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Introduction

Top pairs at LHC

pp ⇥ tt̄ @ 7 TeV:
theoretical approx. NNLO �tt̄ = 165+11

�16 pb

⇤ with 35 pb�1 >5000 tt̄ pairs expected

A first ATLAS x-section measurement
(combining ⇤+jets with b-tagging and di-lepton
channels) already performed with 2.9 pb�1:
�tt̄ = 145± 31 (stat.) +42

�27 (syst.+lumi.)
[CERN-PH-EP-2010-064, December 8, 2010]

With 35 pb�1 and with more sophisticated
techniques a precision measurement is possible

A measurement in ⇤+jets channel only and
without any use of b-tagging is here presented
[ATLAS-CONF-2011-023, March 14, 2011]

Complementary measurements are being
finalized:

�+jets channel with b-tagging
di-lepton channel
all-hadronic channel

December 2010
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Why heavy (quarks) at multi-purpose colliders? (I)

 largest (unmeasured) 
coupling yt to Higgs boson

Masses of known fundamental particles
mtop~ m(Gold Atom)

who 
ordered this?

“Special” reasons

Is yt~1? 

2.1 Decays to quarks and leptons

2.1.1 The Born approximation

In the Born approximation, the partial width of the Higgs boson decay into fermion pairs,
Fig. 2.1, is given by [111,145]

ΓBorn(H → f f̄) =
GµNc

4
√

2π
MH m2

f β
3
f (2.6)

with β = (1 − 4m2
f/M

2
H)1/2 being the velocity of the fermions in the final state and Nc the

color factor Nc = 3 (1) for quarks (leptons). In the lepton case, only decays into τ+τ− pairs
and, to a much lesser extent, decays into muon pairs are relevant.

•H
f

f̄

Figure 2.1: The Feynman diagram for the Higgs boson decays into fermions.

The partial decay widths exhibit a strong suppression near threshold, Γ(H → f f̄) ∼
β3

f → 0 for MH ≃ 2mf . This is typical for the decay of a Higgs particle with a scalar
coupling eq. (2.3). If the Higgs boson were a pseudoscalar A boson with couplings given in
eq. (2.5), the partial decay width would have been suppressed only by a factor βf [146]

ΓBorn(A → f f̄) =
GµNc

4
√

2π
MH m2

f βf (2.7)

More generally, and to anticipate the discussions that we will have on the Higgs CP–
properties, for a Φ boson with mixed CP–even and CP–odd couplings gΦf̄f ∝ a + ibγ5,
the differential rate for the fermionic decay Φ(p+) → f(p, s)f̄(p̄, s̄) where s and s̄ denote the
polarization vectors of the fermions and the four–momenta are such that p± = p± p̄, is given
by [see Ref. [147] for instance]

dΓ

dΩ
(s, s̄) =

βf

64π2MΦ

[
(|a|2 + |b|2)

(1

2
M2

Φ − m2
f + m2

fs·s̄
)

+(|a|2 − |b|2)
(
p+ ·s p+·s̄ −

1

2
M2

Φs·s̄ + m2
fs·s̄− m2

f

)

−Re(ab∗)ϵµνρσpµ
+pν

−sρs̄σ − 2Im(ab∗)mfp+ ·(s + s̄)
]

(2.8)

The terms proportional to Re(ab∗) and Im(ab∗) represent the CP–violating part of the cou-
plings. Averaging over the polarizations of the two fermions, these two terms disappear and
we are left with the two contributions ∝ 1

2 |a|
2(M2

Φ−2m2
f−2m2

f ) and ∝ 1
2 |b|

2(M2
Φ−2m2

f +2m2
f)

which reproduce the β3
f and βf threshold behaviors of the pure CP–even (b = 0) and CP–odd

(a = 0) states noted above.

74

yt Hff 
mtop  =  yt v/√2

The GFitter Group, Eur. 
Phys. J. C 74:3046 (2014) 
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Fig. 2 Contours at 68 and 95 % CL obtained from scans of MW ver-
sus mt (top) and MW versus sin2θℓ

eff (bottom), for the fit including MH
(blue) and excluding MH (grey), as compared to the direct measure-
ments (vertical and horizontal green bands and ellipses). The theoretical
uncertainty of 0.5 GeV is added to the direct top-mass measurement. In
both figures, the corresponding direct measurements are excluded from
the fit. In the case of sin2θℓ

eff , all partial and full Z width measurements
are excluded as well (except in case of the orange prediction), besides
the asymmetry measurements

sin2θℓ
eff and MW . The coloured ellipses indicate: green for

the direct measurements; grey for the electroweak fit with-
out using MW , sin2θ

f
eff , MH and the Z width measurements;

orange for the fit without using MW , sin2θ
f

eff and MH ; blue
for the fit without MW , sin2θ

f
eff and the Z width measure-

ments. For both figures the observed agreement demonstrates
the consistency of the SM.

Figure 3 shows CL profiles for the observable pair sin2θℓ
eff

and MW , but with the theoretical uncertainty on the top mass
varied between 0 and 1.5 GeV, in steps of 0.5 GeV. Assuming
a value of δtheomt = 1.5 GeV, the uncertainty becomes dom-
inant. It underlines that a better assessment of the theoretical
mt uncertainty is of relevance for the fit.

2.4 Oblique parameters

If the new physics scale is significantly higher than the elec-
troweak scale, new physics effects from virtual particles in
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Fig. 3 Contours at 95 % CL obtained from scans of MW versus
sin2θℓ

eff , with the top-mass theoretical uncertainty varied between 0
and 1.5 GeV in steps of 0.5 GeV, as compared to the direct measure-
ments (vertical and horizontal green bands). The corresponding direct
measurements are excluded from the fit

loops are expected to contribute predominantly through vac-
uum polarisation corrections to the electroweak precision
observables. These terms are traditionally denoted oblique
corrections and are conveniently parametrised by the three
self-energy parameters S, T, U [50,51]. These are defined to
vanish in the SM and are closely related to the ϵ1,2,3 param-
eters [52,53].

The S and T parameters absorb possible new physics con-
tributions to the neutral and to the difference between neutral
and charged weak currents, respectively. The U parameter
is only sensitive to changes in the mass and width of the
W boson. It is very small in most new physics models and
therefore often set to zero.

Constraints on the S, T, U parameters can be derived from
the global electroweak fit by calculating the difference of
the oblique corrections as determined from the experimental
data and the corrections obtained from an SM reference point
(with fixed reference values of mt and MH ). With this def-
inition significantly non-zero S, T, U parameters represent
an unambiguous indication of new physics.

For the studies presented here we use the SM reference as
MH,ref = 125 GeV and mt,ref = 173 GeV. We find

S =0.05 ± 0.11, T =0.09 ± 0.13, U =0.01 ± 0.11,

(4)

with correlation coefficients of +0.90 between S and T ,
−0.59 (−0.83) between S and U (T and U ). Fixing U = 0
one obtains S|U=0 = 0.06±0.09 and T |U=0 = 0.10±0.07,
with a correlation coefficient of +0.91. The constraints on S
and T for a fixed value of U = 0 are shown in Fig. 4. The
propagation of the current experimental uncertainties in MH
and mt upon the SM prediction is illustrated by the small
black area at about S = T = 0.

123

New W mass by 
ATLAS 
mW = 80370 ±  7 
(stat) ± 11 (exp 
syst) ± 14 (mod 
sys) MeV=
80370 ± 19 MeV
7 TeV pp-
collision data

Tevatron indirect 
W mass 
mW = 80351 ±  15 
(stat) ± 10 (syst) =
80351 ± 18 MeV
using 1.9 TeV p-
antip collision

The reason(s) for 
mass hierarchy is 

(are) still a mystery

top & b are the most 
massive known quarks

mailto:fracesco.spano@cern.ch?subject=
http://dx.doi.org/10.1140/epjc/s10052-014-3046-5
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-18/
http://tevewwg.fnal.gov/wz/sw2eff/
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The SM Lagrangian (2019)

v ~246 GeV 

top: largest (unmeasured) coupling yt to Higgs boson

 Is yt~1? Is it SM Higgs?

  LW ~ g2(v+H)2W+
μ W- μ

1.1.3 The SM Higgs particle and the Goldstone bosons

The Higgs particle in the SM

Let us finally come to the Higgs boson itself. The kinetic part of the Higgs field, 1
2(∂µH)2,

comes from the term involving the covariant derivative |DµΦ|2, while the mass and self–

interaction parts, come from the scalar potential V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2

V =
µ2

2
(0, v + H)

(
0

v + H

)
+
λ

4

∣∣∣∣(0, v + H)

(
0

v + H

) ∣∣∣∣
2

(1.41)

Using the relation v2 = −µ2/λ, one obtains

V = −
1

2
λv2 (v + H)2 +

1

4
λ(v + H)4 (1.42)

and finds that the Lagrangian containing the Higgs field H is given by

LH =
1

2
(∂µH)(∂µH) − V

=
1

2
(∂µH)2 − λv2 H2 − λv H3 −

λ

4
H4 (1.43)

From this Lagrangian, one can see that the Higgs boson mass simply reads

M2
H = 2λv2 = −2µ2 (1.44)

and the Feynman rules7 for the Higgs self–interaction vertices are given by

gH3 = (3!)iλv = 3i
M2

H

v
, gH4 = (4!)i

λ

4
= 3i

M2
H

v2
(1.45)

As for the Higgs boson couplings to gauge bosons and fermions, they were almost derived

previously, when the masses of these particles were calculated. Indeed, from the Lagrangian

describing the gauge boson and fermion masses

LMV
∼ M2

V

(
1 +

H

v

)2

, Lmf
∼ −mf

(
1 +

H

v

)
(1.46)

one obtains also the Higgs boson couplings to gauge bosons and fermions

gHff = i
mf

v
, gHV V = −2i

M2
V

v
, gHHV V = −2i

M2
V

v2
(1.47)

This form of the Higgs couplings ensures the unitarity of the theory [7] as will be seen later.

The vacuum expectation value v is fixed in terms of the W boson mass MW or the Fermi

constant Gµ determined from muon decay [see next section]

MW =
1

2
g2v =

(√
2g2

8Gµ

)1/2

⇒ v =
1

(
√

2Gµ)1/2
≃ 246 GeV (1.48)

7The Feynman rule for these vertices are obtained by multiplying the term involving the interaction by
a factor −i. One includes also a factor n! where n is the number of identical particles in the vertex.
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We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs boson, as some higher–order effects are

effectively absorbed in this way. The Higgs couplings to fermions, massive gauge bosons as

well as the self–couplings, are given in Fig. 1.2 using both v and Gµ. This general form of

the couplings will be useful when discussing the Higgs properties in extensions of the SM.

•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2 mf × (i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2 M2

V × (−igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v2 = 2

√
2Gµ M2

V × (−igµν)

•H
H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2 M2

H × (i)

•H

H

H

H

gHHHH = 3M2
H/v2 = 3

√
2Gµ M2

H × (i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–
couplings in the SM. The normalization factors of the Feynman rules are also displayed.

Note that the propagator of the Higgs boson is simply given, in momentum space, by

∆HH(q2) =
i

q2 − M2
H + iϵ

(1.49)
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0 
v+H=

The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.29)

To the SM Lagrangian discussed in the previous subsection, but where we ignore the strong

interaction part

LSM = −
1

4
W a

µνW
µν
a −

1

4
BµνB

µν + L iDµγ
µ L + eR iDµγ

µ eR · · · (1.30)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.31)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−

µ2

λ

)1/2

(1.32)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.33)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.34)

– then fully expand the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa
2

W a
µ − ig1

1

2
Bµ

)
Φ
∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

)(
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2
2(v + H)2|W 1

µ + iW 2
µ |2 +

1

8
(v + H)2|g2W

3
µ − g1Bµ|2
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The Standard Model

Lf = mf fL fR . + yf H fL fR ./√2 +h.c.

mf  =  yf v/√2

mass term interaction term

mb,obs ~4  GeV

The Top Quark 

!  The heaviest particle discovered 
"  Strong top Yukawa coupling 

!  Plays key role in many important 
physics processes 

"  Flavor physics, Electro-weak processes 

!  Speculated to play a special role in a 
number of Beyond the Standard 
Model theories 

2 

v = vacuum expectation value (246 GeV) 
yt = top Yukawa coupling 

Moriond/EW: 50th Rencontres de Moriond  

p 

p 
t b 

W� 

q 

q� 

t b 

W+ 

l+!

ν"

X 

Production  
cross section 

Resonant  
production 

Production  
kinematics 

Top Spin  
Polarization 

Top Mass W helicity 

|Vtb| 

Branching Ratios 

Rare/non SM Decays 

Anomalous  
Couplings 

CP violation 

Top Spin 

Top Charge 

Top Width 

_"
_"

_"

_"

γ,Z,H Couplings 

mt ~173  GeV

H=Higgs particle

reminder(II) 

replacing values gives  ytop  =  √2 mtop /v~ √2  173/246~0.99 
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The SM Lagrangian  (2019)

v ~246 GeV 

1.1.3 The SM Higgs particle and the Goldstone bosons

The Higgs particle in the SM

Let us finally come to the Higgs boson itself. The kinetic part of the Higgs field, 1
2(∂µH)2,

comes from the term involving the covariant derivative |DµΦ|2, while the mass and self–

interaction parts, come from the scalar potential V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2

V =
µ2

2
(0, v + H)

(
0

v + H

)
+
λ

4

∣∣∣∣(0, v + H)

(
0

v + H

) ∣∣∣∣
2

(1.41)

Using the relation v2 = −µ2/λ, one obtains

V = −
1

2
λv2 (v + H)2 +

1

4
λ(v + H)4 (1.42)

and finds that the Lagrangian containing the Higgs field H is given by

LH =
1

2
(∂µH)(∂µH) − V

=
1

2
(∂µH)2 − λv2 H2 − λv H3 −

λ

4
H4 (1.43)

From this Lagrangian, one can see that the Higgs boson mass simply reads

M2
H = 2λv2 = −2µ2 (1.44)

and the Feynman rules7 for the Higgs self–interaction vertices are given by

gH3 = (3!)iλv = 3i
M2

H

v
, gH4 = (4!)i

λ

4
= 3i

M2
H

v2
(1.45)

As for the Higgs boson couplings to gauge bosons and fermions, they were almost derived

previously, when the masses of these particles were calculated. Indeed, from the Lagrangian

describing the gauge boson and fermion masses

LMV
∼ M2

V

(
1 +

H

v

)2

, Lmf
∼ −mf

(
1 +

H

v

)
(1.46)

one obtains also the Higgs boson couplings to gauge bosons and fermions

gHff = i
mf

v
, gHV V = −2i

M2
V

v
, gHHV V = −2i

M2
V

v2
(1.47)

This form of the Higgs couplings ensures the unitarity of the theory [7] as will be seen later.

The vacuum expectation value v is fixed in terms of the W boson mass MW or the Fermi

constant Gµ determined from muon decay [see next section]

MW =
1

2
g2v =

(√
2g2

8Gµ

)1/2

⇒ v =
1

(
√

2Gµ)1/2
≃ 246 GeV (1.48)

7The Feynman rule for these vertices are obtained by multiplying the term involving the interaction by
a factor −i. One includes also a factor n! where n is the number of identical particles in the vertex.
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We will see in the course of this review that it will be appropriate to use the Fermi coupling

constant Gµ to describe the couplings of the Higgs boson, as some higher–order effects are

effectively absorbed in this way. The Higgs couplings to fermions, massive gauge bosons as

well as the self–couplings, are given in Fig. 1.2 using both v and Gµ. This general form of

the couplings will be useful when discussing the Higgs properties in extensions of the SM.

•H

f

f̄

gHff = mf/v = (
√

2Gµ)1/2 mf × (i)

•H

Vµ

Vν

gHV V = 2M2
V /v = 2(

√
2Gµ)1/2 M2

V × (−igµν)

•H

H

Vµ

Vν

gHHV V = 2M2
V /v2 = 2

√
2Gµ M2

V × (−igµν)

•H
H

H

gHHH = 3M2
H/v = 3(

√
2Gµ)1/2 M2

H × (i)

•H

H

H

H

gHHHH = 3M2
H/v2 = 3

√
2Gµ M2

H × (i)

Figure 1.2: The Higgs boson couplings to fermions and gauge bosons and the Higgs self–
couplings in the SM. The normalization factors of the Feynman rules are also displayed.

Note that the propagator of the Higgs boson is simply given, in momentum space, by

∆HH(q2) =
i

q2 − M2
H + iϵ

(1.49)

22

0 
v+H=

The Higgs mechanism in the SM

In the slightly more complicated non–abelian case of the SM, we need to generate masses for

the three gauge bosons W± and Z but the photon should remain massless and QED must

stay an exact symmetry. Therefore, we need at least 3 degrees of freedom for the scalar

fields. The simplest choice is a complex SU(2) doublet of scalar fields φ

Φ =

(
φ+

φ0

)
, Yφ = +1 (1.29)

To the SM Lagrangian discussed in the previous subsection, but where we ignore the strong

interaction part

LSM = −
1

4
W a

µνW
µν
a −

1

4
BµνB

µν + L iDµγ
µ L + eR iDµγ

µ eR · · · (1.30)

we need to add the invariant terms of the scalar field part

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 (1.31)

For µ2 < 0, the neutral component of the doublet field Φ will develop a vacuum expectation

value [the vev should not be in the charged direction to preserve U(1)QED]

⟨Φ ⟩0 ≡ ⟨ 0 |Φ | 0 ⟩ =

(
0
v√
2

)
with v =

(
−

µ2

λ

)1/2

(1.32)

We can then make the same exercise as previously:

– write the field Φ in terms of four fields θ1,2,3(x) and H(x) at first order:

Φ(x) =

(
θ2 + iθ1

1√
2
(v + H) − iθ3

)
= eiθa(x)τa(x)/v

(
0

1√
2
(v + H(x) )

)
(1.33)

– make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τa(x) Φ(x) =
1√
2

(
0

v + H(x)

)
(1.34)

– then fully expand the term |DµΦ)|2 of the Lagrangian LS:

|DµΦ)|2 =
∣∣∣
(
∂µ − ig2

τa
2

W a
µ − ig1

1

2
Bµ

)
Φ
∣∣∣
2

=
1

2

∣∣∣∣

(
∂µ − i

2(g2W 3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W 3

µ − g1Bµ)

)(
0

v + H

)∣∣∣∣
2

=
1

2
(∂µH)2 +

1

8
g2
2(v + H)2|W 1

µ + iW 2
µ |2 +

1

8
(v + H)2|g2W

3
µ − g1Bµ|2
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The Standard Model:  QF theory invariant under SU(2) x U(1) X SU(3)

Lf = mf fL fR .+ yf H fL fR ./√2 +h.c.

mf  =  yf v/√2
mass term fermion-HIggs

interaction term

 Spontaneous symmetry breaking: the Lagrangian shows the possibility that at a given energy scale, 
the symmetry of the  observed physical states is different from the symmetry of the Lagrangian 

interactions, by realising one of multiple asymmetric configurations (minimum potential energy state)

Gauge fields are in 
kinetic terms and  

co n. derivative D 𝜇 

 g2 SU(2) 
gauge 

 coupling

    spin-0 
H=Higgs 

boson  
emerges 

• negative chirality (FL ) state couple  to W, 
Z by covariant derivative  

• obtain mass from assuming gauge  
invariant coupling terms (Yukawa 
coupling) to 𝜙  :  FL𝜙 fR = y ( v+H) fLfR 

spin-1 W&Z bosons  
emerge as massive 

by coupling to H  
photon remains 

massless

spin1/2 fermions (u,c,d,s,b,..)

12. CKM quark-mixing matrix 1

12. THE CKM QUARK-MIXING MATRIX

Revised February 2014 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

12.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ϵ φ∗uI

Rj + h.c., (12.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ϵ is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, ⟨φ⟩ = (0, v/

√
2), Eq. (12.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM

⎛

⎝
dL
sL
bL

⎞

⎠ + h.c., VCKM ≡ V u
L V d

L
† =

⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠.

(12.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

⎞

⎠ , (12.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (12.4)

These relations ensure that ρ̄+ iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and we can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,

VCKM =

⎛

⎝
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞

⎠ + O(λ4) . (12.5)

K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov)
August 29, 2014 13:59

Diagonalise Y and replace 𝜙  from SSB 

  LW,Z ~ g2
2(v+H)2W+

μ W- μ 

+g2
2/8cos𝛳W Zμ Zμ

with four real fields θi(x) and H(x). The crucial point is that the local SU(2)L invariance of the La-
grangian allows us to rotate away any dependence on θi(x). These three fields are precisely the would-be
massless Goldstone bosons associated with the SSB mechanism.

The covariant derivative (69) couples the scalar multiplet to the SU(2)L ⊗ U(1)Y gauge bosons.
If one takes the physical (unitary) gauge θi(x) = 0 , the kinetic piece of the scalar Lagrangian (68) takes
the form:

(Dµφ)
†Dµφ

θi=0−→
1

2
∂µH ∂µH + (v +H)2

{
g2

4
W †

µW
µ +

g2

8 cos2 θW
ZµZ

µ

}
. (72)

The vacuum expectation value of the neutral scalar has generated a quadratic term for the W± and the
Z , i.e., those gauge bosons have acquired masses:

MZ cos θW = MW =
1

2
v g . (73)

Therefore, we have found a clever way of giving masses to the intermediate carriers of the weak
force. We just add LS to our SU(2)L ⊗ U(1)Y model. The total Lagrangian is invariant under gauge
transformations, which guarantees the renormalizability of the associated quantum field theory [33].
However, SSB occurs. The three broken generators give rise to three massless Goldstone bosons which,
owing to the underlying local gauge symmetry, can be eliminated from the Lagrangian. Going to the
unitary gauge, we discover that the W± and the Z (but not the γ, because U(1)QED is an unbroken
symmetry) have acquired masses, which are moreover related as indicated in Eq. (73). Notice that
Eq. (52) has now the meaning of writing the gauge fields in terms of the physical boson fields with
definite mass.

It is instructive to count the number of degrees of freedom (d.o.f.). Before the SSB mechanism,
the Lagrangian contains massless W± and Z bosons, i.e., 3 × 2 = 6 d.o.f., due to the two possible
polarizations of a massless spin-1 field, and four real scalar fields. After SSB, the three Goldstone modes
are ‘eaten’ by the weak gauge bosons, which become massive and, therefore, acquire one additional
longitudinal polarization. We have then 3 × 3 = 9 d.o.f. in the gauge sector, plus the remaining scalar
particle H , which is called the Higgs boson. The total number of d.o.f. remains of course the same. The
new longitudinal polarizations of the massive gauge bosons are nothing else than the original Goldstone
fields. It was necessary to introduce additional d.o.f. (scalars) in the gauge theory in order to give masses
to the gauge bosons. The Higgs appears because the scalar doublet (67) contains too many fields.

4.3 Predictions
We have now all the needed ingredients to describe the electroweak interaction within a well-defined
quantum field theory. Our theoretical framework implies the existence of massive intermediate gauge
bosons, W± and Z . Moreover, the chosen SSB mechanism has produced a precise prediction1 for the
W± and Z masses, relating them to the vacuum expectation value of the scalar field through Eq. (73).
Thus,MZ is predicted to be bigger thanMW in agreement with the measured masses [34, 35]:

MZ = 91.1875 ± 0.0021 GeV , MW = 80.399 ± 0.023 GeV . (74)

From these experimental numbers, one obtains the electroweak mixing angle

sin2 θW = 1−
M2

W

M2
Z

= 0.223 . (75)

1 Note, however, that the relationMZ cos θW = MW has a more general validity. It is a direct consequence of the symmetry
properties of LS and does not depend on its detailed dynamics.
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• Different x-range 
and center of 
mass dependence 
incorporated in 
parton 
luminosities→

‣ gg→X dominated 

processes grow 
more than qq 
→X ones


‣ larger gains at 
high multi-TeV 
masses ~up to 
O(100)

• Cross sections in “tails” increase 
more rapidly than inclusive value

(Campbell et al, Rept.Prog.Phys.70:892007)
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6. Benchmarks for the LHC

6.1. Introduction

Scattering at the LHC is not simply rescaled scattering at the Tevatron. For many of the

key processes the typical momentum fractions x are small; thus, there is a dominance of

sea quark and gluon scattering as compared to valence quark scattering at the Tevatron.

