-up	0.02 ± 0.01	0.14 ± 0.01	0.15 ± 0.01
Total systematic uncertainty	1.04 ± 0.08	1.07 ± 0.10	0.82 ± 0.06
Total	1.28 ± 0.08	1.13 ± 0.10	0.91 ± 0.06

Measuring SM variables: top mass

Eur. Phys. J. C 77 (2017) 804

Top Yukawa coupling

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

73

Top Yukawa from dN/dMtt d(yt -yanti-t) <u>CMS - PAS-TOP-17-004</u>

CMS

600

800 1000 1200 1400 1600 1800 2000

=3 jets,

- Require 1 ℓ (e,mu), ≥3 jets, ≥2 b-tag(s), m^W < 140 GeV, if N_{jets} =3 p_{T,lead b-jet} >50 GeV
- Bkg: data driven multi jets (from control region), simulated single top, W/Z+jets,
- Reconstruct tt system by likelihood discriminant: extend to 3-jets!

• b-jets with largest b-tag weight \rightarrow b-quarks (2 possibilities)

≧4 jets

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

Top Yukawa from dN/dł ..., <u>CMSz-PAS-TOP-17-004</u>

- Inclusion of 3-jets events: higher yield at sensitive low M_{tt} , reduce migration in N_{jet} \rightarrow smaller JES/Had uncertainties
- Build binned likelihood for dN/dMttd(yt -yanti-t) as function of EW correction strength, R=Ntt(Yt)/Ntt(POWHEG), a bin-dependent quadratic function of Yt for 3,4,5 jets and all events

 $\mathcal{L} = \prod_{\text{bin} \in (M_{t\bar{t}}, |\Delta y_{t\bar{t}}|)} \mathcal{L}_{\text{bin}} = \prod_{\text{bin}} \text{Pois}(n_{\text{obs}}^{\text{bin}} | s^{\text{bin}}(\theta) \times R^{\text{bin}}(Y_t) + b^{\text{bin}}(\theta)) \times \rho(\theta | \tilde{\theta})$

nuisance par → syst uncertainties

francesco.spano@cern.ch

Table 3: The expected and observed 95% CL limits on Y_t

Channel	Expected 95% CL	Observed 95% CL
3 jets	$Y_{t} < 2.17$	$Y_{\rm t} < 2.59$
4 jets	$Y_{\rm t} < 1.88$	$Y_{\rm t} < 1.77$
5 jets	$Y_{\rm t} < 2.03$	$Y_{\rm t} < 2.23$
Combined	$Y_{\rm t} < 1.62$	$Y_t < 1.67$

Searches for BSM with top

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

76

Example: Search for **ttH**, **H→bb** @ √s = 13TeV

Given model for probability distributions for signal, bkg, systematic uncertainties (det theory) build likelihood-based variable f(µ) to

- in the bkg only hypothesis (µ=0), derive the probability to observe a more discrepant f-value than the observed one → test bkg hypothesis
- in the sig+bkg hypothesis, derive [0,upper limit] interval that covers the "true" µ value 95% of the times→ test signal hypothesis
- Estimate **signal strength** from maximum likelihood fit

1.4 sigma significance w.r.t bkg only, excludes $\mu_{ttH} > 2$ at 95%CL

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

What is a "Confidence Interval?

you see them all the time:

Want to say there is a 68% chance that the true value of (m_W, m_t) is in this interval

• but that's P(theory|data)!

Correct frequentist statement is that the interval **covers** the true value 68% of the time

 remember, the contour is a function of the data, which is random. So it moves around from experiment to experiment

 Bayesian "credible interval" does mean probability parameter is in interval. The procedure is very intuitive:

$$P(\theta \in V) = \int_{V} \pi(\theta | x) = \int_{V} d\theta \frac{f(x|\theta)\pi(\theta)}{\int d\theta f(x|\theta)\pi(\theta)}$$

Kyle Cranmer (NYU)

HCP Summer School, Sept. 2013

Discovery in pictures

Discovery: test b-only (null: s=0 vs. alt: s>0)

note, one-sided alternative. larger N is "more discrepant"

The sensitivity problem

The physicist's worry about limits in general is that if there is a strong downward fluctuation, one might exclude arbitrarily small values of *s*

 with a procedure that produces proper frequentist 95% confidence intervals, one should expect to exclude the true value of s 5% of the time, no matter how small s is!

CL_s

http://inspirehep.net/record/599622

To address the sensitivity problem, CLs was introduced

• common (misused) nomenclature: CL_s = CL_{s+b}/CL_b

• idea: only exclude if $CL_s < 5\%$ (if CL_b is small, CL_s gets bigger)

CLs is known to be "conservative" (over-cover): expected limit covers with 97.5%

• Note: CL_s is NOT a probability

 $CL_s(\mu) = \frac{p_\mu}{1 - p_h}$

the 95% CL for mu is determined when prob to have higher vaule of test stat for the sign+bkg hypo is 5% of the prob to have higher test stat for the bkg option: so it means that the bkg only hypothesis can be rare i.e. its tail is small, but the sig+bkg is much rarer as its tail is only 5% of the bkg only tail.