There is a large phase space for gluon emission and thus intensive QCD backgrounds
for many of the signatures of new physics. Many of the scales relating to interesting

processes are large compared to the W mass; thus, electroweak corrections can become

important even for nominally QCD processes. In this section, we will try to provide

some useful benchmarks for LHC predictions.

6.2. Parton-parton luminosities at the LHC ‡

It is useful to return to the idea of differential parton-parton luminosities. Such

luminosities, when multiplied by the dimensionless cross section ŝσ̂ for a given process,

provide a useful estimate of the size of an event cross section at the LHC. Below we

define the differential parton-parton luminosity dLij/dŝ dy and its integral dLij/dŝ:

dLij

dŝ dy
=

1

s

1

1 + δij
[fi(x1, µ)fj(x2, µ) + (1 ↔ 2)] . (46)

The prefactor with the Kronecker delta avoids double-counting in case the partons are

identical. The generic parton-model formula

σ =
∑

i,j

∫ 1

0
dx1 dx2 fi(x1, µ) fj(x2, µ) σ̂ij (47)

can then be written as

σ =
∑

i,j

∫

(

dŝ

ŝ
dy

) (

dLij

dŝ dy

)

(ŝ σ̂ij) . (48)

(Note that this result is easily derived by defining τ = x1 x2 = ŝ/s and observing that
the Jacobian ∂(τ, y)/∂(x1, x2) = 1.)

Equation (48) can be used to estimate the production rate for a hard scattering

process at the LHC as follows. Figure 69 shows a plot of the luminosity function

integrated over rapidity, dLij/dŝ =
∫

(dLij/dŝ dy) dy, at the LHC
√

s = 14 TeV for

various parton flavour combinations, calculated using the CTEQ6.1 parton distribution

functions [11]. The widths of the curves indicate an estimate for the pdf uncertainties.
We assume µ =

√
ŝ for the scale §. As expected, the gg luminosity is large at low

√
ŝ

but falls rapidly with respect to the other parton luminosities. The gq luminosity is

large over the entire kinematic region plotted.

‡ Parts of this discussion also appeared in a contribution to the Les Houches 2005 proceedings [149]
by A. Belyaev, J. Huston and J. Pumplin
§ Similar plots made with earlier pdfs are shown in Ellis, Stirling, Webber [8]

Magano, Rojo, 
JHEP{1208),2012:10

Rth,nnpdf =  14TeV to 8 TeV xsec ratios

W.J.Stirling, 
private communication
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Figure 69. The parton-parton luminosity
[

dLij

dτ

]

in picobarns, integrated over y.

Green=gg, Blue=
∑

i(gqi + gq̄i + qig + q̄ig), Red=
∑

i(qiq̄i + q̄iqi), where the sum runs
over the five quark flavours d, u, s, c, b.

Figures 70 and 71 present the second product, [ŝσ̂ij ], for various 2 → 2 partonic

processes with massless and massive partons in the final state respectively. The parton

level cross sections have been calculated for a parton pT > 0.1 ×
√

ŝ cut and for fixed

αS = 0.118 using the CalcHEP package [150]. For the case of massive partons in the
final state, there is a threshold behaviour not present with massless partons. Note also

that the threshold behaviour is different for qq and gg initial states. The gg processes

can proceed through the t-channel as well as the s-channel and this is responsible for

the extra structure.

The products [ŝσ̂ij ] are plotted for massless and massive final state partons as a

function of the ratio pT /
√

ŝ in Figures 72 and 73. One can use (48) in the form

σ =
∆ŝ

ŝ

(

dLij

dŝ

)

(ŝ σ̂ij) . (49)

and Figures 70, 72, 71, 73 to estimate the QCD production cross sections for a given ∆ŝ

interval and a particular cut on pT /
√

ŝ. For example, for the gg → gg rate for ŝ=1 TeV

and ∆ŝ = 0.01ŝ, we have dLgg/dŝ ≃ 103 pb and ŝ σ̂gg ≃ 20 leading to σ ≃ 200 pb (for
the pg

T > 0.1 ×
√

ŝ cut we have used above). Note that for a given small ∆ŝ/ŝ interval,

the corresponding invariant mass ∆
√

ŝ/
√

ŝ interval, is ∆
√

ŝ/
√

ŝ ≃ 1
2∆ŝ/ŝ. One should

also mention that all hard cross sections presented in Figure 70 are proportional to α2
S

and have been calculated for αS = 0.118, so production rates can be easily rescaled for

a particular αS at a given scale.
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Figure 70. Parton level cross sections (ŝσ̂ij) for various processes involving massless
partons in the final state.
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Figure 71. Parton level cross sections (ŝσ̂ij) for various processes involving massive
partons in the final state.

One can further specify the parton-parton luminosity for a specific rapidity y and

ŝ, dLij/dŝ dy. If one is interested in a specific partonic initial state, then the resulting

(Campbell et al, 
Rept.Prog.Phys.70:892007)

J
H
E
P
0
8
(
2
0
1
2
)
0
1
0

Cross Section Rth,nnpdf δPDF(%) δαs
(%) δscales (%)

tt̄/Z 2.12 ± 1.3 −0.8 – 0.8 −0.4 – 1.1
tt̄ 3.90 ± 1.1 −0.5 – 0.7 −0.4 – 1.1
Z 1.84 ± 0.7 −0.1 – 0.3 −0.3 – 0.2
W+ 1.75 ± 0.7 −0.0 – 0.3 −0.3 – 0.2
W− 1.86 ± 0.6 −0.1 – 0.3 −0.3 – 0.1

W+/W− 0.94 ± 0.3 −0.0 – 0.0 −0.0 – 0.0
W/Z 0.98 ± 0.1 −0.1 – 0.0 −0.0 – 0.0
ggH 2.56 ± 0.6 −0.1 – 0.1 −0.9 – 1.0

tt̄(Mtt ≥ 1 TeV) 8.18 ± 2.5 −1.3 – 1.1 −1.6 – 2.1
tt̄(Mtt ≥ 2 TeV) 24.9 ± 6.3 −0.0 – 0.3 −3.0 – 1.1
σjet(pT ≥ 1 TeV) 15.1 ± 2.1 −0.4 – 0.0 −1.9 – 2.4
σjet(pT ≥ 2 TeV) 182 ± 7.7 −0.3 – 0.2 −5.7 – 4.0

Table 3. Same as table 1 for ratios between 14 and 8TeV LHC center of mass energies.

• For inclusive tt̄ production, and for both R(tt̄) and R(tt̄, Z), δscale ⊕ δαs ∼ 4× 10−3.

The difference between NNPDF2.1 and MSTW08, as well as the individual δPDF,

are of similar size, while a shift slightly larger than 1% is observed with respect to

ABKM09. This corresponds to a ∼ 2.5σ change, thus a potential probe of the gluon

PDF parameterizations.

• For tt̄ production at large mass, δscale ∼ 1%, while δPDF is of the order of several %,

consistent with the intrinsic differences among the different PDF sets. R(tt̄) provides

therefore a useful constraint for the gluon density at large x (see the discussion of

the initial-state composition in tt̄ events, in section 4, where we show that high mass

tt̄ production is dominated by the gg process).

• In the case of the jet rates, the scale uncertainty is comparable to the PDF one

for pT > 1TeV, while the PDF uncertainty dominates when pT > 2TeV. This

suggest that ratios of high-pT jet cross sections could be useful to constrain large-x

quark PDFs. To study this possibility in more detail, we have cross-checked the

jet theory systematics in the 8 over 7TeV cross section ratios using FastNLO with a

finer binning of pT and rapidity. In figure 2 we show the PDF and scale systematics

for LHC inclusive jet production as a function of the pT of the jet, in the central

region |η| ≤ 0.5. As can be seen, PDF and scale systematics are below 1% below

1TeV, and while scale systematics are small even for larger pT , at some point near

pT ∼ 2.5TeV (corresponding to a final state with approximately mX ∼ 5TeV in

the central region) the PDF uncertainties blow up: therefore, measurements in this

region would be important to constrain large-x PDFs.

Considering the ratios at 14 and 8TeV, the following additional remarks can be made:

• For electroweak processes, all uncertainties grow slightly, but still remain well below

1% in the case of NNPDF2.1 and MSTW08. Rate ratios obtained with ABKM09

are about 1% smaller, which is a ∼ 2σ effect. Once again, the measurement of

– 7 –
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Top quark predictions@ LHC- the NNLO revolution : single top

Phys. Rev. D 94, 071501 (2016)

2

t

W ∗

W

b
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b
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e+

d

Vl
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FIG. 1. Sketch of t-channel single-top quark production and
decay; ub ! dt with t ! e+⌫eb. Vl represents QCD cor-
rections to the light quark line, which could include interfer-
ence of the tree-diagram and the two-loop diagram, square of
the one-loop diagram (double-virtual), interference of the one-
loop diagram with one additional gluon and the tree-level dia-
gram with one additional gluon (real-virtual), and the square
of tree-level diagram with a pair of additional partons (double-
real). Vh and Vd represent the same type of corrections to the
heavy quark line and the decay part, respectively. There is
no cross talk between the light quark line, heavy quark line,
and the decay part in our calculation.

crucial for making this calculation feasible, because inter-
ference contributions between the light and heavy-quark
lines are not yet available [30] for the full two-loop vir-
tual diagrams. The structure function approximation at
NNLO is also used in an earlier calculation of t-channel
on-shell single top-quark production [24], and in Higgs
boson production through weak boson fusion [31, 32].

The NNLO QCD corrections to the heavy-quark line
are straightforward if we use phase-space slicing with the
N -jettiness variable [33–35]. A similar calculation was
performed for charm quark production in neutrino deep
inelastic scattering (DIS) in Ref. [36]. For the correc-
tions to the light-quark line, we adopted the method of
“projection-to-Born” in Ref. [32]. The key ingredients
in this approach are the inclusive NNLO DIS coe�cient
functions [37–39], for which a conveniently parametrized
version is available [40, 41]. For the real-virtual correc-
tions, we extracted the one-loop helicity amplitudes from
DIS 2 jet production in Ref. [42], and we cross checked
with Gosam [43]. These ingredients were combined ac-
cording to Ref. [32], by constructing appropriate counter-
events with opposite weights for every event in the Monte
Carlo (MC) integration of double-real and real-virtual
contributions, which render the phase space integrals fi-
nite for infrared (IR) safe observables. For the decay part
of the calculation, we adopted the results in Ref. [44]. We
also take into account the product of two NLO correc-
tions from di↵erent combinations of the light-quark line,
the heavy-quark line, and the decay part.

Finally, we combine corrections to the production part
and decay part consistently in the NWA, as in Refs. [45–

47]. Schematically, we write
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, (1)

where d�i and d�i

t

denote the O(↵i

S) corrections to the
production and decay parts, respectively. For the full
NNLO corrections there are contributions from O(↵2

S)
production only, from the product of O(↵S) production
and O(↵S) decay, and from O(↵2

S) decay only, as shown
in Eq. (1). Inclusive production cross sections at each
order can be obtained after integration over the decay
phase space.

III. NUMERICAL RESULTS

We use a top quark mass of 173.2 GeV and a W boson
mass of 80.385 GeV. We set the W boson decay branch-
ing ratio to 0.1086 for one lepton family. We choose
|V

tb

| = 1 and the CT14 NNLO parton distribution func-
tions (PDFs) [48] with ↵

s

(M
Z

) = 0.118. The nominal
central scale choice is µ

R

= µ

F

= m

t

with scale variation
calculated by varying the two together over the range
0.5 < µ/µ

o

< 2. We list the LO, NLO and NNLO re-
sults for top quark and anti-quark production in Table. I.
The NNLO QCD corrections reduce the cross sections by
2 ⇠ 3 % compared to a reduction of 4 ⇠ 5 % at NLO.
The full NNLO corrections consist of pieces from the
heavy-quark line, the light-quark line, and the products
of them. There are cancellations between these pieces as
well as cancellations among di↵erent partonic channels.
Perturbative convergence of the separate QCD series is
well maintained, as we verified by checking the individ-
ual pieces. Variations of the theoretical results associated
with choices of the hard scales are reduced by a factor of
4 at NLO compared with LO, and by a further factor of
3 at NNLO with respect to NLO.

inclusive [pb] LO NLO NNLO

t quark 143.7+8.1%
�10% 138.0+2.9%

�1.7% 134.3+1.0%
�0.5%

t̄ quark 85.8+8.3%
�10% 81.8+3.0%

�1.6% 79.3+1.0%
�0.6%

TABLE I. Inclusive cross sections for top (anti-)quark pro-
duction at 13 TeV at various orders in QCD. The scale
uncertainties are calculated by varying the hard scale from
µF = µR = mt/2 to 2mt, and are shown in percentages.

Fiducial cross sections for t-channel single top-quark
production have been measured at 7 and 8 TeV [25, 26].

Vl,h,q = three corrections to light quark line, heavy quark 
line and decay  including corrections from two loop, 

one loop+1 real emission, two real emission
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FIG. 1. Sketch of t-channel single-top quark production and
decay; ub ! dt with t ! e+⌫eb. Vl represents QCD cor-
rections to the light quark line, which could include interfer-
ence of the tree-diagram and the two-loop diagram, square of
the one-loop diagram (double-virtual), interference of the one-
loop diagram with one additional gluon and the tree-level dia-
gram with one additional gluon (real-virtual), and the square
of tree-level diagram with a pair of additional partons (double-
real). Vh and Vd represent the same type of corrections to the
heavy quark line and the decay part, respectively. There is
no cross talk between the light quark line, heavy quark line,
and the decay part in our calculation.

crucial for making this calculation feasible, because inter-
ference contributions between the light and heavy-quark
lines are not yet available [30] for the full two-loop vir-
tual diagrams. The structure function approximation at
NNLO is also used in an earlier calculation of t-channel
on-shell single top-quark production [24], and in Higgs
boson production through weak boson fusion [31, 32].

The NNLO QCD corrections to the heavy-quark line
are straightforward if we use phase-space slicing with the
N -jettiness variable [33–35]. A similar calculation was
performed for charm quark production in neutrino deep
inelastic scattering (DIS) in Ref. [36]. For the correc-
tions to the light-quark line, we adopted the method of
“projection-to-Born” in Ref. [32]. The key ingredients
in this approach are the inclusive NNLO DIS coe�cient
functions [37–39], for which a conveniently parametrized
version is available [40, 41]. For the real-virtual correc-
tions, we extracted the one-loop helicity amplitudes from
DIS 2 jet production in Ref. [42], and we cross checked
with Gosam [43]. These ingredients were combined ac-
cording to Ref. [32], by constructing appropriate counter-
events with opposite weights for every event in the Monte
Carlo (MC) integration of double-real and real-virtual
contributions, which render the phase space integrals fi-
nite for infrared (IR) safe observables. For the decay part
of the calculation, we adopted the results in Ref. [44]. We
also take into account the product of two NLO correc-
tions from di↵erent combinations of the light-quark line,
the heavy-quark line, and the decay part.

Finally, we combine corrections to the production part
and decay part consistently in the NWA, as in Refs. [45–

47]. Schematically, we write
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where d�i and d�i

t

denote the O(↵i

S) corrections to the
production and decay parts, respectively. For the full
NNLO corrections there are contributions from O(↵2

S)
production only, from the product of O(↵S) production
and O(↵S) decay, and from O(↵2

S) decay only, as shown
in Eq. (1). Inclusive production cross sections at each
order can be obtained after integration over the decay
phase space.

III. NUMERICAL RESULTS

We use a top quark mass of 173.2 GeV and a W boson
mass of 80.385 GeV. We set the W boson decay branch-
ing ratio to 0.1086 for one lepton family. We choose
|V

tb

| = 1 and the CT14 NNLO parton distribution func-
tions (PDFs) [48] with ↵

s

(M
Z

) = 0.118. The nominal
central scale choice is µ

R

= µ

F

= m

t

with scale variation
calculated by varying the two together over the range
0.5 < µ/µ

o

< 2. We list the LO, NLO and NNLO re-
sults for top quark and anti-quark production in Table. I.
The NNLO QCD corrections reduce the cross sections by
2 ⇠ 3 % compared to a reduction of 4 ⇠ 5 % at NLO.
The full NNLO corrections consist of pieces from the
heavy-quark line, the light-quark line, and the products
of them. There are cancellations between these pieces as
well as cancellations among di↵erent partonic channels.
Perturbative convergence of the separate QCD series is
well maintained, as we verified by checking the individ-
ual pieces. Variations of the theoretical results associated
with choices of the hard scales are reduced by a factor of
4 at NLO compared with LO, and by a further factor of
3 at NNLO with respect to NLO.

inclusive [pb] LO NLO NNLO

t quark 143.7+8.1%
�10% 138.0+2.9%

�1.7% 134.3+1.0%
�0.5%

t̄ quark 85.8+8.3%
�10% 81.8+3.0%

�1.6% 79.3+1.0%
�0.6%

TABLE I. Inclusive cross sections for top (anti-)quark pro-
duction at 13 TeV at various orders in QCD. The scale
uncertainties are calculated by varying the hard scale from
µF = µR = mt/2 to 2mt, and are shown in percentages.

Fiducial cross sections for t-channel single top-quark
production have been measured at 7 and 8 TeV [25, 26].

3

We choose a fiducial region for 13 TeV that is similar to
the one used in the CMS analysis [26] at 8 TeV. We use
the anti-k

T

jet algorithm [49] with a distance parameter
D = 0.5. Jets are defined to have transverse momentum
p

T

> 40 GeV and pseudorapidity |⌘| < 5. We require
exactly two jets in the final state, following the CMS and
ATLAS analyses, meaning that events with additional
jets are vetoed, and we require at least one of these to be
a b-jet with |⌘| < 2.4 [50, 51]. We demand the charged
lepton to have a p

T

greater than 30 GeV and rapidity
|⌘| < 2.4. For the fiducial cross sections reported below
we include top-quark decay to only one family of leptons.

Table II shows our predictions of the fiducial cross sec-
tions at di↵erent perturbative orders, with scale varia-
tions shown in percentages. We vary the renormalization
and factorization scales µ

R

= µ

F

in the top-quark pro-
duction stage, and the renormalization scale in the decay
stage, independently by a factor of two around the nom-
inal central scale choice. The resulting scale variations
are added in quadrature to obtain the numbers shown in
Table II. We also show the QCD corrections from pro-
duction and decay separately as defined in Eq. (1). All
results shown in Table II are for the central scale choice
m

t

, as for the inclusive cross sections. The NNLO correc-
tions from the product of O(↵S) production and O(↵S)
decay can be derived by subtracting the above two con-
tributions from the full NNLO corrections.

Changes of the QCD corrections after all kinematic
cuts are applied are evident if one compares Table II
with Table I. Acceptance in the charged lepton, the b-
jet, and the non-b jet produce these changes, as well as
the jet veto. We call attention to the fact that the NLO
QCD corrections in production have changed to �19%.
The NLO corrections in decay further reduce the cross
sections by about 8%. At NNLO the correction in pro-
duction is still dominant and can reach �6%. The size
of the NNLO correction in decay is smaller by about a
factor of 2, and it almost cancels with the correction
from the product of one-loop production and one-loop
decay. Scale variations have been reduced to about ±1%
at NNLO. Scale variation bands at various orders do not
overlap with each other in general.

With fiducial cuts applied, the jet veto introduces an-
other hard scattering scale of p

T,veto

= 40 GeV in addi-
tion to m

t

. Thus it may be appropriate to choose a QCD
scale of (p

T,veto

m

t

)1/2 ⇠ m

t

/2, especially at lower per-
turbative orders where the gluon splitting contributions
are absorbed into the bottom-quark PDF. Alternative re-
sults with a central scale choice of m

t

/2 in production,
with the central scale m

t

retained in the decay part, show
better convergence of the series although the NNLO pre-
dictions are almost unchanged.

In experimental analyses, the total inclusive cross sec-
tions are usually determined through extrapolation of the
fiducial cross sections based on acceptance estimates ob-
tained from MC simulations. We can use the numbers
shown in Tables I and II to derive the parton-level ac-
ceptance at various orders. For top quark production,

fiducial [pb] LO NLO NNLO

t quark
total 4.07+7.6%

�9.8% 2.95+4.1%
�2.2% 2.70+1.2%

�0.7%

corr. in pro. -0.79 -0.24

corr. in dec. -0.33 -0.13

t̄ quark
total 2.45+7.8%

�10% 1.78+3.9%
�2.0% 1.62+1.2%

�0.8%

corr. in pro. -0.46 -0.15

corr. in dec. -0.21 -0.08

TABLE II. Fiducial cross sections for top (anti-)quark produc-
tion with decay at 13 TeV at various orders in QCD with a
central scale choice of mt in both production and decay. The
scale uncertainties correspond to a quadratic sum of varia-
tions from scales in production and decay, and are shown in
percentages. Corrections from pure production and decay are
also shown.

the acceptances are 0.0283, 0.0214, and 0.0201 at LO,
NLO, and NNLO respectively. The NNLO corrections
can change the acceptance by 6% relative to the NLO
value. This change also propagates into the measurement
of the total inclusive cross section through extrapolation.
To compare our results with those in Ref. [24], we cal-

culated the NNLO total inclusive cross sections at 8 TeV
using the same choices of parameters. We found a dif-
ference of ⇠ 1% on the NNLO cross sections. With a
refined comparison through private communications, we
traced the source of this discrepancy to NNLO contribu-
tions associated with V

h

, with the b-quark initial state.
All other parts in the NNLO corrections and all parts
of the NLO contributions agree between the two results
within numerical uncertainties. It has not been possible
to further pin down the di↵erences. We leave this issue
for possible future investigation.

IV. DIFFERENTIAL DISTRIBUTIONS

We present di↵erential distributions including NNLO
corrections for top quark production with decay. The
e↵ects for top anti-quark distributions are similar. The
full QCD corrections for the pseudorapidity distribution
of the non-b jet are shown in Fig. 2 after all fiducial cuts
are applied. Events with two b-jets in the fiducial region
are not included in the plot. The corrections depend
strongly on the pseudorapidity. The NNLO corrections
have a di↵erent shape from those at NLO and can be even
larger than the NLO corrections in the regions of large
pseudorapidity. The transverse momentum distribution
of the leading b-jet is plotted in Fig. 3, again includ-
ing the full QCD corrrections in production and decay.
The corrections reach a maximum for p

T,b

of about 80
GeV. Acceptance limitations explain the peculiar shape
of the p

T

distribution. We observe a reduction in the
hard scale variations in both Figs. 2 and 3, calculated
by varying the corresponding scales in production and

Production and decay @ NNLO, decay in narrow width approx

4

decay independently by a factor of two around m

t

and
then adding the variations in quadrature. In general we
found large NLO corrections to the fiducial distributions,
which makes our NNLO calculation a necessity in order
to assess the convergence and reliability of pQCD series.
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FIG. 2. Predicted pseudorapidity distribution of the non-b
jet in the final state from top quark production with decay at
13 TeV with fiducial cuts applied.

As mentioned in Sec. II, we neglect cross-talk between
incoming protons, and we discuss the justification for this
approximation for the inclusive cross section. Exchanges
associated with cross-talk, although suppressed by a fac-
tor of 1/N2

c

, might lead to di↵erent kinematical shape
dependence for di↵erential distributions, compared with
the corrections considered in this manuscript. It would
be valuable to compute the cross-talk contributions in the
future, once the relevant techniques are developed. We
believe that the calculation presented in this manuscript
represents the best available results in the literature so
far.

Charge asymmetry is one of the precision observables
at the LHC, e.g., as measured in W boson produc-
tion [52–54]. It is insensitive to high-order corrections
and is less subject to experimental systematic uncertain-
ties. Moreover, since it is determined largely by the
PDFs, it can provide stringent constraints in PDF de-
terminations [48, 55]. The predicted ratio of the fiducial
cross sections for top anti-quark and top quark produc-
tion is presented in the upper panel of Fig. 4 as a function
of the pseudorapidity of the charged lepton. The ratio
is less than one since there are more u-valence quarks
than d-valence quarks in the proton, and it decreases
with pseudorapidity because the d/u ratio decreases at

NNLO
NLO
LO

NNLO!LO NLO!LO

LHC 13 TeV, top quark

µR, p!µF, p!mt

µR, d!mt

50 100 150

0.00

0.02

0.04

0.06

0.08

0.4

0.6

0.8

1.0

1.2

pT,b "GeV#

R
at

io
d

σ
!d

p
T

,b
"p

b
!G

eV
#

FIG. 3. Predicted transverse momentum distribution of the
leading b-jet from top quark production with decay at 13 TeV
with fiducial cuts applied.

large x [48]. The uncertainty flags show the statistical
uncertainty from the MC integration. The ratios of the
three curves are shown in the lower panel. The spread
of the LO, NLO, and NNLO predictions is about 1% in
the central region. At large |⌘

l

|, the NLO correction can
reach about 2%, and the additional NNLO correction is
well below one percent. Also shown in the lower panel
are the 68% confidence-level uncertainty bands for three
sets of NNLO PDFs: CT14 [48], MMHT2014 [56] and
NNPDF3.0 [57]. For simplicity, we obtained these bands
using the LO matrix elements and the NNLO PDFs, and
we verified that quantitatively similar central values of
the bands are obtained if we use NLO matrix elements.
Since the PDF induced uncertainty is much larger than
the theoretical uncertainty of its NNLO prediction, the
charge ratio can be used reliably to further discriminate
among and constrain the PDFs, provided that experi-
mental uncertainties can be controlled to the same level,
as is also pointed out in [24, 58, 59]. This charge ratio
may also be sensitive to certain kinds of physics beyond
the SM [60].

V. SUMMARY

We present the first calculation of NNLO QCD
corrections to t-channel single top quark production
with decay at the LHC in the 5-flavor scheme in QCD,
neglecting the cross-talk between the hadronic systems
of the two incoming protons. Our calculation provides
a fully di↵erential simulation at NNLO for t-channel

Differential 
distributions also 
available @NNLO

stable values 
reduced uncertainties

2jets, 1b-jet antikT R=0.5 
pT,jet >40 GeV, |𝜂jet|<5 (2.4 for b-jet) 

pT,lep > 30 GeV | 𝜂lep| <2.4

@ √s = 8 TeV 
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• Reconstruct tt system with kinematic reco
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choose ( ,jet) 
assignment 
to tt with 
largest # of 
b-jets

assume pTmiss = 2 𝜈 +  
impose 6 constraints 
on (2ℓ, jets, 2 𝜈) : total 
pT , mW x2,  mtop x2

solve for both 𝜈 
3-mom such 
that mtt  is 
smallest   
(resolve ambiguity)

smear 4-
momenta 
of ℓ and 
jets with 
expected  
resolution

weight for solution = 
prob M(ℓ,jet) <180 GeV 
in top and in anti-top

90% efficient on tt

two separate 𝜈 3-momenta for given assignment = weighted average of 100 smeared repetitions 

keep (ℓ,jet) assignment with maximum 𝛴 weights

t
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b

tW 
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q
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• Particle flow → individual particles using all CMS subdet→ Require 
‣ 2 opposite sign ℓ (e,𝜇), ≧2 jets,  ≧1 b-tag 
‣ m(ℓ+ℓ-) > 20 GeV and  ≠MZ  (15 GeV window), large pTmiss (>40 GeV)

• Bkg: data-driven Z+jets, simulated tW,W/Z jets, other tt

Standard reasons:Extreme test of SM: d𝜎tt/dpT “saga”-  dilepton
`JHEP 02 (2019) 149√s=13TeV

• Bkg-subtract & Unfold to parton and particle level → dσtt/dX
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Status of Search for observation of 4  top quarks
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Predictions for 4tops
● Very tiny cross section in the SM 
○ σ NLO(tttt) = 11.97 fb at NLO QCD + NLO QED 
at 13 TeV[1] 
● Very complicated process 
○ at LO 72 gg+12 qq' initiated diagrams 
● Sensitive to top-Yukawa coupling (yt)   
○ non-SM value of yt can change dramatically 
the production via an off-shell Higgs 

● Extremely high energy scale production 
makes it naturally sensitive to many BSM 
models  
○ EFTs, including four-fermion contact 
interaction 
○ Higgs physics: Top-Higgs yukawa coupling 
○ SUSY: gluinos, sgluons  
○ New particles coupling to top quark 

| ATLAS Weekly | Nedaa Alexandra Asbah, 06.04.2019 
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Overview of the Analyses

| ATLAS Weekly | Nedaa Alexandra Asbah, 06.04.2019 

● Split into various channels depending on the number of leptons 
○ SS dilepton and multilepton channels (SS/ML) 

○ Low branching fraction, but small background (statistically limited) 
○ Most sensitive channel  

○ Single-lepton and OS dilepton channels (1L/2LOS)  
○ Dominant branching fraction, but large irreducible background from ttbar 
(systematically limited) 
○ It could still improve the sensitivity in the combination  

○ All hadronic  
○ Powerful with massive new particles (gluons), not yet explored with SM kinematics 

● Latest results  

Significance 
obs. (exp.) [σ] 

ATLAS 36 fb-1 CMS 36 fb-1 CMS 139 fb-1

SS/ML 3.0 (0.8) [1] 1.6 (1.0) [3] 2.6 (2.7)[6]
1L/OS 1.0 (0.6) [2] 0.0 (0.4) [4] -

Combination 2.8 (1.0) [2] 1.4 (1.1) [4] -

(table and diagrams by Nedaa Alexandra Asbah) 
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• Reconstruct tt system with kinematic reco
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• Particle flow → individual particles using all CMS subdet→ Require 
‣ 2 opposite sign ℓ (e,𝜇), ≧2 jets,  ≧1 b-tag 
‣ m(ℓ+ℓ-) > 20 GeV and  ≠MZ  (15 GeV window), large pTmiss (>40 GeV)

• Bkg: data-driven Z+jets, simulated tW,W/Z jets, other tt

Standard reasons:Extreme test of SM: d𝜎tt/dpT “saga”-  dilepton
`JHEP 02 (2019) 149√s=13TeV

• Bkg-subtract & Unfold to parton and particle level → dσtt/dX
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• Reconstruct tt system with dilepton kinematic reco
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standard for 2d distributions
• Mtt vs  {pT,top |ytop| |ytt| Δ𝜂(t,t), Δ𝜑(t,t),pT,tt} 

• [|ytop|, pT,top]
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Figure 2: Distributions of y(tt) (left) and M(tt) (right) in selected events after the loose kine-
matic reconstruction. Details can be found in the caption of Fig. 1.

events obtained after the subtraction of other background sources is multiplied by the ratio of
the number of selected tt signal events to the total number of selected tt events (i.e. the signal
and all other tt events) in simulation.

The numbers of signal events obtained after background subtraction are corrected for detector
effects, using the TUNFOLD package [69]. The event yields in the e+e�, µ+µ� and e±µ⌥ chan-
nels are added together, and the unfolding is performed. It is verified that the measurements
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i in bins i of kinematic vari-
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si
s

=
1
s

M̂unf
i

B L , (1)

where the total cross section s is evaluated by summing si over all bins, B is the branching
ratio of tt into e+e�, µ+µ�, and e±µ⌥ final states and L is the integrated luminosity of the
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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from g(s). Operatively the measurements that sample g(s) are limited in number and affected by biases,
inefficiency and imperfect resolution, so a discretized version of the integral equation 1.1 is used and a
limited number of ingredients define the unfolding problem [13].

In the very common one dimensional case where both y and s are real variables, the measured distri-
bution is approximated by the histogram representing the values νi, the expected number of counts in a
given interval of s according to the definition

νi =

∫ si

si−1

g(s)ds (1.2)

where the interval of definition for s is divided in N sub-intervals by a set of (s1,...,sN ) values and
any integral of g(s) over a specified sub-interval provides the total number of observed events in that
sub-interval.

In a similar manner the true distribution is approximated by a histogram. The range of the allowed
values for y is also divided in M sub-intervals by a set of (y1,...,yM ) values and the expected number of
counts in one of the sub-intervals is defined as

µj =

∫ yj

yj−1

f(y)dy (1.3)

The integral kernel K(s, y) from Equation 1.1 is approximated by a response matrix R(i, j) represen-
ting the probability that an event with a value of the y variable in bin j is observed as an event with a
value of s in bin i. So Equation 1.1 is transformed in

νi =
M
∑

j=1

Ri,jµj (1.4)

where νi and µj are the expected number of reconstructed and “true” events in bins i and j respectively.
Consequently the first ingredient for the unfolding problem described by Equation 1.4 is the knowledge

of the response matrix R. In general R is a rectangular matrix and by combining Equation 1.1 with
Equation 1.2, it is connected to the kernel by the equation

Ri,j =

∫ si
si−1

∫ yj
yj−1

K(s, y)f(y)dyds
∫ yj
yj−1

f(y)dy
(1.5)

If the analytical formulation of the kernel is available, R can be determined directly from Equation 1.5.
However most frequently R is obtained by running detailed simulation of the measuring apparatus inclu-
ding as many effects as possible. Monte Carlo events are generated with the best available prediction for
the true distribution f(y) and fully simulated with the most accurate model of the detector to produce
our best guess of g(s), the distribution of measured values. For some cases it is possible to measure the
response to δ-like (unit-impulse) inputs that can allow to determine the kernel in a certain range of values,
like the response of a calorimeter to a beam of particle of known energy and nature. This is equivalent to
the integral K(s, y0) =

∫ b
a K(s, y)δ(y − y0)dy.

The second ingredient is the the vector of expected bin contents ννν. The vector ννν is approximated
by the vector n = (n1,...,nN ) representing the number of observed events in each histogram bin for the
variable s. By definition ννν is such that E[ni]= νi where E[ni] indicates the expectation value of ni.

Two additional ingredients are necessary to make the model built in 1.4 closer to reality.
First some interesting events are not observed due to inefficiencies in the detection or to the requi-

rements imposed on the events properties. Such inefficiency is included in the estimate of the response
matrix R(i, j) with a proper normalization by defining

∑

Ri,j =
M
∑

j=1

P (observed in bin i|true value in bin j) = P (observed anywhere|true value in bin j) = ϵj

(1.6)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

µTRUE µML
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matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
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instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)
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resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.
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expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)

⊕
is unbiased  & has 

minimum variance
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The corresponding covariance matrix is estimated [13] to be

UC,i,j = cov[µMC
i , µMC

j ] = C2
i cov[ni, nj ] (1.21)

The correction factor Ci is often of order unity so the variance of the estimators is not much larger than
the Poisson statistical uncertainty in the data and it is typically reduced with respect to the ML estimator
uncertainty. In relation to the uncertainties in Equation 1.21 a simple example due to R. Cousins and
reported in Ref. [15]) points out their limitations. If one assumes that, for a given bin i of the distribution
to be corrected, the values are Ci= 0.1, βi = 0 and ni = 100, the estimate µi,C for the expected number
of events in this bin is obtained by Cini= 10 and the associated standard deviation is Ci

√
ni=1. However

this estimate maintains that only 10 of the 100 events that are observed in the bin are actually belonging
to the bin, while the remaining 90 events migrated in from other bins. It is then contradictory to have
a measurement with a 10% uncertainty when there are in fact only 10 events that are actually carrying
information about the bin content.

The bias corresponding to this technique, defined as E[µi,est]- µi, is estimated [13] to be

b = (
µMC
i

νMC
i

−
µi

νsigi

)νsigi (1.22)

where νsigi = νi - βi. The bias b is zero only if the simulation provides a proper description of the (unknown)
true distribution and the bias pulls the result towards the values derived by the model that is used to
determine the correction factor.

Ultimately the values of Ci depend circularly on the assumed true distribution one is trying to find.
In addition the bin-to-bin correlations are completely neglected and uncertainties are only diagonal. The
sum of the estimated events can be different from the sum of the observed number of events, differently
from the ML estimator. The reduction in statistical uncertainty is obtained in exchange for a bias on the
estimated result and the actual estimate of the bias is not simple. The bias is reduced if the migration
between bins are a small fraction of the bins contents i.e. if the non-diagonal elements of the response
matrix R are much much smaller than unity. Another visualization of this reduction is the requirement
for the bin width to be large compared to the measurement resolution. Given its limitations in terms of
possibly large biases, the technique of correction factors is a good tool for an initial approximation of the
results, but it is generally advisable to avoid it for general use 3

1.5 Back to basics : where to from the maximum likelihood solution ?

The sensitivity to fluctuations associated with the ML solution stems from the nature of equation 1.15 :
the original Fredholm equation 1.1 is an intrinsically ill-posed or improper problem [10] i.e. a problem
where “large and sometimes infinite changes in the solution could correspond to small changes in the input

data” [16] 4 In this light the stability of the solution of Equation 1.15 with respect to fluctuations can be
quantified by how the uncertainties on the inputs are propagated to the output : a quantitative figure of
merit for this propagation is the maximum ratio of relative precision of the estimated solution µµµest of
Equation 1.15 to the relative precision of the measured input vector d = n - βββ, defined as

c(R) = maxd,δd
δµµµest/µµµest

δd/d
(1.23)

The quantity c(R) is called the condition of the R matrix and it is the upper bound on the magnification
factor for the uncertainties on the input to the inversion. A large value for c(R) implies instability under
small fluctuations in the input i.e. a significant sensitivity to “noise” in the measurement.

3. A possible exception can be some very well behaved cases with nearly diagonal response matrices where migrations
effects are minimal, the expected uncertainties are well understood and the expected bias is found to be negligible in
comparison to the total final uncertainties on the unfolded results (see also Section 1.13).

4. A simple and powerful visualization of the ill-posed problem is also given in Ref. [10] : given that the kernel integration
in Equation 1.1 tends to smooth out f(y) and to reduce its high frequency components (edges, cusps and the like), the
inversion of such a procedure will inevitably enhance the high frequency features of the input.
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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A deeper analysis of equation 1.15 illustrates the link between fluctuations and instability and exposes
the origin of instability in a quantitative manner [17] by making a connection with the condition of the
matrix to be inverted.

The first step is to perform a transformation of variables in equation 1.15 such that the covariance
matrix Vd of the vector d becomes the identity matrix. In general Vd can be non-diagonal as there can be
correlations between the observations in the different bins : the Poisson-based likelihood for independent
observations described by Equation 1.12 is consequently extended to be

L ∝ e−
1
2χ

2(µµµ,d) = e−
1
2 (Rµµµ−d)TV −1

d
(Rµµµ−d) (1.24)

and the estimates deriving from its maximization coincide with the least squares estimate 5. The reduction
of Vd to the identity matrix allows to write the generalized likelihood of Equation 1.24 in terms of
significances i.e. variables normalized to their uncertainties. The transformation of variables is a rotation
in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
orthogonal matrix Q (QQT = 1) such that Vd = QV ′

d
QT and V ′

d
is an N ×N diagonal matrix such that

V ′

d,i,i = v2i ̸= zero and V ′

d,i,j = 0 for i ̸= j. The new vector d′ is obtained by a rotation with Q and a
rescaling based on vi as follows

d′i =
1

vi

N
∑

j=1

Qi,jdj (1.25)

The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly

R′

i,j =
1

vI

N
∑

k=1

Qi,kRk,,j (1.26)

so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to

1

2
χ2(µµµ,d) = (R′µµµ− d′)T (R′µµµ− d′) (1.28)

The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian

distribution L ∝ e−(Rµµµ−d)TD−1

d
(Rµµµ−d) where Dd,i,i = σ(di)

2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].

• Small changes in input (can) lead to large changes in the ML estimate. 

Singular Value 
Decomposition
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migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
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4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
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5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian

distribution L ∝ e−(Rµµµ−d)TD−1

d
(Rµµµ−d) where Dd,i,i = σ(di)

2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].
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A deeper analysis of equation 1.15 illustrates the link between fluctuations and instability and exposes
the origin of instability in a quantitative manner [17] by making a connection with the condition of the
matrix to be inverted.

The first step is to perform a transformation of variables in equation 1.15 such that the covariance
matrix Vd of the vector d becomes the identity matrix. In general Vd can be non-diagonal as there can be
correlations between the observations in the different bins : the Poisson-based likelihood for independent
observations described by Equation 1.12 is consequently extended to be

L ∝ e−
1
2χ

2(µµµ,d) = e−
1
2 (Rµµµ−d)TV −1

d
(Rµµµ−d) (1.24)

and the estimates deriving from its maximization coincide with the least squares estimate 5. The reduction
of Vd to the identity matrix allows to write the generalized likelihood of Equation 1.24 in terms of
significances i.e. variables normalized to their uncertainties. The transformation of variables is a rotation
in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
orthogonal matrix Q (QQT = 1) such that Vd = QV ′

d
QT and V ′

d
is an N ×N diagonal matrix such that

V ′

d,i,i = v2i ̸= zero and V ′

d,i,j = 0 for i ̸= j. The new vector d′ is obtained by a rotation with Q and a
rescaling based on vi as follows

d′i =
1

vi

N
∑

j=1

Qi,jdj (1.25)

The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly

R′

i,j =
1

vI

N
∑

k=1

Qi,kRk,,j (1.26)

so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to

1

2
χ2(µµµ,d) = (R′µµµ− d′)T (R′µµµ− d′) (1.28)

The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular
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d
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2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].
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L ∝ e−
1
2χ

2(µµµ,d) = e−
1
2 (Rµµµ−d)TV −1

d
(Rµµµ−d) (1.24)
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of Vd to the identity matrix allows to write the generalized likelihood of Equation 1.24 in terms of
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The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian
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d
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2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].
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The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular
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2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
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given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

diagonal χ2→rotate & 
normalize R & d →Rʼ & dʼ 

• Large ML sensitivity to small fluctuations, low significance, highly oscillating 
(high “frequency”) components→high condition number C(R) of migration 
matrxi R

•Regularize = Reduce impact of high frequency while keeping info of high 
significance, stable components → reduction in variance w.r.t. ML estimator
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of

φ = αlogL(µµµ) + S(µµµ) + λ(ntot −
N
∑

i=1

νi) (1.36)

as a function of λ and µµµ. It should be noted that
∑N

i=1 νi is a function of µi as νi =
∑N

i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
maximum likelihood solution. In this light, taking for instance the formulation of Equation 1.34, if α is set
to zero, the solution is set to the smooth function encoding all the constrains (i.e. available pre-existing
information) : the shape of S(µµµ) is imposed as the correct one and the data are ignored. If α tends to
infinity (i.e. α is much larger than any of the other coefficients) S(µµµ) carries no weight in the maximization
and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
dkf(y)

dyk
)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
1

2
χ2(µµµ) + τS(µµµ) (1.40)

6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of
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as a function of λ and µµµ. It should be noted that
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i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
maximum likelihood solution. In this light, taking for instance the formulation of Equation 1.34, if α is set
to zero, the solution is set to the smooth function encoding all the constrains (i.e. available pre-existing
information) : the shape of S(µµµ) is imposed as the correct one and the data are ignored. If α tends to
infinity (i.e. α is much larger than any of the other coefficients) S(µµµ) carries no weight in the maximization
and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
dkf(y)

dyk
)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
1

2
χ2(µµµ) + τS(µµµ) (1.40)

6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at
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= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

ˆ
ˆ

ˆ

ˆ

ˆ ˆ

where
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What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

ˆ

• ML solution is good for model tests, as long as the full covariance 
matrix is used (despite its huge variance).

-

-

-

-
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Fig. 3 Migration matrices for
(a–b) mtt̄ , (c–d) pT,t t̄ , and (e–f)
ytt̄ estimated from simulated t t̄
events passing all (left) e + jets
and (right) µ + jets selection
criteria. The unit of the matrix
elements is the probability for
an event generated at a given
value to be reconstructed at
another value

which includes the full covariance matrix between the chan-
nels. Since the covariance matrix is used in the weight-
ing, the estimate is a best linear unbiased estimator of
the cross-section. The covariance matrix is determined in
simulated events using the same pseudo-experiment pro-
cedure outlined in the previous section and derived from
Eq. (5).

8 Results

To reduce systematic uncertainties only relative cross-
sections (differential cross-section normalized to the mea-
sured inclusive cross-section) are reported. The full pro-
cedure for the differential measurement is also contracted
down to one bin to perform the measurement of the inclu-
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Fig. 2 Distributions of the
reconstructed (a–b) t t̄ mass,
mtt̄ , (c–d) the t t̄ transverse
momentum, pT,t t̄ , and (e–f) the
t t̄ rapidity, ytt̄ , before
background subtraction and
unfolding. In (a–b) and (c–d)
the bin corresponding to the
largest mtt̄ (pT,t t̄ ) value
includes events with mtt̄ (pT,t t̄ )
larger than 2700 GeV
(700 GeV). The largest
reconstructed mtt̄ in the µ + jets
channel is 2603 GeV. Data are
compared to the expectation
derived from simulation and
data-driven estimates. All
selection criteria are applied for
the (a, c, e) e + jets and (b, d, f)
µ + jets channels. The
uncertainty bands include all
contributions given in Sect. 6
except those from PDF and
theory normalization
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Fig. 5 Relative differential
cross-section versus (a–b) mtt̄ ,
(c) pT,t t̄ and (d) ytt̄ . Note that
the histograms are a graphical
representation of Table 3. This
means that only the bin ranges
along the x-axis (and not the
position of the vertical error bar)
can be associated to the relative
differential cross-section values
on the y-axis. The relative
cross-section in each bin shown
in Table 3 is compared to the
NLO prediction from
MCFM [8]. For mtt̄ the results
are also compared with the
NLO+NNLL prediction from
Ref. [7]. The measured
uncertainty represents 68 %
confidence level including both
statistical and systematic
uncertainties. The bands
represent theory uncertainties
(see Sect. 8 for details).
Predictions from MC@NLO
and ALPGEN are shown for
fixed settings of the generators’
parameters (details are found in
Sect. 8)

No significant deviations from the SM expectations pro-
vided by the different MC generators are observed. The SM
prediction for the relative cross-section distribution can be
tested against the measured values by using the covariance
matrix between the measured bins of the combined results.

9 Conclusions

Using a dataset of 2.05 fb−1, the relative differential cross-
section for t t̄ production is measured as a function of three
properties of the t t̄ system: mass (mtt̄ ), pT (pT,t t̄ ) and rapid-
ity (ytt̄ ). The background-subtracted, detector-unfolded val-
ues of 1/σ dσ/dmtt̄ , 1/σ dσ/dpT,t t̄ and 1/σ dσ/dyt t̄ are
reported together with their respective covariance matrices,
and compared to theoretical calculations. The measurement
uncertainties range typically between 10 % and 20 % and
are generally dominated by systematic effects. No signifi-
cant deviations from the SM expectations provided by the
different MC generators are observed.
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

20 School of Statistics 2008, Strasbourg

from g(s). Operatively the measurements that sample g(s) are limited in number and affected by biases,
inefficiency and imperfect resolution, so a discretized version of the integral equation 1.1 is used and a
limited number of ingredients define the unfolding problem [13].

In the very common one dimensional case where both y and s are real variables, the measured distri-
bution is approximated by the histogram representing the values νi, the expected number of counts in a
given interval of s according to the definition

νi =

∫ si

si−1

g(s)ds (1.2)

where the interval of definition for s is divided in N sub-intervals by a set of (s1,...,sN ) values and
any integral of g(s) over a specified sub-interval provides the total number of observed events in that
sub-interval.