Thumbnail of the statistical procedure

CMS top tagging

- top tagged jet: anti-k_T (R=0.8) jet with
 - τ₃₂ < 0.65</p>
 - 105<mjet,SoftDrop<210 GeV
 \$soft drop with β=0, z_{cut}=0.1
 R0=0.8

Recognising "highly boosted " top quarks

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

Math Appendix : Mass, P_T and DR

As we know that for any 4-
momentum
$$E = m_T \cosh y , p_x , p_y , p_z = m_T \sinh y$$
where
$$m_T^2 = m^2 + p_x^2 + p_y^2 .$$
and
The invariant mass M of the two-particle system
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z}\right) = \ln \left(\frac{E + p_z}{m_T}\right) = \tanh^{-1}\left(\frac{p_z}{E}\right) .$$

$$M^2 = m_1^2 + m_2^2 + 2[E_T(1)E_T(2)\cosh\Delta y - p_T(1) \cdot p_T(2)] ,$$
where
$$M^2 = m_1^2 + m_1^2 + 2[E_T(1)E_T(2)\cosh\Delta y - p_T(1)p_T(2)\cos(DPhi)]$$

$$M^2 = m_1^2 + m_1^2 + 2[E_T(1)E_T(2)\cosh(Dy) - p_T(1)p_T(2)\cos(DPhi)]$$
Now if 1) the masses of the particles are small w.r.t. their momenta and 2) the splitting is quasi collinear

i.e. cosDPhi ~1 - (DPhi)²/2 and cosh(Dy)~1+Dy²/2, so $E_T(I)$ ~ $p_T(i)$

http://en.wikipedia.org/wiki/Hyperbolic_function

$$M^{2} \sim 2[p_{T}(1) p_{T}(2) (1+Dy^{2}/2 - 1 + (DPhi)^{2}/2)] = p_{T}(1) p_{T}(2) (Dy^{2}/2 + (DPhi)^{2}) = p_{T}(1) p_{T}(2) (DR(1,2))^{2}$$

So Labelling *i* and *j* such that
$$p_{tj} < p_{ti}$$
 and defining $z = p_{tj}/p_t$
 $(p_t = p_{ti} + p_{tj}),$
 $m^2 \simeq z(1-z)p_t^2 \Delta R_{ij}^2,$
 $d_{ij} = z^2 p_t^2 \Delta R_{ij}^2 \simeq \frac{z}{(1-z)}m^2$

Declustering

Discard soft coherent radiation ("grooming") to reveal boosted objects:redefine jets

Soft-Drop mass, YSpliiter, ATLAS TopTagger, Mass-Drop, CMS Top Tagger, HEPTopTagger, Trimming, Pruning...

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

Pattern/Matrix El./Jet shapes

Recognize energy pattern in unchanged jet

TopTemplate Tagger, Shower deconstruction, N_subjettiness ratio...

How to tag a boosted hadronic top quark? (II): Examples

Declustering: redefine jet

Soft-drop Mass JHEP05(2014)146

- Revert jet making steps → at each iter. break jet J in 2 subjets j₁ and j₂
 - if $\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$

tune β z_{cut}

stop: J is the final jet.

Otherwise keep & decluster higher p_T subjet

Recursively removes soft (small- p_T), wide angle (large ΔR) radiation from initial state, pile up, rest of event

Mass of final jet closer to top mass, light quark/gluon jet peak lower

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

How to tag a boosted hadronic top quark? (II): Performance

efficiency to tag top jet ε_s vs efficiency to mistake a light quark/gluon jet ε_B

(or rejection against light-gluon jet)

(Receiver Operating Characteristic curve)

sensitivity to energy from superposed collisions (pile-up)

efficiency to **select the top final state** vs bkg

Combination of different tagging schemes improves performance

AK8 jets with n > 400 GeV |m| < 24

92

<u>francesco.spano@cern.ch</u> Top Physics @ LHC: selected highlights

LPNHE Seminar, Sorbonne Université, 24th June 2019

93

Effective field theory in a nutshell

<u>We are all Wilsonians now !</u> (JPreskill, Caltech)

- Current absence of "light " new states in SM → possible new physics at higher scales/masses than observed

(F Maltoni, LHCTopWG open meeting Nov 2016)

 SM measurements "searches for deviations predictions of SM in dim=4.

$$\mathcal{L}_{SM}^{(6)} = \mathcal{L}_{SM}^{(4)} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i} + \dots$$

$$\mathcal{L}_{SM}^{(6)} = \mathcal{L}_{SM}^{(4)} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i} + \dots$$

$$\bullet \text{ Parametric free degrees of freedom in terms of old}$$

the BSM ambitions of the LHC Higgs/Top/SM physics programmes can be recast in a simple and powerful wav in terms of one statement:

determination of the couplings of the SM \mathcal{L} up to DIM=6

Initial attempt:Top Fitter

Fit ~40 measurements from LHC & Tevatron (five 1dim differential xsec for tt and single top too) to predictions to derive 12 couplings

Predictions as polynomials

Including covariances where provided by experiments otherwise $\rho_{i,j} = \delta_{i,j}$

fit each operator one at the time fit globally and marginalise over all other parameters TopFitter Coll, JHEP04(2016)015

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

Buckley et al, TopFitterColl, Initial attempt: Top Fitter arxiv:1612.02294

Present bound on coefficients are weak : resulting Scale close to high energy range of $d\sigma_{tt}/dX$ where EFT breaks down

Isolate region that are most sensitive to tails : fit resolved and boosted

More data give modest gain in boosted.

francesco.spano@cern.ch Top Physics @ LHC: selected highlights

20% sys improvement

20% sys improvement

20% sys improvement

10% sys improvement & 300/fb

10% sys improvement & 3000/fb

Fractional improvement on 95% CL confidence interval