In a similar manner the true distribution is approximated by a histogram. The range of the allowed
values for y is also divided in M sub-intervals by a set of (y1,...,yM ) values and the expected number of
counts in one of the sub-intervals is defined as

µj =

∫ yj

yj−1

f(y)dy (1.3)

The integral kernel K(s, y) from Equation 1.1 is approximated by a response matrix R(i, j) represen-
ting the probability that an event with a value of the y variable in bin j is observed as an event with a
value of s in bin i. So Equation 1.1 is transformed in

νi =
M
∑

j=1

Ri,jµj (1.4)

where νi and µj are the expected number of reconstructed and “true” events in bins i and j respectively.
Consequently the first ingredient for the unfolding problem described by Equation 1.4 is the knowledge

of the response matrix R. In general R is a rectangular matrix and by combining Equation 1.1 with
Equation 1.2, it is connected to the kernel by the equation

Ri,j =

∫ si
si−1

∫ yj
yj−1

K(s, y)f(y)dyds
∫ yj
yj−1

f(y)dy
(1.5)

If the analytical formulation of the kernel is available, R can be determined directly from Equation 1.5.
However most frequently R is obtained by running detailed simulation of the measuring apparatus inclu-
ding as many effects as possible. Monte Carlo events are generated with the best available prediction for
the true distribution f(y) and fully simulated with the most accurate model of the detector to produce
our best guess of g(s), the distribution of measured values. For some cases it is possible to measure the
response to δ-like (unit-impulse) inputs that can allow to determine the kernel in a certain range of values,
like the response of a calorimeter to a beam of particle of known energy and nature. This is equivalent to
the integral K(s, y0) =

∫ b
a K(s, y)δ(y − y0)dy.

The second ingredient is the the vector of expected bin contents ννν. The vector ννν is approximated
by the vector n = (n1,...,nN ) representing the number of observed events in each histogram bin for the
variable s. By definition ννν is such that E[ni]= νi where E[ni] indicates the expectation value of ni.

Two additional ingredients are necessary to make the model built in 1.4 closer to reality.
First some interesting events are not observed due to inefficiencies in the detection or to the requi-

rements imposed on the events properties. Such inefficiency is included in the estimate of the response
matrix R(i, j) with a proper normalization by defining

∑

Ri,j =
M
∑

j=1

P (observed in bin i|true value in bin j) = P (observed anywhere|true value in bin j) = ϵj

(1.6)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)
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What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)

⊕
is unbiased  & has 

minimum variance
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The corresponding covariance matrix is estimated [13] to be

UC,i,j = cov[µMC
i , µMC

j ] = C2
i cov[ni, nj ] (1.21)

The correction factor Ci is often of order unity so the variance of the estimators is not much larger than
the Poisson statistical uncertainty in the data and it is typically reduced with respect to the ML estimator
uncertainty. In relation to the uncertainties in Equation 1.21 a simple example due to R. Cousins and
reported in Ref. [15]) points out their limitations. If one assumes that, for a given bin i of the distribution
to be corrected, the values are Ci= 0.1, βi = 0 and ni = 100, the estimate µi,C for the expected number
of events in this bin is obtained by Cini= 10 and the associated standard deviation is Ci

√
ni=1. However

this estimate maintains that only 10 of the 100 events that are observed in the bin are actually belonging
to the bin, while the remaining 90 events migrated in from other bins. It is then contradictory to have
a measurement with a 10% uncertainty when there are in fact only 10 events that are actually carrying
information about the bin content.

The bias corresponding to this technique, defined as E[µi,est]- µi, is estimated [13] to be

b = (
µMC
i

νMC
i

−
µi

νsigi

)νsigi (1.22)

where νsigi = νi - βi. The bias b is zero only if the simulation provides a proper description of the (unknown)
true distribution and the bias pulls the result towards the values derived by the model that is used to
determine the correction factor.

Ultimately the values of Ci depend circularly on the assumed true distribution one is trying to find.
In addition the bin-to-bin correlations are completely neglected and uncertainties are only diagonal. The
sum of the estimated events can be different from the sum of the observed number of events, differently
from the ML estimator. The reduction in statistical uncertainty is obtained in exchange for a bias on the
estimated result and the actual estimate of the bias is not simple. The bias is reduced if the migration
between bins are a small fraction of the bins contents i.e. if the non-diagonal elements of the response
matrix R are much much smaller than unity. Another visualization of this reduction is the requirement
for the bin width to be large compared to the measurement resolution. Given its limitations in terms of
possibly large biases, the technique of correction factors is a good tool for an initial approximation of the
results, but it is generally advisable to avoid it for general use 3

1.5 Back to basics : where to from the maximum likelihood solution ?

The sensitivity to fluctuations associated with the ML solution stems from the nature of equation 1.15 :
the original Fredholm equation 1.1 is an intrinsically ill-posed or improper problem [10] i.e. a problem
where “large and sometimes infinite changes in the solution could correspond to small changes in the input

data” [16] 4 In this light the stability of the solution of Equation 1.15 with respect to fluctuations can be
quantified by how the uncertainties on the inputs are propagated to the output : a quantitative figure of
merit for this propagation is the maximum ratio of relative precision of the estimated solution µµµest of
Equation 1.15 to the relative precision of the measured input vector d = n - βββ, defined as

c(R) = maxd,δd
δµµµest/µµµest

δd/d
(1.23)

The quantity c(R) is called the condition of the R matrix and it is the upper bound on the magnification
factor for the uncertainties on the input to the inversion. A large value for c(R) implies instability under
small fluctuations in the input i.e. a significant sensitivity to “noise” in the measurement.

3. A possible exception can be some very well behaved cases with nearly diagonal response matrices where migrations
effects are minimal, the expected uncertainties are well understood and the expected bias is found to be negligible in
comparison to the total final uncertainties on the unfolded results (see also Section 1.13).

4. A simple and powerful visualization of the ill-posed problem is also given in Ref. [10] : given that the kernel integration
in Equation 1.1 tends to smooth out f(y) and to reduce its high frequency components (edges, cusps and the like), the
inversion of such a procedure will inevitably enhance the high frequency features of the input.
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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A deeper analysis of equation 1.15 illustrates the link between fluctuations and instability and exposes
the origin of instability in a quantitative manner [17] by making a connection with the condition of the
matrix to be inverted.

The first step is to perform a transformation of variables in equation 1.15 such that the covariance
matrix Vd of the vector d becomes the identity matrix. In general Vd can be non-diagonal as there can be
correlations between the observations in the different bins : the Poisson-based likelihood for independent
observations described by Equation 1.12 is consequently extended to be

L ∝ e−
1
2χ

2(µµµ,d) = e−
1
2 (Rµµµ−d)TV −1

d
(Rµµµ−d) (1.24)

and the estimates deriving from its maximization coincide with the least squares estimate 5. The reduction
of Vd to the identity matrix allows to write the generalized likelihood of Equation 1.24 in terms of
significances i.e. variables normalized to their uncertainties. The transformation of variables is a rotation
in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
orthogonal matrix Q (QQT = 1) such that Vd = QV ′

d
QT and V ′

d
is an N ×N diagonal matrix such that

V ′

d,i,i = v2i ̸= zero and V ′

d,i,j = 0 for i ̸= j. The new vector d′ is obtained by a rotation with Q and a
rescaling based on vi as follows

d′i =
1

vi

N
∑

j=1

Qi,jdj (1.25)

The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly

R′

i,j =
1

vI

N
∑

k=1

Qi,kRk,,j (1.26)

so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to

1

2
χ2(µµµ,d) = (R′µµµ− d′)T (R′µµµ− d′) (1.28)

The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian

distribution L ∝ e−(Rµµµ−d)TD−1

d
(Rµµµ−d) where Dd,i,i = σ(di)

2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].

• Small changes in input (can) lead to large changes in the ML estimate. 

Singular Value 
Decomposition
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in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
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The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly
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so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to
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The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as
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where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian
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2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of

φ = αlogL(µµµ) + S(µµµ) + λ(ntot −
N
∑

i=1

νi) (1.36)

as a function of λ and µµµ. It should be noted that
∑N

i=1 νi is a function of µi as νi =
∑N

i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
maximum likelihood solution. In this light, taking for instance the formulation of Equation 1.34, if α is set
to zero, the solution is set to the smooth function encoding all the constrains (i.e. available pre-existing
information) : the shape of S(µµµ) is imposed as the correct one and the data are ignored. If α tends to
infinity (i.e. α is much larger than any of the other coefficients) S(µµµ) carries no weight in the maximization
and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
dkf(y)

dyk
)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
1

2
χ2(µµµ) + τS(µµµ) (1.40)

6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of

φ = αlogL(µµµ) + S(µµµ) + λ(ntot −
N
∑

i=1

νi) (1.36)

as a function of λ and µµµ. It should be noted that
∑N

i=1 νi is a function of µi as νi =
∑N

i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
maximum likelihood solution. In this light, taking for instance the formulation of Equation 1.34, if α is set
to zero, the solution is set to the smooth function encoding all the constrains (i.e. available pre-existing
information) : the shape of S(µµµ) is imposed as the correct one and the data are ignored. If α tends to
infinity (i.e. α is much larger than any of the other coefficients) S(µµµ) carries no weight in the maximization
and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
dkf(y)

dyk
)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
1

2
χ2(µµµ) + τS(µµµ) (1.40)

6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at
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= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)

22 School of Statistics 2008, Strasbourg

the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

ˆ
ˆ

ˆ

ˆ

ˆ ˆ

where
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is
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N
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(nilog νi − νi − log ni!) (1.13)
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• ML solution is good for model tests, as long as the full covariance 
matrix is used (despite its huge variance).

-

-
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Fig. 3 Migration matrices for
(a–b) mtt̄ , (c–d) pT,t t̄ , and (e–f)
ytt̄ estimated from simulated t t̄
events passing all (left) e + jets
and (right) µ + jets selection
criteria. The unit of the matrix
elements is the probability for
an event generated at a given
value to be reconstructed at
another value

which includes the full covariance matrix between the chan-
nels. Since the covariance matrix is used in the weight-
ing, the estimate is a best linear unbiased estimator of
the cross-section. The covariance matrix is determined in
simulated events using the same pseudo-experiment pro-
cedure outlined in the previous section and derived from
Eq. (5).

8 Results

To reduce systematic uncertainties only relative cross-
sections (differential cross-section normalized to the mea-
sured inclusive cross-section) are reported. The full pro-
cedure for the differential measurement is also contracted
down to one bin to perform the measurement of the inclu-
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Fig. 2 Distributions of the
reconstructed (a–b) t t̄ mass,
mtt̄ , (c–d) the t t̄ transverse
momentum, pT,t t̄ , and (e–f) the
t t̄ rapidity, ytt̄ , before
background subtraction and
unfolding. In (a–b) and (c–d)
the bin corresponding to the
largest mtt̄ (pT,t t̄ ) value
includes events with mtt̄ (pT,t t̄ )
larger than 2700 GeV
(700 GeV). The largest
reconstructed mtt̄ in the µ + jets
channel is 2603 GeV. Data are
compared to the expectation
derived from simulation and
data-driven estimates. All
selection criteria are applied for
the (a, c, e) e + jets and (b, d, f)
µ + jets channels. The
uncertainty bands include all
contributions given in Sect. 6
except those from PDF and
theory normalization

sured in data using the same methods as in Refs. [42, 56].
Jet energy resolution uncertainties range from 9–17 % for jet
pT ≃ 30 GeV to about 5–9 % for jet pT > 180 GeV depend-
ing on jet η. The jet reconstruction efficiency uncertainty is
1–2 %. The uncertainties from the energy scale and resolu-
tion corrections on leptons and jets are propagated to the un-
certainties on missing transverse momentum. Uncertainties
on Emiss

T also include contributions arising from calorime-

ter cells not associated to jets and from soft jets (those in
the range 7 GeV < pT < 20 GeV). The b-tagging efficiency
scale factors have uncertainties between 6 % to 15 %, and
mis-tag rate scale factor uncertainties range from 10 % to
21 %. The scale factors are derived from data and parame-
terized as a function of jet pT.

A small region of the liquid argon calorimeter could not
be read out in a subset of the data corresponding to 42 % of

“Stress test”: inject bias compatible with total 
uncertainty and check unfolding capacity to 

recover the shape change

Syst dominated, 
ML solution 

adopted
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Fig. 5 Relative differential
cross-section versus (a–b) mtt̄ ,
(c) pT,t t̄ and (d) ytt̄ . Note that
the histograms are a graphical
representation of Table 3. This
means that only the bin ranges
along the x-axis (and not the
position of the vertical error bar)
can be associated to the relative
differential cross-section values
on the y-axis. The relative
cross-section in each bin shown
in Table 3 is compared to the
NLO prediction from
MCFM [8]. For mtt̄ the results
are also compared with the
NLO+NNLL prediction from
Ref. [7]. The measured
uncertainty represents 68 %
confidence level including both
statistical and systematic
uncertainties. The bands
represent theory uncertainties
(see Sect. 8 for details).
Predictions from MC@NLO
and ALPGEN are shown for
fixed settings of the generators’
parameters (details are found in
Sect. 8)

No significant deviations from the SM expectations pro-
vided by the different MC generators are observed. The SM
prediction for the relative cross-section distribution can be
tested against the measured values by using the covariance
matrix between the measured bins of the combined results.

9 Conclusions

Using a dataset of 2.05 fb−1, the relative differential cross-
section for t t̄ production is measured as a function of three
properties of the t t̄ system: mass (mtt̄ ), pT (pT,t t̄ ) and rapid-
ity (ytt̄ ). The background-subtracted, detector-unfolded val-
ues of 1/σ dσ/dmtt̄ , 1/σ dσ/dpT,t t̄ and 1/σ dσ/dyt t̄ are
reported together with their respective covariance matrices,
and compared to theoretical calculations. The measurement
uncertainties range typically between 10 % and 20 % and
are generally dominated by systematic effects. No signifi-
cant deviations from the SM expectations provided by the
different MC generators are observed.
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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• response matrix R: prob true 
in bin i is reco in bin j
• number of observed events n
• reconstruction efficiency
• estimate of expected bkg β
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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from g(s). Operatively the measurements that sample g(s) are limited in number and affected by biases,
inefficiency and imperfect resolution, so a discretized version of the integral equation 1.1 is used and a
limited number of ingredients define the unfolding problem [13].

In the very common one dimensional case where both y and s are real variables, the measured distri-
bution is approximated by the histogram representing the values νi, the expected number of counts in a
given interval of s according to the definition

νi =

∫ si

si−1

g(s)ds (1.2)

where the interval of definition for s is divided in N sub-intervals by a set of (s1,...,sN ) values and
any integral of g(s) over a specified sub-interval provides the total number of observed events in that
sub-interval.

In a similar manner the true distribution is approximated by a histogram. The range of the allowed
values for y is also divided in M sub-intervals by a set of (y1,...,yM ) values and the expected number of
counts in one of the sub-intervals is defined as

µj =

∫ yj

yj−1

f(y)dy (1.3)

The integral kernel K(s, y) from Equation 1.1 is approximated by a response matrix R(i, j) represen-
ting the probability that an event with a value of the y variable in bin j is observed as an event with a
value of s in bin i. So Equation 1.1 is transformed in

νi =
M
∑

j=1

Ri,jµj (1.4)

where νi and µj are the expected number of reconstructed and “true” events in bins i and j respectively.
Consequently the first ingredient for the unfolding problem described by Equation 1.4 is the knowledge

of the response matrix R. In general R is a rectangular matrix and by combining Equation 1.1 with
Equation 1.2, it is connected to the kernel by the equation

Ri,j =

∫ si
si−1

∫ yj
yj−1

K(s, y)f(y)dyds
∫ yj
yj−1

f(y)dy
(1.5)

If the analytical formulation of the kernel is available, R can be determined directly from Equation 1.5.
However most frequently R is obtained by running detailed simulation of the measuring apparatus inclu-
ding as many effects as possible. Monte Carlo events are generated with the best available prediction for
the true distribution f(y) and fully simulated with the most accurate model of the detector to produce
our best guess of g(s), the distribution of measured values. For some cases it is possible to measure the
response to δ-like (unit-impulse) inputs that can allow to determine the kernel in a certain range of values,
like the response of a calorimeter to a beam of particle of known energy and nature. This is equivalent to
the integral K(s, y0) =

∫ b
a K(s, y)δ(y − y0)dy.

The second ingredient is the the vector of expected bin contents ννν. The vector ννν is approximated
by the vector n = (n1,...,nN ) representing the number of observed events in each histogram bin for the
variable s. By definition ννν is such that E[ni]= νi where E[ni] indicates the expectation value of ni.

Two additional ingredients are necessary to make the model built in 1.4 closer to reality.
First some interesting events are not observed due to inefficiencies in the detection or to the requi-

rements imposed on the events properties. Such inefficiency is included in the estimate of the response
matrix R(i, j) with a proper normalization by defining

∑

Ri,j =
M
∑

j=1

P (observed in bin i|true value in bin j) = P (observed anywhere|true value in bin j) = ϵj

(1.6)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

µTRUE µML
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)

⊕
is unbiased  & has 

minimum variance
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The corresponding covariance matrix is estimated [13] to be

UC,i,j = cov[µMC
i , µMC

j ] = C2
i cov[ni, nj ] (1.21)

The correction factor Ci is often of order unity so the variance of the estimators is not much larger than
the Poisson statistical uncertainty in the data and it is typically reduced with respect to the ML estimator
uncertainty. In relation to the uncertainties in Equation 1.21 a simple example due to R. Cousins and
reported in Ref. [15]) points out their limitations. If one assumes that, for a given bin i of the distribution
to be corrected, the values are Ci= 0.1, βi = 0 and ni = 100, the estimate µi,C for the expected number
of events in this bin is obtained by Cini= 10 and the associated standard deviation is Ci

√
ni=1. However

this estimate maintains that only 10 of the 100 events that are observed in the bin are actually belonging
to the bin, while the remaining 90 events migrated in from other bins. It is then contradictory to have
a measurement with a 10% uncertainty when there are in fact only 10 events that are actually carrying
information about the bin content.

The bias corresponding to this technique, defined as E[µi,est]- µi, is estimated [13] to be

b = (
µMC
i

νMC
i

−
µi

νsigi

)νsigi (1.22)

where νsigi = νi - βi. The bias b is zero only if the simulation provides a proper description of the (unknown)
true distribution and the bias pulls the result towards the values derived by the model that is used to
determine the correction factor.

Ultimately the values of Ci depend circularly on the assumed true distribution one is trying to find.
In addition the bin-to-bin correlations are completely neglected and uncertainties are only diagonal. The
sum of the estimated events can be different from the sum of the observed number of events, differently
from the ML estimator. The reduction in statistical uncertainty is obtained in exchange for a bias on the
estimated result and the actual estimate of the bias is not simple. The bias is reduced if the migration
between bins are a small fraction of the bins contents i.e. if the non-diagonal elements of the response
matrix R are much much smaller than unity. Another visualization of this reduction is the requirement
for the bin width to be large compared to the measurement resolution. Given its limitations in terms of
possibly large biases, the technique of correction factors is a good tool for an initial approximation of the
results, but it is generally advisable to avoid it for general use 3

1.5 Back to basics : where to from the maximum likelihood solution ?

The sensitivity to fluctuations associated with the ML solution stems from the nature of equation 1.15 :
the original Fredholm equation 1.1 is an intrinsically ill-posed or improper problem [10] i.e. a problem
where “large and sometimes infinite changes in the solution could correspond to small changes in the input

data” [16] 4 In this light the stability of the solution of Equation 1.15 with respect to fluctuations can be
quantified by how the uncertainties on the inputs are propagated to the output : a quantitative figure of
merit for this propagation is the maximum ratio of relative precision of the estimated solution µµµest of
Equation 1.15 to the relative precision of the measured input vector d = n - βββ, defined as

c(R) = maxd,δd
δµµµest/µµµest

δd/d
(1.23)

The quantity c(R) is called the condition of the R matrix and it is the upper bound on the magnification
factor for the uncertainties on the input to the inversion. A large value for c(R) implies instability under
small fluctuations in the input i.e. a significant sensitivity to “noise” in the measurement.

3. A possible exception can be some very well behaved cases with nearly diagonal response matrices where migrations
effects are minimal, the expected uncertainties are well understood and the expected bias is found to be negligible in
comparison to the total final uncertainties on the unfolded results (see also Section 1.13).

4. A simple and powerful visualization of the ill-posed problem is also given in Ref. [10] : given that the kernel integration
in Equation 1.1 tends to smooth out f(y) and to reduce its high frequency components (edges, cusps and the like), the
inversion of such a procedure will inevitably enhance the high frequency features of the input.
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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A deeper analysis of equation 1.15 illustrates the link between fluctuations and instability and exposes
the origin of instability in a quantitative manner [17] by making a connection with the condition of the
matrix to be inverted.

The first step is to perform a transformation of variables in equation 1.15 such that the covariance
matrix Vd of the vector d becomes the identity matrix. In general Vd can be non-diagonal as there can be
correlations between the observations in the different bins : the Poisson-based likelihood for independent
observations described by Equation 1.12 is consequently extended to be

L ∝ e−
1
2χ

2(µµµ,d) = e−
1
2 (Rµµµ−d)TV −1

d
(Rµµµ−d) (1.24)

and the estimates deriving from its maximization coincide with the least squares estimate 5. The reduction
of Vd to the identity matrix allows to write the generalized likelihood of Equation 1.24 in terms of
significances i.e. variables normalized to their uncertainties. The transformation of variables is a rotation
in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
orthogonal matrix Q (QQT = 1) such that Vd = QV ′

d
QT and V ′

d
is an N ×N diagonal matrix such that

V ′

d,i,i = v2i ̸= zero and V ′

d,i,j = 0 for i ̸= j. The new vector d′ is obtained by a rotation with Q and a
rescaling based on vi as follows

d′i =
1

vi

N
∑

j=1

Qi,jdj (1.25)

The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly

R′

i,j =
1

vI

N
∑

k=1

Qi,kRk,,j (1.26)

so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to

1

2
χ2(µµµ,d) = (R′µµµ− d′)T (R′µµµ− d′) (1.28)

The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian

distribution L ∝ e−(Rµµµ−d)TD−1

d
(Rµµµ−d) where Dd,i,i = σ(di)

2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].

• Small changes in input (can) lead to large changes in the ML estimate. 

Singular Value 
Decomposition
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2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
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and the estimates deriving from its maximization coincide with the least squares estimate 5. The reduction
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the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
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2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
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given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding

26 School of Statistics 2008, Strasbourg

value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of

φ = αlogL(µµµ) + S(µµµ) + λ(ntot −
N
∑

i=1

νi) (1.36)

as a function of λ and µµµ. It should be noted that
∑N

i=1 νi is a function of µi as νi =
∑N

i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
maximum likelihood solution. In this light, taking for instance the formulation of Equation 1.34, if α is set
to zero, the solution is set to the smooth function encoding all the constrains (i.e. available pre-existing
information) : the shape of S(µµµ) is imposed as the correct one and the data are ignored. If α tends to
infinity (i.e. α is much larger than any of the other coefficients) S(µµµ) carries no weight in the maximization
and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
dkf(y)

dyk
)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
1

2
χ2(µµµ) + τS(µµµ) (1.40)

6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of

φ = αlogL(µµµ) + S(µµµ) + λ(ntot −
N
∑

i=1

νi) (1.36)

as a function of λ and µµµ. It should be noted that
∑N

i=1 νi is a function of µi as νi =
∑N

i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
maximum likelihood solution. In this light, taking for instance the formulation of Equation 1.34, if α is set
to zero, the solution is set to the smooth function encoding all the constrains (i.e. available pre-existing
information) : the shape of S(µµµ) is imposed as the correct one and the data are ignored. If α tends to
infinity (i.e. α is much larger than any of the other coefficients) S(µµµ) carries no weight in the maximization
and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
dkf(y)

dyk
)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
1

2
χ2(µµµ) + τS(µµµ) (1.40)

6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.

Inject different asymmetries; use small average 
expected relative bias to assign syst uncertainty

tt charge asymmetry [2]: tuning regularization 

Use Bayesian-inspired iterative regularization: 
number of iterations ← expected asymmetry 
variation within 0.1% 

[3] [3]

References

EPJ Web of Conferences 21

where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

ˆ
ˆ

ˆ

ˆ

ˆ ˆ
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• ML solution is good for model tests, as long as the full covariance 
matrix is used (despite its huge variance).
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Fig. 3 Migration matrices for
(a–b) mtt̄ , (c–d) pT,t t̄ , and (e–f)
ytt̄ estimated from simulated t t̄
events passing all (left) e + jets
and (right) µ + jets selection
criteria. The unit of the matrix
elements is the probability for
an event generated at a given
value to be reconstructed at
another value

which includes the full covariance matrix between the chan-
nels. Since the covariance matrix is used in the weight-
ing, the estimate is a best linear unbiased estimator of
the cross-section. The covariance matrix is determined in
simulated events using the same pseudo-experiment pro-
cedure outlined in the previous section and derived from
Eq. (5).

8 Results

To reduce systematic uncertainties only relative cross-
sections (differential cross-section normalized to the mea-
sured inclusive cross-section) are reported. The full pro-
cedure for the differential measurement is also contracted
down to one bin to perform the measurement of the inclu-
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Fig. 2 Distributions of the
reconstructed (a–b) t t̄ mass,
mtt̄ , (c–d) the t t̄ transverse
momentum, pT,t t̄ , and (e–f) the
t t̄ rapidity, ytt̄ , before
background subtraction and
unfolding. In (a–b) and (c–d)
the bin corresponding to the
largest mtt̄ (pT,t t̄ ) value
includes events with mtt̄ (pT,t t̄ )
larger than 2700 GeV
(700 GeV). The largest
reconstructed mtt̄ in the µ + jets
channel is 2603 GeV. Data are
compared to the expectation
derived from simulation and
data-driven estimates. All
selection criteria are applied for
the (a, c, e) e + jets and (b, d, f)
µ + jets channels. The
uncertainty bands include all
contributions given in Sect. 6
except those from PDF and
theory normalization

sured in data using the same methods as in Refs. [42, 56].
Jet energy resolution uncertainties range from 9–17 % for jet
pT ≃ 30 GeV to about 5–9 % for jet pT > 180 GeV depend-
ing on jet η. The jet reconstruction efficiency uncertainty is
1–2 %. The uncertainties from the energy scale and resolu-
tion corrections on leptons and jets are propagated to the un-
certainties on missing transverse momentum. Uncertainties
on Emiss

T also include contributions arising from calorime-

ter cells not associated to jets and from soft jets (those in
the range 7 GeV < pT < 20 GeV). The b-tagging efficiency
scale factors have uncertainties between 6 % to 15 %, and
mis-tag rate scale factor uncertainties range from 10 % to
21 %. The scale factors are derived from data and parame-
terized as a function of jet pT.

A small region of the liquid argon calorimeter could not
be read out in a subset of the data corresponding to 42 % of

“Stress test”: inject bias compatible with total 
uncertainty and check unfolding capacity to 

recover the shape change

Syst dominated, 
ML solution 

adopted
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Fig. 5 Relative differential
cross-section versus (a–b) mtt̄ ,
(c) pT,t t̄ and (d) ytt̄ . Note that
the histograms are a graphical
representation of Table 3. This
means that only the bin ranges
along the x-axis (and not the
position of the vertical error bar)
can be associated to the relative
differential cross-section values
on the y-axis. The relative
cross-section in each bin shown
in Table 3 is compared to the
NLO prediction from
MCFM [8]. For mtt̄ the results
are also compared with the
NLO+NNLL prediction from
Ref. [7]. The measured
uncertainty represents 68 %
confidence level including both
statistical and systematic
uncertainties. The bands
represent theory uncertainties
(see Sect. 8 for details).
Predictions from MC@NLO
and ALPGEN are shown for
fixed settings of the generators’
parameters (details are found in
Sect. 8)

No significant deviations from the SM expectations pro-
vided by the different MC generators are observed. The SM
prediction for the relative cross-section distribution can be
tested against the measured values by using the covariance
matrix between the measured bins of the combined results.

9 Conclusions

Using a dataset of 2.05 fb−1, the relative differential cross-
section for t t̄ production is measured as a function of three
properties of the t t̄ system: mass (mtt̄ ), pT (pT,t t̄ ) and rapid-
ity (ytt̄ ). The background-subtracted, detector-unfolded val-
ues of 1/σ dσ/dmtt̄ , 1/σ dσ/dpT,t t̄ and 1/σ dσ/dyt t̄ are
reported together with their respective covariance matrices,
and compared to theoretical calculations. The measurement
uncertainties range typically between 10 % and 20 % and
are generally dominated by systematic effects. No signifi-
cant deviations from the SM expectations provided by the
different MC generators are observed.
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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from g(s). Operatively the measurements that sample g(s) are limited in number and affected by biases,
inefficiency and imperfect resolution, so a discretized version of the integral equation 1.1 is used and a
limited number of ingredients define the unfolding problem [13].

In the very common one dimensional case where both y and s are real variables, the measured distri-
bution is approximated by the histogram representing the values νi, the expected number of counts in a
given interval of s according to the definition

νi =

∫ si

si−1

g(s)ds (1.2)

where the interval of definition for s is divided in N sub-intervals by a set of (s1,...,sN ) values and
any integral of g(s) over a specified sub-interval provides the total number of observed events in that
sub-interval.

In a similar manner the true distribution is approximated by a histogram. The range of the allowed
values for y is also divided in M sub-intervals by a set of (y1,...,yM ) values and the expected number of
counts in one of the sub-intervals is defined as

µj =

∫ yj

yj−1

f(y)dy (1.3)

The integral kernel K(s, y) from Equation 1.1 is approximated by a response matrix R(i, j) represen-
ting the probability that an event with a value of the y variable in bin j is observed as an event with a
value of s in bin i. So Equation 1.1 is transformed in

νi =
M
∑

j=1

Ri,jµj (1.4)

where νi and µj are the expected number of reconstructed and “true” events in bins i and j respectively.
Consequently the first ingredient for the unfolding problem described by Equation 1.4 is the knowledge

of the response matrix R. In general R is a rectangular matrix and by combining Equation 1.1 with
Equation 1.2, it is connected to the kernel by the equation

Ri,j =

∫ si
si−1

∫ yj
yj−1

K(s, y)f(y)dyds
∫ yj
yj−1

f(y)dy
(1.5)

If the analytical formulation of the kernel is available, R can be determined directly from Equation 1.5.
However most frequently R is obtained by running detailed simulation of the measuring apparatus inclu-
ding as many effects as possible. Monte Carlo events are generated with the best available prediction for
the true distribution f(y) and fully simulated with the most accurate model of the detector to produce
our best guess of g(s), the distribution of measured values. For some cases it is possible to measure the
response to δ-like (unit-impulse) inputs that can allow to determine the kernel in a certain range of values,
like the response of a calorimeter to a beam of particle of known energy and nature. This is equivalent to
the integral K(s, y0) =

∫ b
a K(s, y)δ(y − y0)dy.

The second ingredient is the the vector of expected bin contents ννν. The vector ννν is approximated
by the vector n = (n1,...,nN ) representing the number of observed events in each histogram bin for the
variable s. By definition ννν is such that E[ni]= νi where E[ni] indicates the expectation value of ni.

Two additional ingredients are necessary to make the model built in 1.4 closer to reality.
First some interesting events are not observed due to inefficiencies in the detection or to the requi-

rements imposed on the events properties. Such inefficiency is included in the estimate of the response
matrix R(i, j) with a proper normalization by defining

∑

Ri,j =
M
∑

j=1

P (observed in bin i|true value in bin j) = P (observed anywhere|true value in bin j) = ϵj

(1.6)

20 School of Statistics 2008, Strasbourg

from g(s). Operatively the measurements that sample g(s) are limited in number and affected by biases,
inefficiency and imperfect resolution, so a discretized version of the integral equation 1.1 is used and a
limited number of ingredients define the unfolding problem [13].

In the very common one dimensional case where both y and s are real variables, the measured distri-
bution is approximated by the histogram representing the values νi, the expected number of counts in a
given interval of s according to the definition

νi =

∫ si

si−1

g(s)ds (1.2)

where the interval of definition for s is divided in N sub-intervals by a set of (s1,...,sN ) values and
any integral of g(s) over a specified sub-interval provides the total number of observed events in that
sub-interval.

In a similar manner the true distribution is approximated by a histogram. The range of the allowed
values for y is also divided in M sub-intervals by a set of (y1,...,yM ) values and the expected number of
counts in one of the sub-intervals is defined as

µj =

∫ yj

yj−1

f(y)dy (1.3)

The integral kernel K(s, y) from Equation 1.1 is approximated by a response matrix R(i, j) represen-
ting the probability that an event with a value of the y variable in bin j is observed as an event with a
value of s in bin i. So Equation 1.1 is transformed in

νi =
M
∑

j=1

Ri,jµj (1.4)

where νi and µj are the expected number of reconstructed and “true” events in bins i and j respectively.
Consequently the first ingredient for the unfolding problem described by Equation 1.4 is the knowledge

of the response matrix R. In general R is a rectangular matrix and by combining Equation 1.1 with
Equation 1.2, it is connected to the kernel by the equation

Ri,j =

∫ si
si−1

∫ yj
yj−1

K(s, y)f(y)dyds
∫ yj
yj−1

f(y)dy
(1.5)

If the analytical formulation of the kernel is available, R can be determined directly from Equation 1.5.
However most frequently R is obtained by running detailed simulation of the measuring apparatus inclu-
ding as many effects as possible. Monte Carlo events are generated with the best available prediction for
the true distribution f(y) and fully simulated with the most accurate model of the detector to produce
our best guess of g(s), the distribution of measured values. For some cases it is possible to measure the
response to δ-like (unit-impulse) inputs that can allow to determine the kernel in a certain range of values,
like the response of a calorimeter to a beam of particle of known energy and nature. This is equivalent to
the integral K(s, y0) =

∫ b
a K(s, y)δ(y − y0)dy.

The second ingredient is the the vector of expected bin contents ννν. The vector ννν is approximated
by the vector n = (n1,...,nN ) representing the number of observed events in each histogram bin for the
variable s. By definition ννν is such that E[ni]= νi where E[ni] indicates the expectation value of ni.

Two additional ingredients are necessary to make the model built in 1.4 closer to reality.
First some interesting events are not observed due to inefficiencies in the detection or to the requi-

rements imposed on the events properties. Such inefficiency is included in the estimate of the response
matrix R(i, j) with a proper normalization by defining

∑

Ri,j =
M
∑

j=1

P (observed in bin i|true value in bin j) = P (observed anywhere|true value in bin j) = ϵj

(1.6)

22 School of Statistics 2008, Strasbourg

the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

µTRUE µML
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Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
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What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)

⊕
is unbiased  & has 

minimum variance
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The corresponding covariance matrix is estimated [13] to be

UC,i,j = cov[µMC
i , µMC

j ] = C2
i cov[ni, nj ] (1.21)

The correction factor Ci is often of order unity so the variance of the estimators is not much larger than
the Poisson statistical uncertainty in the data and it is typically reduced with respect to the ML estimator
uncertainty. In relation to the uncertainties in Equation 1.21 a simple example due to R. Cousins and
reported in Ref. [15]) points out their limitations. If one assumes that, for a given bin i of the distribution
to be corrected, the values are Ci= 0.1, βi = 0 and ni = 100, the estimate µi,C for the expected number
of events in this bin is obtained by Cini= 10 and the associated standard deviation is Ci

√
ni=1. However

this estimate maintains that only 10 of the 100 events that are observed in the bin are actually belonging
to the bin, while the remaining 90 events migrated in from other bins. It is then contradictory to have
a measurement with a 10% uncertainty when there are in fact only 10 events that are actually carrying
information about the bin content.

The bias corresponding to this technique, defined as E[µi,est]- µi, is estimated [13] to be

b = (
µMC
i

νMC
i

−
µi

νsigi

)νsigi (1.22)

where νsigi = νi - βi. The bias b is zero only if the simulation provides a proper description of the (unknown)
true distribution and the bias pulls the result towards the values derived by the model that is used to
determine the correction factor.

Ultimately the values of Ci depend circularly on the assumed true distribution one is trying to find.
In addition the bin-to-bin correlations are completely neglected and uncertainties are only diagonal. The
sum of the estimated events can be different from the sum of the observed number of events, differently
from the ML estimator. The reduction in statistical uncertainty is obtained in exchange for a bias on the
estimated result and the actual estimate of the bias is not simple. The bias is reduced if the migration
between bins are a small fraction of the bins contents i.e. if the non-diagonal elements of the response
matrix R are much much smaller than unity. Another visualization of this reduction is the requirement
for the bin width to be large compared to the measurement resolution. Given its limitations in terms of
possibly large biases, the technique of correction factors is a good tool for an initial approximation of the
results, but it is generally advisable to avoid it for general use 3

1.5 Back to basics : where to from the maximum likelihood solution ?

The sensitivity to fluctuations associated with the ML solution stems from the nature of equation 1.15 :
the original Fredholm equation 1.1 is an intrinsically ill-posed or improper problem [10] i.e. a problem
where “large and sometimes infinite changes in the solution could correspond to small changes in the input

data” [16] 4 In this light the stability of the solution of Equation 1.15 with respect to fluctuations can be
quantified by how the uncertainties on the inputs are propagated to the output : a quantitative figure of
merit for this propagation is the maximum ratio of relative precision of the estimated solution µµµest of
Equation 1.15 to the relative precision of the measured input vector d = n - βββ, defined as

c(R) = maxd,δd
δµµµest/µµµest

δd/d
(1.23)

The quantity c(R) is called the condition of the R matrix and it is the upper bound on the magnification
factor for the uncertainties on the input to the inversion. A large value for c(R) implies instability under
small fluctuations in the input i.e. a significant sensitivity to “noise” in the measurement.

3. A possible exception can be some very well behaved cases with nearly diagonal response matrices where migrations
effects are minimal, the expected uncertainties are well understood and the expected bias is found to be negligible in
comparison to the total final uncertainties on the unfolded results (see also Section 1.13).

4. A simple and powerful visualization of the ill-posed problem is also given in Ref. [10] : given that the kernel integration
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The corresponding covariance matrix is estimated [13] to be
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i , µMC

j ] = C2
i cov[ni, nj ] (1.21)
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√
ni=1. However
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i
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−
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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A deeper analysis of equation 1.15 illustrates the link between fluctuations and instability and exposes
the origin of instability in a quantitative manner [17] by making a connection with the condition of the
matrix to be inverted.

The first step is to perform a transformation of variables in equation 1.15 such that the covariance
matrix Vd of the vector d becomes the identity matrix. In general Vd can be non-diagonal as there can be
correlations between the observations in the different bins : the Poisson-based likelihood for independent
observations described by Equation 1.12 is consequently extended to be

L ∝ e−
1
2χ

2(µµµ,d) = e−
1
2 (Rµµµ−d)TV −1

d
(Rµµµ−d) (1.24)

and the estimates deriving from its maximization coincide with the least squares estimate 5. The reduction
of Vd to the identity matrix allows to write the generalized likelihood of Equation 1.24 in terms of
significances i.e. variables normalized to their uncertainties. The transformation of variables is a rotation
in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
orthogonal matrix Q (QQT = 1) such that Vd = QV ′

d
QT and V ′

d
is an N ×N diagonal matrix such that

V ′

d,i,i = v2i ̸= zero and V ′

d,i,j = 0 for i ̸= j. The new vector d′ is obtained by a rotation with Q and a
rescaling based on vi as follows

d′i =
1

vi

N
∑

j=1

Qi,jdj (1.25)

The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly

R′

i,j =
1

vI

N
∑

k=1

Qi,kRk,,j (1.26)

so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to

1

2
χ2(µµµ,d) = (R′µµµ− d′)T (R′µµµ− d′) (1.28)

The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian

distribution L ∝ e−(Rµµµ−d)TD−1

d
(Rµµµ−d) where Dd,i,i = σ(di)

2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].

• Small changes in input (can) lead to large changes in the ML estimate. 

Singular Value 
Decomposition
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in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
orthogonal matrix Q (QQT = 1) such that Vd = QV ′

d
QT and V ′

d
is an N ×N diagonal matrix such that

V ′

d,i,i = v2i ̸= zero and V ′

d,i,j = 0 for i ̸= j. The new vector d′ is obtained by a rotation with Q and a
rescaling based on vi as follows

d′i =
1

vi

N
∑

j=1

Qi,jdj (1.25)

The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly

R′

i,j =
1

vI

N
∑

k=1

Qi,kRk,,j (1.26)

so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to

1

2
χ2(µµµ,d) = (R′µµµ− d′)T (R′µµµ− d′) (1.28)

The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian

distribution L ∝ e−(Rµµµ−d)TD−1

d
(Rµµµ−d) where Dd,i,i = σ(di)

2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].

i=j , 0 otherwise
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that
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transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

diagonal χ2→rotate & 
normalize R & d →Rʼ & dʼ 

• Large ML sensitivity to small fluctuations, low significance, highly oscillating 
(high “frequency”) components→high condition number C(R) of migration 
matrxi R

•Regularize = Reduce impact of high frequency while keeping info of high 
significance, stable components → reduction in variance w.r.t. ML estimator
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of

φ = αlogL(µµµ) + S(µµµ) + λ(ntot −
N
∑

i=1

νi) (1.36)

as a function of λ and µµµ. It should be noted that
∑N

i=1 νi is a function of µi as νi =
∑N

i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
maximum likelihood solution. In this light, taking for instance the formulation of Equation 1.34, if α is set
to zero, the solution is set to the smooth function encoding all the constrains (i.e. available pre-existing
information) : the shape of S(µµµ) is imposed as the correct one and the data are ignored. If α tends to
infinity (i.e. α is much larger than any of the other coefficients) S(µµµ) carries no weight in the maximization
and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
dkf(y)

dyk
)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
1

2
χ2(µµµ) + τS(µµµ) (1.40)

6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.

Filter out the high frequency 
oscillating components

Maximize new likelihood including S,  
regularization function,τ tunes level of filtering

Reduced variance w.r.t. ML result
 “biased” estimators  for 

distributions and 
derived parameters

differential cross sections

[1] V. Ahrens et al., JHEP 1109 (2011) 070 
[2] ATLAS Coll., Eur. Phys. J. C 72 (2012) 2039
[3] G. Cowan, Conf Proc. C0203181, 248 (2002) (Proc. 
Conf. PHYSTAT 2002)
[4] ATLAS Coll., Eur. Phys. J. C 73 (2013),2261

Iterative 
Unbinned

balance of  
bias and variance  

constraint 
in steps of 
updating 
function

if k=2: constraint 
on curvature

EPJ Web of Conferences 27

Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of

φ = αlogL(µµµ) + S(µµµ) + λ(ntot −
N
∑

i=1

νi) (1.36)

as a function of λ and µµµ. It should be noted that
∑N

i=1 νi is a function of µi as νi =
∑N

i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
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and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
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)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
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6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.

constrain 
by prior on 
distribution

constraint from 
distance in information 
H from reference εi

EPJ Web of Conferences 33

|y|!
-3 -2 -1 0 1 2 3

Ev
en

ts
 / 

0.
3

0

200

400

600

800

1000

1200

1400

1600

1800

2000

data
tt

W+jets
Z+jets
Diboson
Single top
Multijets
Uncertainty

ATLAS 
-1 L dt = 1.04 fb"

 1 b tag)# 4 jets (# + µ

(a)

|y|!Generated 
-3 -2 -1 0 1 2 3

|y
|

!
Re

co
ns

tru
ct

ed
 

-3

-2

-1

0

1

2

3
Simulation     ATLAS 

 1 b tag)# 4 jets (# + e

(b)

|y|!
-3 -2 -1 0 1 2 3

|y
|

!
/d
$

 d
$

1/

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
data
MC@NLO

ATLAS 
-1 L dt = 1.04 fb"

 1 b tag)# 4 jets (# + e

(c)

Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
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where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
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µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at
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= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].
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of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑
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where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

ˆ
ˆ

ˆ

ˆ

ˆ ˆ

where
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If the migrations are properly modelled, the inversion returns the correct values if the input data are the
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instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
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ˆ

• ML solution is good for model tests, as long as the full covariance 
matrix is used (despite its huge variance).

-

-

-

-
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Fig. 3 Migration matrices for
(a–b) mtt̄ , (c–d) pT,t t̄ , and (e–f)
ytt̄ estimated from simulated t t̄
events passing all (left) e + jets
and (right) µ + jets selection
criteria. The unit of the matrix
elements is the probability for
an event generated at a given
value to be reconstructed at
another value

which includes the full covariance matrix between the chan-
nels. Since the covariance matrix is used in the weight-
ing, the estimate is a best linear unbiased estimator of
the cross-section. The covariance matrix is determined in
simulated events using the same pseudo-experiment pro-
cedure outlined in the previous section and derived from
Eq. (5).

8 Results

To reduce systematic uncertainties only relative cross-
sections (differential cross-section normalized to the mea-
sured inclusive cross-section) are reported. The full pro-
cedure for the differential measurement is also contracted
down to one bin to perform the measurement of the inclu-
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Fig. 2 Distributions of the
reconstructed (a–b) t t̄ mass,
mtt̄ , (c–d) the t t̄ transverse
momentum, pT,t t̄ , and (e–f) the
t t̄ rapidity, ytt̄ , before
background subtraction and
unfolding. In (a–b) and (c–d)
the bin corresponding to the
largest mtt̄ (pT,t t̄ ) value
includes events with mtt̄ (pT,t t̄ )
larger than 2700 GeV
(700 GeV). The largest
reconstructed mtt̄ in the µ + jets
channel is 2603 GeV. Data are
compared to the expectation
derived from simulation and
data-driven estimates. All
selection criteria are applied for
the (a, c, e) e + jets and (b, d, f)
µ + jets channels. The
uncertainty bands include all
contributions given in Sect. 6
except those from PDF and
theory normalization

sured in data using the same methods as in Refs. [42, 56].
Jet energy resolution uncertainties range from 9–17 % for jet
pT ≃ 30 GeV to about 5–9 % for jet pT > 180 GeV depend-
ing on jet η. The jet reconstruction efficiency uncertainty is
1–2 %. The uncertainties from the energy scale and resolu-
tion corrections on leptons and jets are propagated to the un-
certainties on missing transverse momentum. Uncertainties
on Emiss

T also include contributions arising from calorime-

ter cells not associated to jets and from soft jets (those in
the range 7 GeV < pT < 20 GeV). The b-tagging efficiency
scale factors have uncertainties between 6 % to 15 %, and
mis-tag rate scale factor uncertainties range from 10 % to
21 %. The scale factors are derived from data and parame-
terized as a function of jet pT.

A small region of the liquid argon calorimeter could not
be read out in a subset of the data corresponding to 42 % of

“Stress test”: inject bias compatible with total 
uncertainty and check unfolding capacity to 

recover the shape change

Syst dominated, 
ML solution 

adopted
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Fig. 5 Relative differential
cross-section versus (a–b) mtt̄ ,
(c) pT,t t̄ and (d) ytt̄ . Note that
the histograms are a graphical
representation of Table 3. This
means that only the bin ranges
along the x-axis (and not the
position of the vertical error bar)
can be associated to the relative
differential cross-section values
on the y-axis. The relative
cross-section in each bin shown
in Table 3 is compared to the
NLO prediction from
MCFM [8]. For mtt̄ the results
are also compared with the
NLO+NNLL prediction from
Ref. [7]. The measured
uncertainty represents 68 %
confidence level including both
statistical and systematic
uncertainties. The bands
represent theory uncertainties
(see Sect. 8 for details).
Predictions from MC@NLO
and ALPGEN are shown for
fixed settings of the generators’
parameters (details are found in
Sect. 8)

No significant deviations from the SM expectations pro-
vided by the different MC generators are observed. The SM
prediction for the relative cross-section distribution can be
tested against the measured values by using the covariance
matrix between the measured bins of the combined results.

9 Conclusions

Using a dataset of 2.05 fb−1, the relative differential cross-
section for t t̄ production is measured as a function of three
properties of the t t̄ system: mass (mtt̄ ), pT (pT,t t̄ ) and rapid-
ity (ytt̄ ). The background-subtracted, detector-unfolded val-
ues of 1/σ dσ/dmtt̄ , 1/σ dσ/dpT,t t̄ and 1/σ dσ/dyt t̄ are
reported together with their respective covariance matrices,
and compared to theoretical calculations. The measurement
uncertainties range typically between 10 % and 20 % and
are generally dominated by systematic effects. No signifi-
cant deviations from the SM expectations provided by the
different MC generators are observed.
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probability distribution that links the observation to the “true” value. 
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• BUT matrix inversion is applied to n, not to ν→R “assumes” fluctuations 
in n are residual of real original structure diluted by the detection effects (not of 
statistical origin) → Unfolding uses input + available model for migrations to 
reconstruct μ i.e. it magnifies the fluctuations back into ML result

• poor detector (large 
migrations), insignificant input

The art of matrix inversion: from inside ill-posed problems to Regularization 

Applied Unfolding: the balance of bias and uncertainty

The art of matrix inversion:
the Maximum likelihood (ML) solution 

Optimization & Good practices
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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“true” mass of tt 
system

measured 
mass of tt system[1] [2]

• response matrix R: prob true 
in bin i is reco in bin j
• number of observed events n
• reconstruction efficiency
• estimate of expected bkg β

Ingredients
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)
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from g(s). Operatively the measurements that sample g(s) are limited in number and affected by biases,
inefficiency and imperfect resolution, so a discretized version of the integral equation 1.1 is used and a
limited number of ingredients define the unfolding problem [13].

In the very common one dimensional case where both y and s are real variables, the measured distri-
bution is approximated by the histogram representing the values νi, the expected number of counts in a
given interval of s according to the definition

νi =

∫ si

si−1

g(s)ds (1.2)

where the interval of definition for s is divided in N sub-intervals by a set of (s1,...,sN ) values and
any integral of g(s) over a specified sub-interval provides the total number of observed events in that
sub-interval.

In a similar manner the true distribution is approximated by a histogram. The range of the allowed
values for y is also divided in M sub-intervals by a set of (y1,...,yM ) values and the expected number of
counts in one of the sub-intervals is defined as

µj =

∫ yj

yj−1

f(y)dy (1.3)

The integral kernel K(s, y) from Equation 1.1 is approximated by a response matrix R(i, j) represen-
ting the probability that an event with a value of the y variable in bin j is observed as an event with a
value of s in bin i. So Equation 1.1 is transformed in

νi =
M
∑

j=1

Ri,jµj (1.4)

where νi and µj are the expected number of reconstructed and “true” events in bins i and j respectively.
Consequently the first ingredient for the unfolding problem described by Equation 1.4 is the knowledge

of the response matrix R. In general R is a rectangular matrix and by combining Equation 1.1 with
Equation 1.2, it is connected to the kernel by the equation

Ri,j =

∫ si
si−1

∫ yj
yj−1

K(s, y)f(y)dyds
∫ yj
yj−1

f(y)dy
(1.5)

If the analytical formulation of the kernel is available, R can be determined directly from Equation 1.5.
However most frequently R is obtained by running detailed simulation of the measuring apparatus inclu-
ding as many effects as possible. Monte Carlo events are generated with the best available prediction for
the true distribution f(y) and fully simulated with the most accurate model of the detector to produce
our best guess of g(s), the distribution of measured values. For some cases it is possible to measure the
response to δ-like (unit-impulse) inputs that can allow to determine the kernel in a certain range of values,
like the response of a calorimeter to a beam of particle of known energy and nature. This is equivalent to
the integral K(s, y0) =

∫ b
a K(s, y)δ(y − y0)dy.

The second ingredient is the the vector of expected bin contents ννν. The vector ννν is approximated
by the vector n = (n1,...,nN ) representing the number of observed events in each histogram bin for the
variable s. By definition ννν is such that E[ni]= νi where E[ni] indicates the expectation value of ni.

Two additional ingredients are necessary to make the model built in 1.4 closer to reality.
First some interesting events are not observed due to inefficiencies in the detection or to the requi-

rements imposed on the events properties. Such inefficiency is included in the estimate of the response
matrix R(i, j) with a proper normalization by defining

∑

Ri,j =
M
∑

j=1

P (observed in bin i|true value in bin j) = P (observed anywhere|true value in bin j) = ϵj

(1.6)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

µTRUE µML
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What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

Unfolding Foundations 

Large number of regularization schemes
(different ways of adding info)  
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)

⊕
is unbiased  & has 

minimum variance
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The corresponding covariance matrix is estimated [13] to be

UC,i,j = cov[µMC
i , µMC

j ] = C2
i cov[ni, nj ] (1.21)

The correction factor Ci is often of order unity so the variance of the estimators is not much larger than
the Poisson statistical uncertainty in the data and it is typically reduced with respect to the ML estimator
uncertainty. In relation to the uncertainties in Equation 1.21 a simple example due to R. Cousins and
reported in Ref. [15]) points out their limitations. If one assumes that, for a given bin i of the distribution
to be corrected, the values are Ci= 0.1, βi = 0 and ni = 100, the estimate µi,C for the expected number
of events in this bin is obtained by Cini= 10 and the associated standard deviation is Ci

√
ni=1. However

this estimate maintains that only 10 of the 100 events that are observed in the bin are actually belonging
to the bin, while the remaining 90 events migrated in from other bins. It is then contradictory to have
a measurement with a 10% uncertainty when there are in fact only 10 events that are actually carrying
information about the bin content.

The bias corresponding to this technique, defined as E[µi,est]- µi, is estimated [13] to be

b = (
µMC
i

νMC
i

−
µi

νsigi

)νsigi (1.22)

where νsigi = νi - βi. The bias b is zero only if the simulation provides a proper description of the (unknown)
true distribution and the bias pulls the result towards the values derived by the model that is used to
determine the correction factor.

Ultimately the values of Ci depend circularly on the assumed true distribution one is trying to find.
In addition the bin-to-bin correlations are completely neglected and uncertainties are only diagonal. The
sum of the estimated events can be different from the sum of the observed number of events, differently
from the ML estimator. The reduction in statistical uncertainty is obtained in exchange for a bias on the
estimated result and the actual estimate of the bias is not simple. The bias is reduced if the migration
between bins are a small fraction of the bins contents i.e. if the non-diagonal elements of the response
matrix R are much much smaller than unity. Another visualization of this reduction is the requirement
for the bin width to be large compared to the measurement resolution. Given its limitations in terms of
possibly large biases, the technique of correction factors is a good tool for an initial approximation of the
results, but it is generally advisable to avoid it for general use 3

1.5 Back to basics : where to from the maximum likelihood solution ?

The sensitivity to fluctuations associated with the ML solution stems from the nature of equation 1.15 :
the original Fredholm equation 1.1 is an intrinsically ill-posed or improper problem [10] i.e. a problem
where “large and sometimes infinite changes in the solution could correspond to small changes in the input

data” [16] 4 In this light the stability of the solution of Equation 1.15 with respect to fluctuations can be
quantified by how the uncertainties on the inputs are propagated to the output : a quantitative figure of
merit for this propagation is the maximum ratio of relative precision of the estimated solution µµµest of
Equation 1.15 to the relative precision of the measured input vector d = n - βββ, defined as

c(R) = maxd,δd
δµµµest/µµµest

δd/d
(1.23)

The quantity c(R) is called the condition of the R matrix and it is the upper bound on the magnification
factor for the uncertainties on the input to the inversion. A large value for c(R) implies instability under
small fluctuations in the input i.e. a significant sensitivity to “noise” in the measurement.

3. A possible exception can be some very well behaved cases with nearly diagonal response matrices where migrations
effects are minimal, the expected uncertainties are well understood and the expected bias is found to be negligible in
comparison to the total final uncertainties on the unfolded results (see also Section 1.13).

4. A simple and powerful visualization of the ill-posed problem is also given in Ref. [10] : given that the kernel integration
in Equation 1.1 tends to smooth out f(y) and to reduce its high frequency components (edges, cusps and the like), the
inversion of such a procedure will inevitably enhance the high frequency features of the input.
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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A deeper analysis of equation 1.15 illustrates the link between fluctuations and instability and exposes
the origin of instability in a quantitative manner [17] by making a connection with the condition of the
matrix to be inverted.

The first step is to perform a transformation of variables in equation 1.15 such that the covariance
matrix Vd of the vector d becomes the identity matrix. In general Vd can be non-diagonal as there can be
correlations between the observations in the different bins : the Poisson-based likelihood for independent
observations described by Equation 1.12 is consequently extended to be

L ∝ e−
1
2χ

2(µµµ,d) = e−
1
2 (Rµµµ−d)TV −1

d
(Rµµµ−d) (1.24)

and the estimates deriving from its maximization coincide with the least squares estimate 5. The reduction
of Vd to the identity matrix allows to write the generalized likelihood of Equation 1.24 in terms of
significances i.e. variables normalized to their uncertainties. The transformation of variables is a rotation
in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
orthogonal matrix Q (QQT = 1) such that Vd = QV ′

d
QT and V ′

d
is an N ×N diagonal matrix such that

V ′

d,i,i = v2i ̸= zero and V ′

d,i,j = 0 for i ̸= j. The new vector d′ is obtained by a rotation with Q and a
rescaling based on vi as follows

d′i =
1

vi

N
∑

j=1

Qi,jdj (1.25)

The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly

R′

i,j =
1

vI

N
∑

k=1

Qi,kRk,,j (1.26)

so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to

1

2
χ2(µµµ,d) = (R′µµµ− d′)T (R′µµµ− d′) (1.28)

The second step is to expose the decomposition of the ML solution in terms of parameters that measure
the sensitivity to fluctuations in the input [10]. Such parameters can also be related to the size of the
migrations described by R′ (see Section 4 of Ref. [19]) i.e. the resolution and acceptance performance of
the available instruments. This is done by performing a singular value decomposition [20] (SVD) of R′ .
In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian

distribution L ∝ e−(Rµµµ−d)TD−1

d
(Rµµµ−d) where Dd,i,i = σ(di)

2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].

• Small changes in input (can) lead to large changes in the ML estimate. 

Singular Value 
Decomposition
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In general a matrix R′ of dimensions M ×N can be decomposed as

R′ = UΣV T (1.29)

where U and V are unitary matrices (UTU = V TV = 1)) respectively of dimensions M ×M and N ×N
and Σ = UTR′V is a diagonal matrix of dimensions M × N i.e. such that Σi,j = σi if and only if i
= j otherwise it is zero. The σi values are called singular values of the matrix R′, they are non not
negative and can always be arranged in non-increasing order [10]. Both matrices U and V can be written
in terms of their column vectors : U = (u1,..,uN ) and V = (v1,..,vN ). If R′ is replaced by its singular

5. In the limit of large expected number of events each independent Poisson variable described in Equation 1.12 tends to
a Gaussian with the same mean and variance so the resulting likelihood L will tend to the diagonal multivariate Gaussian

distribution L ∝ e−(Rµµµ−d)TD−1

d
(Rµµµ−d) where Dd,i,i = σ(di)

2, the uncertainly on yi, and Dd,i,j = 0 for i ̸= j (see chapter
4 of [18]). A non-diagonal multivariate Gaussian likelihood will include correlations. An example of correlated variables is
given in the case where the total number of events is a fixed quantity and the bin contents of a histogram are correlated
and are distributed according to a multinomial distribution. In the limit of large number of observed and expected events
in each bin, the multivariate generalization is a multivariate Gaussian [18].
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A deeper analysis of equation 1.15 illustrates the link between fluctuations and instability and exposes
the origin of instability in a quantitative manner [17] by making a connection with the condition of the
matrix to be inverted.

The first step is to perform a transformation of variables in equation 1.15 such that the covariance
matrix Vd of the vector d becomes the identity matrix. In general Vd can be non-diagonal as there can be
correlations between the observations in the different bins : the Poisson-based likelihood for independent
observations described by Equation 1.12 is consequently extended to be

L ∝ e−
1
2χ

2(µµµ,d) = e−
1
2 (Rµµµ−d)TV −1

d
(Rµµµ−d) (1.24)

and the estimates deriving from its maximization coincide with the least squares estimate 5. The reduction
of Vd to the identity matrix allows to write the generalized likelihood of Equation 1.24 in terms of
significances i.e. variables normalized to their uncertainties. The transformation of variables is a rotation
in RN followed by rescaling. The matrix Vd is symmetric and positive definite so there exists an N ×N
orthogonal matrix Q (QQT = 1) such that Vd = QV ′

d
QT and V ′

d
is an N ×N diagonal matrix such that

V ′

d,i,i = v2i ̸= zero and V ′

d,i,j = 0 for i ̸= j. The new vector d′ is obtained by a rotation with Q and a
rescaling based on vi as follows

d′i =
1

vi

N
∑

j=1

Qi,jdj (1.25)

The new rotated and normalized d′ vector encapsulates the statistical significance of the inputs (i.e. their
size in units of their uncertainty) : it takes into account the different statistical power of the equation
associated to each of the N input values (see Equation 1.9) . The new R′ matrix is also redefined accordingly

R′

i,j =
1

vI

N
∑

k=1

Qi,kRk,,j (1.26)

so that equation 1.11 is reformulated in terms of the new variables as

µµµest = (R′)−1d′ (1.27)

and the sum of squares to be minimized equivalent to the maximum likelihood is simplified to

1

2
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value decomposition in the inversion and σj ̸= 0 ∀ j the result is

µµµest = (R′)−1d′ = (R′)−1(n′ − βββ′) = V Σ−1UTd′ =
N
∑

i=1

1

σi
(uT

i d
′)vi =

N
∑

i=1

1

σi
civi (1.30)

The singular values σi have important properties to characterize the unfolded result. The smoother the
kernel corresponding to R′ (i.e. the higher order continuous partial derivatives it has), the faster the
decay to zero of the singular values σi is found to be ; the smaller the value of σi becomes, the larger the
frequency turns out to be for the component σi corresponds to (i.e. the more oscillations are present in
the functions the corresponding kernel is decomposed in) [10]. The coefficients ci= uT

i d can be ordered
by decreasing value and they decrease rapidly with the increasing index i [21]. In addition the vector c =
(c1,..,cN ) has unitary covariance matrix Vc = 1 because it is obtained by multiplying the unit-covariance
d′ by the orthogonal matrix UT . These normalized coefficients encode the significance of the corresponding
contribution to the ML result. The contribution of each ci is weighted with the inverse of the corresponding
singular value σi : small singular values can generate large fluctuations in the final ML result [21].

The quantitative connection between the singular value decomposition and the magnification of un-
certainties in the unfolded result can be found in the condition c(R′) : this can be re-written as

c(R′) = ||(R′)−1δd||/||(R′)−1d||/||δd||/||d|| (1.31)

and it can be shown [22] that

c(R′) = ||R′|| · ||(R′)−1|| = σmax/σmin (1.32)

where ||d|| is the norm of the vector d resulting from the Euclidean positive definite metric in RN . For the
matrix R′, the norm ||R′|| is induced by the Euclidean norm. If A :RN → RN is a linear application with
the Euclidean norm for a vector ||x|| = (

∑

i x
2
i )

1
2 defined for both RN and RM , the norm of the matrix A

is defined as
√

max eigenvalue of ATA. So the condition of the matrix R′ can be read off from its singular
value decomposition that is connected to the sensitivity to fluctuations in the unfolding problem.

The overall picture is now clearer. The singular value decomposition gives insight into the unfolding
problem : ML estimators are sensitive to small effects that can lead to large changes in their values.
Once the problem is described in terms of uncertainty normalized variables, the large sensitivity to small
fluctuations (i.e. high frequency components, in Fourier-like language) can be derived from the high
condition number c(R) for the response matrix that describes the unfolding problem. In order to pose
the problem more properly, it is then necessary to reduce the the impact of the low significance, highly
oscillating input components while preserving the information available in the remaining high significance,
more stable components. The problem is then said to have been “regularized”. As the ML estimator is
unbiased according to the discussion of Section 1.3, regularization inevitably leads to accepting a certain
level of bias in exchange for a reduced variance. The bias is defined as the difference between the expected
value of the unfolded result and the true unmeasured expected value. The heart of unfolding problems
lies in understanding the balance between bias and uncertainty.

1.6 Regularized unfolding : a general view

The likelihood formulation of the unfolding problem in Equations 1.13 and 1.24 quantifies the distance
between the data vector n and the expectation vector ννν. According to that distance, in a neighbourhood
of the ML solution in RN the values of µµµ are such that

logL(µµµ) ≥ logLmax −∆logL (1.33)

In order to filter out a certain amount of the high frequency components of the input and alleviate the
sensitivity to large fluctuations, this distance definition can be modified with the goal to single out a
modified solution that is still “close” to the unbiased ML estimate, but less sensitive to fluctuation. A
transparent way to carry out such modification is to impose constraints on the initial likelihood by adding
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

diagonal χ2→rotate & 
normalize R & d →Rʼ & dʼ 

• Large ML sensitivity to small fluctuations, low significance, highly oscillating 
(high “frequency”) components→high condition number C(R) of migration 
matrxi R

•Regularize = Reduce impact of high frequency while keeping info of high 
significance, stable components → reduction in variance w.r.t. ML estimator
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
φ.

The logarithm of the new likelihood to be minimized then becomes

φ = αlogL(µµµ) + S(µµµ) (1.34)

or
φ = logL(µµµ) + τS(µµµ) (1.35)

where L(µµµ) is the initial likelihood (for instance from either Equation 1.13 or Eq. 1.24), S(µµµ) is called
regularization function, α and τ are the regularization parameters that allow to tune the strength of the
constraints (equivalent a special choice of ∆logL). In addition, it is possible to add the constraint that
ntot =

∑N
i=1 νi if the solution is required to provide an unbiased estimate of the total number of events.

This results in the maximization of

φ = αlogL(µµµ) + S(µµµ) + λ(ntot −
N
∑

i=1

νi) (1.36)

as a function of λ and µµµ. It should be noted that
∑N

i=1 νi is a function of µi as νi =
∑N

i=1Ri,jνj + βi.
The regularization function is often perceived as a measure of the level of “smoothness” required of the
maximum likelihood solution. In this light, taking for instance the formulation of Equation 1.34, if α is set
to zero, the solution is set to the smooth function encoding all the constrains (i.e. available pre-existing
information) : the shape of S(µµµ) is imposed as the correct one and the data are ignored. If α tends to
infinity (i.e. α is much larger than any of the other coefficients) S(µµµ) carries no weight in the maximization
and the ML solution is re-obtained.

In the explicit formalism the ingredients for the regularization of a given likelihood L(µµµ) are the
regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then

S[f(y)] =

∫

(
dkf(y)

dyk
)2dy (1.37)

with k in an integer number. If k = 2 is chosen, Equation 1.37 can be approximated by a sum over the
numerical estimate of second derivative [24]

S(µµµ) = −
M−2
∑

i=1

[(µi+2 − µi+1)− (µi+1 − µi)]
2 (1.38)

where M is the number of values used to describe the regularization function or the number of bins used
to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into

φ(µµµ, τ) = −
1

2
χ2(µµµ) + τS(µµµ) (1.40)

6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.
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Lagrange multipliers and describing the regularization as a maximization procedure for a new likelihood
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and the ML solution is re-obtained.
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regularization function S(µµµ) and a prescription for α to tune the level of filtering for the high frequency
components of the input.

1.7 Regularized unfolding : the Tikhonov scheme

An analytic and quantitative measure of the smoothness of the unfolding solution is the mean square of
the kth derivative proposed by Tikhonov and Arsenin in Ref. [23]. The proposed form for the regularization
function S is then
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to provide its discrete description. In matrix notation it is possible to re-write S(µµµ) as

S(µµµ) = (Cµµµ)T (Cµµµ) (1.39)

where C is the M ×M matrix that encodes the definition of the second order numerical derivatives (see
Section 6 in [19]) 6.

In the limit of large expected and observed number of events for the distribution of interest the
logarithm of the likelihood to be maximized results from combining Equations 1.24, 1.34 and 1.33 into
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6. In general a different form for C allows to use a different regularization function that is also quadratic in µµµ.

constrain 
by prior on 
distribution

constraint from 
distance in information 
H from reference εi

EPJ Web of Conferences 33

|y|!
-3 -2 -1 0 1 2 3

Ev
en

ts
 / 

0.
3

0

200

400

600

800

1000

1200

1400

1600

1800

2000

data
tt

W+jets
Z+jets
Diboson
Single top
Multijets
Uncertainty

ATLAS 
-1 L dt = 1.04 fb"

 1 b tag)# 4 jets (# + µ

(a)

|y|!Generated 
-3 -2 -1 0 1 2 3

|y
|

!
Re

co
ns

tru
ct

ed
 

-3

-2

-1

0

1

2

3
Simulation     ATLAS 

 1 b tag)# 4 jets (# + e

(b)

|y|!
-3 -2 -1 0 1 2 3

|y
|

!
/d
$

 d
$

1/

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
data
MC@NLO

ATLAS 
-1 L dt = 1.04 fb"

 1 b tag)# 4 jets (# + e

(c)

Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at

√
s

= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
M
∑

i

µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].
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knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at
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= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
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∑
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µilog
µi

ϵi
(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative

9. An outcome from a distribution with a large Shannon entropy is more useful to the observer as it is less predictable
than one with small entropy (which is actually fairly predictable) : the observed outcome carries more information.
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Figure 1.8 – (a) Reconstructed distribution of the difference between the absolute rapidities of top quark
and antitop quark (∆ |y|) in top quark pair events observed by the ATLAS detector in pp collisions at
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= 7 TeV at the LHC. The observed data are represented by the dots, the predicted amount of events and
their breakdown in different sources are shown in the histograms in different colours and illustrated in the
legend. (b) Migration matrix from simulated top quark pair events. (c) Unfolded differential cross section
for the production of top quark pair events as a function of ∆ |y| (dots) compared with the prediction
from the standard model (red histogram). All the plots are taken from reference [6].

space. The entropy H measures the amount of uncertainty represented by the probability distribution
of a given variable and consequently determines the information content that any observation extracted
from that population brings to the observer 9.

When new information about a variable is acquired the gain can be quantified by the change in
uncertainty (information) between the initial estimate of the probability distribution for the variable
and the new one. As the entropy H measures the information change, it is at the basis of the principle
of minimum relative entropy (or cross-entropy) [34] : if there is not enough information to specify a
probability distribution uniquely, a consistent estimator for it is obtained by minimizing

S(µµµ) = H(µµµ) =
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∑
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(1.60)

where µµµ is the estimator vector for the unknown probability distribution, the index i goes from 1 to the
number of M bins of the distribution and ϵϵϵ is the reference probability distribution, representing the best
knowledge about the true, unknown distribution. This method is used whenever the true distribution
is known to be non-negative everywhere. When the only knowledge about the true distribution is its
being non-negative and the reference distribution is taken to be a constant over all bins (ϵi = ϵ0 ∀i), the
relative entropy of Equation 1.60 is reduced to the absolute entropy of Equation 1.59 up to a constant
and the principle of minimum relative entropy is equivalent to the principle of maximum entropy [35].
The axiomatic derivation [34] for the minimum relative entropy estimator defines it as the distribution µi

that has the minimal distance from the reference, initial estimate ϵi in terms of information, but respects
a given set of constraints.

Additional insight into the use of information entropy is provided in Ref. [36] where the minimum
relative entropy estimate is interpreted as a maximum likelihood estimate. The negative logarithm of the
likelihood for a given set of binned observation ni to be compatible with a prior distribution ϵi and to
satisfy the the response matrix constraints (see Eq. 1.24 is considered. This likelihood is shown to be
proportional to the regularization function S(µµµ) in equation 1.60 up to a constant term (see Appendix A
of [36]). The likelihood for a given set of binned observation ni deriving from a true unknown distribution
µi to be compatible with a prior distribution ϵi is represented by a multinomial distribution. The negative
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where the vector ϵϵϵ= (ϵ1,..,ϵM ) describes the detection efficiency as a function of the histogram bin.

Secondly some of the observed events are not interesting for the measurement one wants to perform
as they are due to backgrounds (events that look like the ones of interest, but have different origin) and
they modify the observed distribution. Such events have their own distribution b(s) in terms of the values
of the observed variable s. The vector βββ of the expected number of background events in each bin of the
histogram of s can be defined as

βi =

∫ si

si−1

b(s)ds (1.7)

Examples of histograms [13] featuring the vectors µµµ, ϵϵϵ and the corresponding vectors n and ννν are
shown in figure 1.4.

Figure 1.4 – Examples of “true” distribution (left) (µµµ), a given set of efficiencies including resolution
effects (center) (ϵϵϵ) and the corresponding observed (dashed, right) (n) and expected observed distribution
(solid, right)(ννν) [13]. The vectors µµµ, ϵϵϵ, n and ννν are defined in the text.

In general the model described in Equation 1.1 is then extended to

g(s) =

∫

Ω
K(s,y)f(y)dy + b(s) (1.8)

and its discretized one-dimensional form described in Equation 1.4 is consequently extended [13] to

E[ni] = νi =
M
∑

j=1

Ri,jµj + βi (1.9)

whose vectorial compact form is
E[n] = ννν = Rµµµ+ βββ (1.10)

1.3 The maximum likelihood solution

Given the problem described by Equation 1.10, the formal solution is written as

µestµestµest = R−1(ννν − βββ) (1.11)

where R−1 is the inverse of R. This estimate for µµµ can also be derived from the principle of maximum
likelihood (ML) [14]. If one assumes (fairly generally) that events are being counted in each histogram
bin and that the data are consequently independent Poisson observation distributed according to

P (ni|νi) = νni
i

e−νi

ni!
(1.12)
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the logarithm of the global likelihood L =
N
∏

i=1
P (ni|νi) resulting from the Poisson assumption is

logL(µ) =
N
∑

i=1

(nilog νi − νi − log ni!) (1.13)

where ννν = ννν(µ)µ)µ) because of equation 1.10. Consequently the maximum likelihood estimator for ννν obtained
by imposing ∂logL(µi)/∂µi = 0 ∀ i is given by

νννML = n (1.14)

and consequently the estimate of µµµ is obtained as

µµµML = R−1(νννML − βββ) = R−1(n− βββ) = µµµest (1.15)

Is this solution always working ? An example shown in Ref. [13] reports a double-peaked true distribu-
tion for which the resulting ML estimate, derived according to equation 1.15, shows a multi-peaked shape
with extremely large variances and very large anticorrelation between neighbouring bins : the estimate
turns out to be very different from known input. The response matrix R for this example has sizeable
non-diagonal elements and the bin size of the histogram to be “inverted” is smaller than the detector
resolution encoded in the model for event migrations. Figure 1.5 shows the generated “true” histogram µµµ,
the observed histogram (dashed) and the corresponding expectation values (solid) and the estimator µestµestµest.

Figure 1.5 – Examples of “true” distribution (left) (µµµ), the observed (dashed, middle) (n) and the
expected observed distribution (solid, middle) (ννν) assuming imperfect resolution and perfect detection
efficiency, the resulting estimate for µµµest using the ML solution (right) [13]. The vectors µµµ, ννν, n and µµµest

are defined in the text.

What is happening ? Insight into the reasons for the ML result can be obtained by considering an
instance where the true µµµ have a fine structure and the detection effects, represented by the response
matrix R, dilute the true information while allowing residual structure to be present [13]. This is shown
in figure 1.6. The application of R−1 aims at restoring the original histogram, according to Equation 1.15.
If the migrations are properly modelled, the inversion returns the correct values if the input data are the
expectation vector ννν of the reconstructed bin contents. However the matrix inversion is applied to one
instance of the vector n, it is not applied to its expectation value ν. As a consequence, in a suggestively
descriptive way, R “assumes” that the fluctuations in n are the residual of a real original structure diluted
by the detection effects (and not of statistical origin) and uses the given input and the available model
for migrations to reconstruct µ i.e. it magnifies the fluctuations back into the result.

Independently of the large fluctuations induced by the application of the matrix inversion the maximum
likelihood solution is an unbiased estimator of µµµ because

E[µµµML] = E[R−1(n− βββ)] = R−1(E[n]− βββ) = R−1(ννν − βββ) (1.16)

ˆ
ˆ

ˆ

ˆ

ˆ ˆ

where
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ˆ

• ML solution is good for model tests, as long as the full covariance 
matrix is used (despite its huge variance).

-
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Fig. 3 Migration matrices for
(a–b) mtt̄ , (c–d) pT,t t̄ , and (e–f)
ytt̄ estimated from simulated t t̄
events passing all (left) e + jets
and (right) µ + jets selection
criteria. The unit of the matrix
elements is the probability for
an event generated at a given
value to be reconstructed at
another value

which includes the full covariance matrix between the chan-
nels. Since the covariance matrix is used in the weight-
ing, the estimate is a best linear unbiased estimator of
the cross-section. The covariance matrix is determined in
simulated events using the same pseudo-experiment pro-
cedure outlined in the previous section and derived from
Eq. (5).

8 Results

To reduce systematic uncertainties only relative cross-
sections (differential cross-section normalized to the mea-
sured inclusive cross-section) are reported. The full pro-
cedure for the differential measurement is also contracted
down to one bin to perform the measurement of the inclu-
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Fig. 2 Distributions of the
reconstructed (a–b) t t̄ mass,
mtt̄ , (c–d) the t t̄ transverse
momentum, pT,t t̄ , and (e–f) the
t t̄ rapidity, ytt̄ , before
background subtraction and
unfolding. In (a–b) and (c–d)
the bin corresponding to the
largest mtt̄ (pT,t t̄ ) value
includes events with mtt̄ (pT,t t̄ )
larger than 2700 GeV
(700 GeV). The largest
reconstructed mtt̄ in the µ + jets
channel is 2603 GeV. Data are
compared to the expectation
derived from simulation and
data-driven estimates. All
selection criteria are applied for
the (a, c, e) e + jets and (b, d, f)
µ + jets channels. The
uncertainty bands include all
contributions given in Sect. 6
except those from PDF and
theory normalization

sured in data using the same methods as in Refs. [42, 56].
Jet energy resolution uncertainties range from 9–17 % for jet
pT ≃ 30 GeV to about 5–9 % for jet pT > 180 GeV depend-
ing on jet η. The jet reconstruction efficiency uncertainty is
1–2 %. The uncertainties from the energy scale and resolu-
tion corrections on leptons and jets are propagated to the un-
certainties on missing transverse momentum. Uncertainties
on Emiss

T also include contributions arising from calorime-

ter cells not associated to jets and from soft jets (those in
the range 7 GeV < pT < 20 GeV). The b-tagging efficiency
scale factors have uncertainties between 6 % to 15 %, and
mis-tag rate scale factor uncertainties range from 10 % to
21 %. The scale factors are derived from data and parame-
terized as a function of jet pT.

A small region of the liquid argon calorimeter could not
be read out in a subset of the data corresponding to 42 % of

“Stress test”: inject bias compatible with total 
uncertainty and check unfolding capacity to 

recover the shape change

Syst dominated, 
ML solution 

adopted
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Fig. 5 Relative differential
cross-section versus (a–b) mtt̄ ,
(c) pT,t t̄ and (d) ytt̄ . Note that
the histograms are a graphical
representation of Table 3. This
means that only the bin ranges
along the x-axis (and not the
position of the vertical error bar)
can be associated to the relative
differential cross-section values
on the y-axis. The relative
cross-section in each bin shown
in Table 3 is compared to the
NLO prediction from
MCFM [8]. For mtt̄ the results
are also compared with the
NLO+NNLL prediction from
Ref. [7]. The measured
uncertainty represents 68 %
confidence level including both
statistical and systematic
uncertainties. The bands
represent theory uncertainties
(see Sect. 8 for details).
Predictions from MC@NLO
and ALPGEN are shown for
fixed settings of the generators’
parameters (details are found in
Sect. 8)

No significant deviations from the SM expectations pro-
vided by the different MC generators are observed. The SM
prediction for the relative cross-section distribution can be
tested against the measured values by using the covariance
matrix between the measured bins of the combined results.

9 Conclusions

Using a dataset of 2.05 fb−1, the relative differential cross-
section for t t̄ production is measured as a function of three
properties of the t t̄ system: mass (mtt̄ ), pT (pT,t t̄ ) and rapid-
ity (ytt̄ ). The background-subtracted, detector-unfolded val-
ues of 1/σ dσ/dmtt̄ , 1/σ dσ/dpT,t t̄ and 1/σ dσ/dyt t̄ are
reported together with their respective covariance matrices,
and compared to theoretical calculations. The measurement
uncertainties range typically between 10 % and 20 % and
are generally dominated by systematic effects. No signifi-
cant deviations from the SM expectations provided by the
different MC generators are observed.
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Fig. 5 Relative differential
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(c) pT,t t̄ and (d) ytt̄ . Note that
the histograms are a graphical
representation of Table 3. This
means that only the bin ranges
along the x-axis (and not the
position of the vertical error bar)
can be associated to the relative
differential cross-section values
on the y-axis. The relative
cross-section in each bin shown
in Table 3 is compared to the
NLO prediction from
MCFM [8]. For mtt̄ the results
are also compared with the
NLO+NNLL prediction from
Ref. [7]. The measured
uncertainty represents 68 %
confidence level including both
statistical and systematic
uncertainties. The bands
represent theory uncertainties
(see Sect. 8 for details).
Predictions from MC@NLO
and ALPGEN are shown for
fixed settings of the generators’
parameters (details are found in
Sect. 8)

No significant deviations from the SM expectations pro-
vided by the different MC generators are observed. The SM
prediction for the relative cross-section distribution can be
tested against the measured values by using the covariance
matrix between the measured bins of the combined results.

9 Conclusions
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section for t t̄ production is measured as a function of three
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reported together with their respective covariance matrices,
and compared to theoretical calculations. The measurement
uncertainties range typically between 10 % and 20 % and
are generally dominated by systematic effects. No signifi-
cant deviations from the SM expectations provided by the
different MC generators are observed.
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The particle-level event selection is summarized in Table 1. Fiducial particle-level corrections are
determined by using only simulated tt̄ events in which exactly one of the W bosons, resulting from the
decay of the tt̄ pair, decays to an electron or a muon either directly or through a ⌧ lepton decay. All
other tt̄ events are not used. The cross-section is then determined as a function of the particle-level
top-jet candidate transverse momentum, pT,ptcl.

For the parton level, the top quark that decays to a hadronically decaying W boson is considered
just before the decay and after QCD radiation, selecting events in which the momentum of such a
top quark, pT,parton, is larger than 300 GeV. Parton-level corrections are determined by using only
simulated tt̄ events in which exactly one of the W boson decays to an electron or a muon or a ⌧ lepton
(including hadronic ⌧ decays). The correction to the full parton-level phase space defined above is
obtained by accounting for the branching ratio of tt̄ pairs to the `+jets channel.

8.3. Unfolding to particle and parton levels

The procedure to unfold the distribution of pT,reco, the pT of the detector-level leading-pT trimmed
large-R jet, to obtain the di↵erential cross-section as a function of pT,ptcl is composed of several steps,
outlined in:
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where N j
reco is the number of observed events in bin j of pT,reco with the detector-level selection

applied, Ni
ptcl is the total number of events in bin i of pT,ptcl that meet the fiducial region selection,

�pi
T,ptcl is the size of bin i of pT,ptcl, and L is the integrated luminosity of the data sample. The

corrections that are applied to pT,reco are all extracted from the nominal Powheg+Pythia tt̄ sample.

First, the non-tt̄ background contamination, N j
reco,bgnd, is subtracted from the observed number of

events in each pT,reco bin. The contribution from non-` + jets tt̄ events is taken into account by the
multiplicative correction ftt̄,`+jets, which represents the fraction of `+jets tt̄ events extracted from the
nominal Powheg+Pythia tt̄ sample.

In a second step the correction factor f j
reco!ptcl, also referred to as acceptance correction, corrects

the pT,reco spectrum for the tt̄ events that pass the detector-level selection but fail the particle-level
selection. For each pT,reco bin j, f j

reco!ptcl is defined as the ratio of the number of events that meet both
the detector-level and particle-level selections to the number of events that satisfy the detector-level
selection. The distribution of the acceptance correction f j

reco!ptcl is shown in Fig. 2(a) for various MC
generators.

The third step corrects for detector resolution e↵ects. A migration matrix is constructed to correlate
the pT,reco-binned distribution to the pT,ptcl distribution. The matrix Mi j represents the probability for
an event with pT,ptcl in bin i to have a pT,reco in bin j. This matrix is shown in Fig. 3(a). It shows that
approximately 50% to 85% of events have values of pT,ptcl and of pT,reco that fall in the same bin.

The inversion of the migration matrix to correct pT,reco to the particle level is carried out by an un-
folding scheme based on Tikhonov regularization which is implemented through the singular value
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• Simultaneously fit for σtt and εb, efficiency to 
select, reconstruct and recognize b-jet in 1-b-tag 
and 2-b-tag samples→minimize jet & b-tag syst 

~89% ~96%

Special reasons: measure σtt  - dilepton @ √s =13 TeV

Dilepton Channel at 7 TeV and 8 TeV ATLAS Detector

µe Channel: Measurement Using Events with b-tagged Jets
arXiv:1406.5375

Method

• Simultaneous measurement of stt̄ and eb .

N1 = Lstt̄eeµ2eb(1 � Cbeb) + Nbkg
1

N2 = Lstt̄eeµCbe2
b + Nbkg

2

• eb is the product of b-tagging efficiency
and jet kinematic acceptance for tt̄ events.

• eeµ is the leptonic acceptance.
• Cb is a correlation coefficient of eb :

Cb = ebb/e2
b ⇠ 1.

• Leptonic acceptance eeµ and tagging
correlation Cb evaluated from tt̄
simulation.

• Simultaneous measurement (stt̄ and eb)
reduces related systematic uncertainties.
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• Extrapolate to particle (called fid) & parton level
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runs in early 2013 [55]. This relative uncertainty is also 
applicable to the 2015 pp run. Since this calibration is 
compatible with the nominal centre-of-mass energy of 
13 TeV, no correction is applied to the measured σtt̄
value. However, an uncertainty of 1.5%, corresponding to 
the expected change in σtt̄ for a 0.66% change in centre-
of-mass energy, is quoted separately for the final result.

Top quark mass: Alternative tt̄ samples generated with different 
mt from 170 to 177.5 GeV are used to quantify the de-
pendence of the acceptance for tt̄ events on the assumed 
mt value. The level of W t single-top background based 
on the change of the W t cross-section for the same mass 
range is also considered. The tt̄ acceptance and back-
ground effects partially cancel, and the final dependence 
of the result on the assumed mt value is determined to 
be dσtt̄/dmt = −0.3%/GeV. The result of the analysis is 
reported for a top quark mass of 172.5 GeV, and the 
small dependence of the cross-section on the assumed 
mass is not included in the total systematic uncertainty.

The total systematic uncertainties in ϵeµ , Cb , Geµ and the fitted 
values of σtt̄ and σ fid

tt̄ are shown in Table 4, and the total sys-
tematic uncertainties in the individual background components are 
shown in Table 2. The dominant uncertainties in the cross-section 
result come from the luminosity determination and tt̄ modelling, 
in particular from the tt̄ shower and hadronisation uncertainty.

7. Results and conclusions

The inclusive tt̄ production cross-section is measured in the 
dilepton tt̄ → eµννbb̄ decay channel using 3.2 fb−1 of 

√
s =

13 TeV pp collisions recorded by the ATLAS detector at the LHC. 
The numbers of opposite-sign eµ events with one and two 
b-tagged jets are counted, allowing a simultaneous determina-
tion of the tt̄ cross-section σtt̄ and the probability to reconstruct 
and b-tag a jet from a tt̄ decay. Assuming a top quark mass of 
mt = 172.5 GeV, the result is:

σtt̄ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,

where the four uncertainties are due to data statistics, experimen-
tal and theoretical systematic effects, the integrated luminosity and 
the LHC beam energy, giving a total relative uncertainty of 4.4%. 
The combined probability for a jet from a top quark decay to be 
within the detector acceptance and tagged as a b-jet is measured 
to be ϵb = 0.559 ± 0.004 ± 0.003, where the first error is statisti-
cal and the second systematic, in fair agreement with the nominal 
prediction from simulation of 0.549.

This cross-section measurement is consistent with the theoreti-
cal prediction based on NNLO + NNLL calculations of 832+40

−46 pb at 
mt = 172.5 GeV. Fig. 4 shows the result of this σtt̄ measurement 
together with the most precise ATLAS results at 

√
s = 7 and 8 TeV 

[13]. The data are compared to the NNLO + NNLL predictions as 
a function of the centre-of-mass energy. The result is also consis-
tent with a recent measurement by CMS at 

√
s = 13 TeV using a 

smaller data sample [56].
The measured fiducial cross-section σ fid

tt̄ for a tt̄ event produc-
ing an eµ pair, each lepton originating directly from t → W → ℓ or 
via a leptonic τ decay t → W → τ → ℓ and satisfying pT > 25 GeV
and |η| < 2.5 is:

σ fid
tt̄ = 11.32 ± 0.10 (stat) ± 0.29 (syst) ± 0.26 (lumi)

± 0.17 (beam) pb,

with uncertainties due to data statistics, systematic effects, the 
knowledge of the integrated luminosity and the LHC beam en-
ergy, corresponding to a total relative uncertainty of 3.9% and an 

Fig. 4. Cross-section for tt̄ pair production in pp collisions as a function of centre-
of-mass energy. ATLAS results in the dilepton eµ channel at √s = 13, 8 and 7 TeV 
are compared to the NNLO + NNLL theoretical predictions.

internal systematic uncertainty excluding the luminosity and the 
LHC beam energy of 2.5%. The breakdown of the systematic un-
certainties is presented in Table 4. Overall, the analysis systematic 
uncertainties in the fiducial cross-section are smaller than those in 
the inclusive cross-section, due to the substantial reductions in the 
PDF and hadronisation uncertainties that contribute significantly to 
both the acceptance Aeµ and reconstruction efficiency Geµ .
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Figure 11: Comparison of the measured [N0,1,2+
jet , M(tt), y(tt) ] cross sections to the theoretical

predictions calculated using MC event generators (further details can be found in the Fig. 3
caption).

Table 1: The c2 values (taking into account data uncertainties and ignoring theoretical uncer-
tainties) and dof of the measured cross sections with respect to the predictions of various MC
generators.

Cross section
dof

c2

variables ‘POW+PYT’ ‘POW+HER’ ‘MG5+PYT’

[y(t), pT(t) ] 15 57 18 35

[M(tt), y(t) ] 15 26 18 36

[M(tt), y(tt) ] 15 28 17 23

[M(tt), Dh(t, t) ] 11 66 68 124

[M(tt), Df(t, t) ] 15 14 18 10

[M(tt), pT(tt) ] 15 21 22 29

[M(tt), pT(t) ] 15 77 34 68

[N0,1+
jet , M(tt), y(tt) ] 23 34 31 34

[N0,1,2+
jet , M(tt), y(tt) ] 35 50 66 63

CMS-TOP-18-004, submitted to Eur. Phys J. C
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Figure 13: The theoretical uncertainties for [N0,1+
jet , M(tt), y(tt) ] (upper) and [N0,1,2+

jet , M(tt),

y(tt) ] (lower) cross sections, arising from PDF, aS(mZ), and mpole
t variations, as well as the total

theoretical uncertainties, with their bin-averaged values shown in brackets. The bins are the
same as in Figs. 10 and 11.

CMS-TOP-18-004, 
submitted to Eur. 

Phys J. C
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Extreme test of SM:  Double differential cross section 

N+M bins

N 
bins

M bins

@13 TeV

global inconsistency in pT,tt in bins of Njet @ particle level vs NLO+PS 
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Figure 35: Differential cross sections at the particle level normalized to the sum of the cross
sections snorm in the measured ranges as a function of pT(tt) in bins of the number of ad-
ditional jets. The data are shown as points with light (dark) bands indicating the statistical
(statistical and systematic) uncertainties. The cross sections are compared to the predictions of
POWHEG combined with PYTHIA8 (P8) or HERWIG++ (H++) and the multiparton simulations
MG5 aMC@NLO (MG5)+PYTHIA8 FxFx and SHERPA. The ratios of the various predictions to the
measured cross sections are shown at the bottom of each panel.
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Figure 35: Differential cross sections at the particle level normalized to the sum of the cross
sections snorm in the measured ranges as a function of pT(tt) in bins of the number of ad-
ditional jets. The data are shown as points with light (dark) bands indicating the statistical
(statistical and systematic) uncertainties. The cross sections are compared to the predictions of
POWHEG combined with PYTHIA8 (P8) or HERWIG++ (H++) and the multiparton simulations
MG5 aMC@NLO (MG5)+PYTHIA8 FxFx and SHERPA. The ratios of the various predictions to the
measured cross sections are shown at the bottom of each panel.
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@13 TeVExtreme test of SM:Double differential cross section 
@ particle level 

• “Inconsistency” reduced to “tension” 
by including theory uncertainties  

• same @ parton
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Figure 28: Double-differential cross section at the particle level as a function of pT(th) vs. M(tt).
The data are shown as points with light (dark) bands indicating the statistical (statistical and
systematic) uncertainties. The cross sections are compared to the predictions of POWHEG com-
bined with PYTHIA8 (P8) or HERWIG++ (H++) and the multiparton simulations MG5 aMC@NLO
(MG5)+PYTHIA8 FxFx and SHERPA. The ratios of the various predictions to the measured cross
sections are shown at the bottom of each panel.
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Figure 28: Double-differential cross section at the particle level as a function of pT(th) vs. M(tt).
The data are shown as points with light (dark) bands indicating the statistical (statistical and
systematic) uncertainties. The cross sections are compared to the predictions of POWHEG com-
bined with PYTHIA8 (P8) or HERWIG++ (H++) and the multiparton simulations MG5 aMC@NLO
(MG5)+PYTHIA8 FxFx and SHERPA. The ratios of the various predictions to the measured cross
sections are shown at the bottom of each panel.

“high” pT,op
“low” pT,op

 Ndof = 32 no theory unc. with theory unc.
NLO+PS 𝜒2 p-val 𝜒2 p-val
PW+PY8 73.2 <0.01 47.4 0.039
SHERPA 66.5 <0.01 57.2 <0.01
PW+H++ 152 <0.01
MG5+PY 48.9 0.028

check  mtt consistency as Lorentz boost increases (larger pT,op )
Phys. Rev. D 97, 112003 (2018)
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7 Constraints on the gluon parton distribution function

As a demonstration of the ability of the normalised di↵erential cross-section measurements to constrain
the gluon PDF, fits were performed to deep inelastic scattering (DIS) data from HERA I+II [97], with and
without the addition of the constraints from tt̄ dilepton |⌘`|, |yeµ| and Ee + Eµ distributions. As shown in
Figure 13, these distributions are the most sensitive to PDF variations, whilst being less sensitive to QCD
scale variations and the value of mt. The fits are based on the predictions from MCFM and ApplGrid
discussed in Section 6.3, allowing predictions for arbitrary PDF variations to be obtained much faster
than if a full NLO plus parton shower event generator setup were to be used. The QCD scales were set to
fixed values of µF = µR = mt/2. The fits were performed using the xFitter package [111, 112], which
allows the PDF and other theoretical uncertainties to be included via asymmetric error propagation. In
this formalism, the �2 for the compatibility of the measurements with the prediction is expressed by:

�2 =
X

i, j

⇣
&exp

i � &th
i

⌘
S �1

exp,i j(&
th
i , &

th
j )
⇣
&exp

j � &th
j

⌘
, (6)

where &exp
i is the measured normalised di↵erential cross-section in bin i (equivalent to &i

tt̄ in Eq. (2)), &th
i

is the corresponding theoretical prediction, S exp,i j is the covariance matrix of experimental uncertainties
including both statistical and systematic contributions, and correlations between bins, and the sums for i
and j run over n� 1 bins to account for the normalisation condition. Unlike in the formulation of Eq. (5),
the covariance matrix is a function of the theoretical predictions, with the statistical uncertainties being
rescaled according to the di↵erence between the measured values and the predictions using a Poisson
distribution, and the systematic uncertainties being scaled in proportion to the predictions.

Following the formalism outlined in Ref. [113], the covariance matrix was decomposed into a diagonal
matrix D representing the uncorrelated parts of the uncertainties, and a set of coe�cients �exp

i j giving
the one standard deviation shift in the measurement i for source j, where j runs over the correlated part
of the statistical uncertainties and each source of systematic uncertainty. Each source of experimental
uncertainty was then associated with a ‘nuisance parameter’ b j,exp parameterising the associated shift in
units of standard deviation. The �2 becomes a function of the set of PDF parameters p defining the
theoretical prediction &th

i and the vector of experimental nuisance parameters bexp, and is given by:

�2(p,bexp) =
X

i

⇣
&exp

i +
P

j �
exp
i j b j,exp � &th

i (p)
⌘2

d2
ii

+
X

j

b j,exp
2 + L , (7)

where dii are the non-zero elements of the diagonal matrix D, and the rescaling of the uncertainties leads
to the logarithmic term L, arising from the likelihood transition to �2 as discussed in Refs. [113, 114].
The �2 was minimised as a function of the PDF parameters p and the nuisance parameters bexp, and the
value at the minimum provides a compatibility test of the data and prediction.

For the PDF fits, the perturbative order of the DGLAP evolution [115–117] was set to NLO, to match the
order of the MCFM predictions. The gluon PDF g(x) was parameterised as a function of Bjorken-x as:

xg(x) = AxB(1 � x)C(1 + Ex2) eFx, (8)

which, compared to the standard parameterisation given in Eq. (27) of Ref. [97], removes the negative
A0 term at low x and adds more flexibility at medium and high x through the additional terms with the
parameters E and F. The standard parameterisations were used for the quark PDFs, giving a total of 14

42

Datasets fitted HERA I+II HERA I+II + tt̄
Partial �2 / Npoint
- HERA I+II 1219 / 1056 1219 / 1056
- tt̄ (|⌘`|, |yeµ|, Ee + Eµ) - 27 / 25
Total �2 / Ndof 1219 / 1042 1247 / 1067

Table 12: Results of the PDF fit to HERA I+II data (left column), and to HERA I+II data plus the normalised
di↵erential tt̄ cross-sections as a function of |⌘` |, |yeµ| and Ee + Eµ (right column). The partial �2 and number of
data points for the datasets used in each fit are given, together with the overall �2 and total number of degrees of
freedom for each fit.
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Figure 15: (a) Ratio of the gluon PDF determined from the fit using HERA I+II data plus the normalised di↵erential
cross-section distributions as a function of |⌘` |, |yeµ| and Ee + Eµ in tt̄ events, to the gluon PDF determined from the
fit using HERA I+II data alone, as a function of Bjorken-x. The uncertainty bands are shown on the two PDFs as
the blue and red shading. (b) Ratio of the relative uncertainty in the gluon PDF determined from the fit to HERA
I+II plus tt̄ data to that from HERA data alone. The PDFs are shown evolved to the scale Q2 = mt

2 in both cases.

free PDF parameters in the vector p, after imposing momentum and valance sum rules, and the constraint
that the ū and d̄ contributions are equal at low x. Other parameters in the PDF fit were set as described in
Ref. [113].

The minimised �2 values from the fits without and with the tt̄ data are shown in Table 12, which gives the
partial �2 for each dataset included in the fit (i.e. the contribution of that dataset to the total �2) and the
total �2 for each fit. The partial �2 values indicate that the tt̄ data are well-described by the PDF derived
from the combined fit, and that the description of the HERA I+II data is not degraded by the inclusion of
the tt̄ data, i.e. there is no tension between the two datasets. The ratios of the fitted gluon PDF central
values with and without the tt̄ data included are shown in Figure 15(a), together with the corresponding
uncertainties. The ratio of relative uncertainties in the PDFs with and without the tt̄ data are shown in
Figure 15(b). The inclusion of the tt̄ data reduces the uncertainty by typically 10–25 % over most of the
relevant x range.

43

2−10 1−10  x  

1

1.2

1.4

re
f

)2
)/x

g(
x,

Q
2

 x
g(

x,
Q

2
t = m2Q

HERA I+II
tHERA I+II, t

CT14nlo
CT14nlo profiled

ATLAS

(a)

2−10 1−10  x  

1

1.2

1.4

re
f

)2
)/x

g(
x,

Q
2

 x
g(

x,
Q

2
t = m2Q

HERA I+II
tHERA I+II, t

NNPDF3.0
NNPDF3.0 profiled

ATLAS

(b)

Figure 16: Ratios of various gluon PDFs and their uncertainty bands to the gluon PDF determined from HERA
I+II data alone (red shading). The blue shaded band shows the gluon PDF from the fit to HERA I+II data plus the
normalised di↵erential cross-section distributions as a function of |⌘` |, |yeµ| and Ee + Eµ in tt̄ events. The green band
shows the gluon PDF from the CT14 [103] PDF set in (a) and the NNPDF 3.0 [105] PDF set in (b). The orange
bands show the result of profiling these PDFs to the tt̄ normalised di↵erential cross-section data.

The gluon PDF obtained from this procedure is compared to the gluon PDFs from the CT14 [103] and
NNPDF 3.0 [105] global PDF sets in Figure 16. These PDF sets, shown by the green bands, both have a
larger high-x gluon than preferred by the HERA I+II data, with or without the addition of the tt̄ data from
this analysis. The impact of the tt̄ data on the global PDF sets was investigated using a profiling procedure
[113, 118, 119], extending the �2 definition of Eq. (7) to incorporate a vector bth of nuisance parameters
bk,th expressing the dependence of the theoretical prediction &th

i on the uncertainties for a particular PDF
set. In this formulation, the �2 definition becomes:

�2(bexp,bth) =
X

i

⇣
&exp

i +
P

j �
exp
i j b j,exp � &th

i �
P

k �
th
ikbk,th

⌘2

d2
ii

+
X

j

b j,exp
2 +
X

k

bk,th
2 + L , (9)

where bk,th = ±1 corresponds to the ±1 standard deviation change of the PDF values according to the
kth eigenvector of the PDF error set. The values and uncertainties of the nuisance parameters bk,th after
minimisation of the �2 of Eq. (9) give the profiled PDF with modified central values and uncertainties
according to the e↵ect of the tt̄ di↵erential cross-section distributions. These profiled PDFs are shown
as the orange bands in Figure 16. Both the CT14 and NNPDF 3.0 gluon PDFs are shifted downwards at
high x (corresponding to a softer gluon distribution). The e↵ect is larger in the case of CT14, which has
larger uncertainties in the gluon PDF in this region.

8 Extraction of the top quark mass

The normalised lepton p`T and dilepton peµ
T , meµ, pe

T + pµT and Ee + Eµ di↵erential distributions are sens-
itive to the value of the top quark mass, as already shown in Figure 5(a) for p`T and Figure 5(b) for peµ

T .
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extract 
gluon PDF 
parameters 

NLO 
predictions 
(MCFM 
+ApplGRID)  
with free 
gluon PDF 
parameters

• HERA DIS


• LHC measurements 
in NNPDF /CT14to

Measurements

𝜒2/Ndof= 1219/1042
𝜒2/Ndof= 1247/1067

Ratio to HERA only fit

Adding tt info to HERA reduces 
uncertainty  by 10 to 25%

Including tt info in NNPDF/CT14 
lowers gluon pdf  at high x

Ratio to HERA 
only fit

Eur. Phys. J. C 77 (2017) 804

with & w/o ATLAS 
1/σtt dσtt/dX with X= 
|𝜂ℓ|,ye𝜇, Ee+ E𝜇 

• 𝜒2 Fit 
(xFitter)

Measuring SM variables: gluon PDF @8 TeV2
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Looking at the future: top quark mass from d𝜎tt/dXdY 

N+M bins

mtop,1, mtop,2, mtop,3 …

N 
bins

M 
bins

• 𝜎tt depends on top quark mass (mtop) →Measure mtop using d𝜎tt/dmttdpT,top 

NxM 
bins 

d2𝜎tt/dmttdpT,top

X

Y

• Pros:Add novel information 
from correlation bins +use 
most precise predictions 

• Cons(?):..requires more events, 
larger sensitivity to modelling? 

𝜒2

mtop

• Minimise 𝜒2of 
d2𝜎tt/dmttdpT,top vs 
NNLO mtop-
dependent 
prediction

Measure d𝜎tt/dXdY in l+jets    
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Prospects for early top anti-top 
resonance  searches  in  ATLAS
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Motivation
Top anti-top resonances searches have gained increased interest in recent 
years with the anticipation of the upcoming physics programs of the Large 
Hadron Collider (LHC) experiments. The top quark A by far the heaviest 
known particle A is expected to play a crucial role in many Beyond the 
Standard Model (BSM) physics scenarios.

Feynman diagram of a top 
anti-top production in the 
lepton+jets final state: one of 
the W  bosons decays 
l e p t o n i c a l l y , t h e o t h e r 
hadronically.

Boosted tt topologies
b quark Light quarks

b 
quark

lepton

neutrino

PT

Conclusion

The mono-jet approach

by Bertrand Chapleau 
on behalf of the ATLAS Collaboration.
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In the present study, prospects for early tt 
resonance searches in ATLAS are evaluated for 
early physics runs. Results are reported from a 
full Monte-Carlo study using three different 
(m

tt
) reconstruction schemes designed to 

enhance the sensitivity in the TeV regime.
   
Two types of benchmark models were 
considered: narrow resonances (sequential Z' 
boson) and broad resonances (KK gluons). In 
all cases, only the lepton+jets final state, where 
the lepton might be an electron or a muon, was 
investigated.

One of the most challenging aspects of heavy tt resonance searches lies in 
the reconstruction and identification of boosted top quark decays. A top 
quark being produced with very high transverse momentum is a source of a 
new experimental phenomenology: its decay products become very 
collimated and leave an unusual signature in the detector.  
Different boost regimes will give rise to different event topologies. The mass 
of the heaviest jet in the event can be used to classify such topologies.

Probability that partons from a 
hadronic top decay are found 
within a �R distance of 0.8.

Reconstructed invariant mass of 
the leading jet in  pp � X � tt  � 
lepton+jets events.  

� Driving motivations:Driving motivations:
� High signal efficiency over a wide range of m

tt
� Easy and fast commissioning
� Minimize systematic biases

� Highlights:Highlights:
� Relies on a small number of observables
� No flavour tagging (b-jets)
� No attempt to reconstruct top quarks 

individually

� Jet definition: Jet definition: ATLAS Cone algorithm, R=0.4, 
calorimeter towers, jet E

T
 > 40 GeV

� Events are classified  according      
to the jet mass and the number     
of jets in the event:

� 3 jets, m
jet 

> 65 GeV
� m

tt
 = m

jjjlv

� 3 jets, m
jet

 < 65 GeV
� m

tt
 = m

jjjlv
� 4 jets

� m
tt
 = m

jjjjlv
� >= 5 jets

� m
tt
 = m

jjjjlv 
(4 highest E

T
 jets)

ATLAS sensitivity projection (95 % 
confidence level signal cross-section limit)  
for a narrow resonance obtained from the 
minimal reconstruction approach. 

� Driving motivations:Driving motivations:
� Sensitive to the transition region
� Better control of the reducible background

� Highlights:Highlights:
� Full reconstruction of top and anti-top.
� Makes use of flavour tagging (b-jets)

� Jet definition: Jet definition: Anti-k
T
 algorithm, R=0.4, 

calorimeter towers, jet E
T
 > 20 GeV

� Events are classifed according to the     
highest invariant jet mass.

� m
jet

 < 65 GeV
� 4 jets required
� 2 b-tagged jets
� m

Z'
 = m

bjjblv
 " m

bjj
 " m

blv
 + 2m

t
PDG

� 65 GeV < m
jet

 < 130 GeV
� 3 jets required
� 1 b-tagged jets
� m

Z'
 = m

jjblv
 " m

jj
 " m

blv
 + 2m

t
PDG

� m
jet

 > 130 GeV
� 2 jets required
� 1 b-tagged jets
� m

Z'
 = m

jblv
 " m

j
 " m

blv
 + 2m

t
PDG

ATLAS sensitivity projection (95 % 
confidence level signal cross-section 
limit) for a narrow resonance obtained 
from the full reconstruction approach. Reconstructed m=2 TeV Z' 

mass distribution 
Reconstructed m=1 TeV Z' 
mass distribution 

� Driving motivations:Driving motivations:
� Favor the high end of the m

tt
 spectrum 

(boosted tops) 
� Good mass resolution
� Strong handle on background.

� Highlights:Highlights:
� Relies solely on the mono-jet topology A chose a 

jet definition that enhances this topology.
� No flavour tagging (b-jets)
� Makes use of jet substructure.

� Jet definition:Jet definition: Anti-k
T
 algorithm, R=1.0, 

3D locally calibrated topological 
clusters, jet E

T
 > 200 GeV.

� Semi-leptonic top decay
� Embedded lepton A traditional isolation 

requirement inefficient. 
� Need to disentangle from soft leptons 

(especially muons) coming from B- and 
D-hadrons.

� Cut on observables probing the 
presence of a hard lepton inside the jet 
coming from the W boson decay. 

� Hadronic top decayHadronic top decay
� Decay products are fully merged � top 

monojet (single reconstructed fat jet)
� Need to disentangle from QCD high-p

T
 

jets. 
� Run the k

T
 algorithm on the jet 

constituents to extract information 
about the jet substructure.

pT
lepton

pT
cone�	R�15 GeV

pT
lepton �

1�mb
2�mvisible

2 log�plepton� j�	Rlepton, j�

Reconstructed jet mass: 
sum of massless 
constituents.

Reconstructed W candidate 
mass: invariant mass of the 
subjet pair (out of 3 subjets) 
with lowest mass.

First k
T
 splitting scale.

ATLAS sensitivity projection (9 5 % 
confidence level signal cross-section limit) 
for a narrow resonance obtained from the 
mono-jet reconstruction approach. 

ATLAS sensitivity projection (9 5 % 
confidence level signal cross-section limit) 
for a broad resonance obtained from the 
mono-jet reconstruction approach. 

The SM tt  mass spectrum and all relevant background 
processes reconstructed with the minimal reconstruction 
approach in the 3 jets, m

jet 
> 65 GeV channel (left) and the 4 

jets channel (right).

� m
Z'
 = m

jjlv

Three complementary algorithms for the reconstruction of the tt  invariant mass spectrum 
have been developed and their performance evaluated on fully simulated events. Two 
adaptations of classical top reconstruction algorithms allow for high signal efficiency even in 
the TeV regime (~ 18% and 5% in the m=1-2 TeV range for the minimal and full 
reconstruction approaches respectively) . The mono-jet approach has been shown to be 
efficient down to m

tt
 = 1 TeV, with a signal efficiency of ~ 9% (15%) at m=1 TeV (2 TeV).

If no deviation from the Standard Model is observed, a 95 % C.L. limit of � × BR(X � tt) = 3 
pb is expected for a resonance mass of 1 TeV after 200 pb�1 at center-of-mass energy of 10 
TeV. Approximately the same sensitivity for m=1 TeV  is expected for 1 fb-1 of data at 7 TeV.

Reference: ATLAS Collaboration, Prospects for early tt resonance searches in ATLAS, 
ATL-PHYS-PUB-2010-008. 
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Extreme test of SM:double differential cross sections
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Extreme test of SM:  Double differential cross sections 

Phys. Rev. D 97, 112003 (2018) Absolute  @ particle  level

theo uncertainties available only for POWHEG+PY & SHERPA
Additional jets = jet multiplicities up to 5 additional jets with pT> 30 GeV 

54

Table 5: Comparison between the absolute measurements involving multiplicities and kine-
matic properties of jets and the predictions of POWHEG combined with PYTHIA8 (P8) or HER-
WIG++ (H++) and the multiparton simulations of MG5 aMC@NLO FxFx and SHERPA. The com-
patibilities with the POWHEG+PYTHIA8 and the SHERPA predictions are also calculated includ-
ing their theoretical uncertainties (with unc.), while those are not taken into account for the
other comparisons. The results of the c2 tests are listed, together with the numbers of degrees
of freedom (dof) and the corresponding p-values. The rows labeled as “Additional jets” refer to
the measurement of the cross section as a function of jet multiplicities for up to five additional
jets with pT > 30 GeV (Fig. 38 upper row).

Distribution c2/dof p-value c2/dof p-value c2/dof p-value
POWHEG+P8 with unc. SHERPA with unc. POWHEG+P8

Additional jets 1.52/6 0.958 27.3/6 <0.01 10.1/6 0.121
Additional jets vs. pT(th) 35.1/44 0.830 64.6/44 0.023 71.6/44 <0.01
Additional jets vs. M(tt) 27.5/36 0.845 68.9/36 <0.01 38.8/36 0.345
Additional jets vs. pT(tt) 64.6/29 <0.01 181/29 <0.01 175/29 <0.01
pT(jet) 70.2/47 0.016 374/47 <0.01 133/47 <0.01
|h(jet)| 120/70 <0.01 174/70 <0.01 171/70 <0.01
DRjt 60.9/66 0.655 215/66 <0.01 168/66 <0.01
DRt 64.0/62 0.405 229/62 <0.01 121/62 <0.01

SHERPA POWHEG+H++ MG5 aMC@NLO+P8 FxFx
Additional jets 63.0/6 <0.01 34.1/6 <0.01 11.1/6 0.086
Additional jets vs. pT(th) 88.5/44 <0.01 230/44 <0.01 53.4/44 0.156
Additional jets vs. M(tt) 112/36 <0.01 300/36 <0.01 55.1/36 0.022
Additional jets vs. pT(tt) 285/29 <0.01 223/29 <0.01 122/29 <0.01
pT(jet) 768/47 <0.01 624/47 <0.01 111/47 <0.01
|h(jet)| 214/70 <0.01 259/70 <0.01 133/70 <0.01
DRjt 334/66 <0.01 959/66 <0.01 67.0/66 0.441
DRt 316/62 <0.01 483/62 <0.01 78.9/62 0.073

• FxFx has up to 2 
partons @NLO: it is 
more consistent 
with 2d diffxsec 
even without theory 
uncertainties 

• pT,tt is only 
observable with 
global inconsistency

kine vs jet multiplicities and final state objects 
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Extreme test of SM:  Double differential cross sections 
Phys. Rev. D 97, 112003 (2018) Normalised  @ particle  level

theo uncertainties available only for POWHEG+PY & SHERPA

Additional jets = jet multiplicities up to 5 additional jets with pT> 30 GeV 

55

Table 6: Comparison between the normalized measurements involving multiplicities and kine-
matic properties of jets and the predictions of POWHEG combined with PYTHIA8 (P8) or HER-
WIG++ (H++) and the multiparton simulations of MG5 aMC@NLO FxFx and SHERPA. The com-
patibilities with the POWHEG+PYTHIA8 and the SHERPA predictions are also calculated includ-
ing their theoretical uncertainties (with unc.), while those are not taken into account for the
other comparisons. The results of the c2 tests are listed, together with the numbers of degrees
of freedom (dof) and the corresponding p-values. The rows labeled as “Additional jets” refer to
the measurement of the cross section as a function of jet multiplicities for up to five additional
jets with pT > 30 GeV (Fig. 38 upper row).

Distribution c2/dof p-value c2/dof p-value c2/dof p-value
POWHEG+P8 with unc. SHERPA with unc. POWHEG+P8

Additional jets 2.20/5 0.820 26.4/5 <0.01 12.5/5 0.029
Additional jets vs. pT(th) 28.6/43 0.955 35.8/43 0.773 69.7/43 <0.01
Additional jets vs. M(tt) 24.5/35 0.908 46.1/35 0.100 38.9/35 0.298
Additional jets vs. pT(tt) 73.3/28 <0.01 122/28 <0.01 164/28 <0.01
pT(jet) 75.3/46 <0.01 184/46 <0.01 134/46 <0.01
|h(jet)| 141/69 <0.01 162/69 <0.01 160/69 <0.01
DRjt 69.9/65 0.317 157/65 <0.01 173/65 <0.01
DRt 82.2/61 0.036 163/61 <0.01 126/61 <0.01

SHERPA POWHEG+H++ MG5 aMC@NLO+P8 FxFx
Additional jets 62.4/5 <0.01 35.4/5 <0.01 9.31/5 0.097
Additional jets vs. pT(th) 79.8/43 <0.01 194/43 <0.01 51.4/43 0.178
Additional jets vs. M(tt) 86.3/35 <0.01 287/35 <0.01 48.2/35 0.068
Additional jets vs. pT(tt) 282/28 <0.01 232/28 <0.01 112/28 <0.01
pT(jet) 692/46 <0.01 623/46 <0.01 112/46 <0.01
|h(jet)| 213/69 <0.01 255/69 <0.01 121/69 <0.01
DRjt 301/65 <0.01 976/65 <0.01 65.2/65 0.469
DRt 325/61 <0.01 506/61 <0.01 74.7/61 0.112

• FxFx has up to 2 
partons @NLO: it is 
more consistent 
with 2d diffxsec 
even without theory 
uncertainties 

• pT,tt is only 
observable with 
global inconsistency

kine vs jet multiplicities and final state objects 
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Table 1: Comparison between the measured absolute differential cross sections at the parton
level and the predictions of POWHEG combined with PYTHIA8 (P8) or HERWIG++ (H++), the
multiparton simulation MG5 aMC@NLO FxFx, and the NNLO QCD+NLO EW calculations. The
compatibility with the POWHEG+PYTHIA8 prediction is also calculated including its theoretical
uncertainties (with unc.), while those are not taken into account for the other comparisons. The
results of the c2 tests are listed, together with the numbers of degrees of freedom (dof) and the
corresponding p-values.

Distribution c2/dof p-value c2/dof p-value c2/dof p-value
POWHEG+P8 with unc. POWHEG+P8 NNLO QCD+NLO EW

pT(thigh) 16.4/12 0.173 27.4/12 <0.01
pT(tlow) 22.4/12 0.033 42.7/12 <0.01
pT(th) 16.4/12 0.175 24.0/12 0.020 5.13/12 0.953
|y(th)| 1.28/11 1.000 1.41/11 1.000 2.27/11 0.997
pT(t`) 22.2/12 0.035 38.3/12 <0.01 9.56/12 0.654
|y(t`)| 2.04/11 0.998 2.42/11 0.996 8.14/11 0.700
M(tt) 7.67/10 0.661 11.6/10 0.314 24.7/10 <0.01
pT(tt) 5.38/8 0.717 46.5/8 <0.01
|y(tt)| 3.98/10 0.948 5.66/10 0.843 9.26/10 0.507
|y(th)| vs. pT(th) 23.6/44 0.995 41.6/44 0.577
M(tt) vs. |y(tt)| 20.6/35 0.975 35.0/35 0.469
pT(th) vs. M(tt) 38.9/32 0.188 59.3/32 <0.01

POWHEG+H++ MG5 aMC@NLO+P8 FxFx —
pT(thigh) 6.60/12 0.883 16.3/12 0.180
pT(tlow) 28.5/12 <0.01 15.3/12 0.225
pT(th) 5.09/12 0.955 11.0/12 0.530
|y(th)| 2.39/11 0.997 2.21/11 0.998
pT(t`) 6.55/12 0.886 17.4/12 0.136
|y(t`)| 2.54/11 0.995 3.99/11 0.970
M(tt) 4.16/10 0.940 12.1/10 0.275
pT(tt) 55.0/8 <0.01 26.8/8 <0.01
|y(tt)| 11.9/10 0.292 8.92/10 0.540
|y(th)| vs. pT(th) 57.9/44 0.077 40.2/44 0.634
M(tt) vs. |y(tt)| 40.8/35 0.229 58.7/35 <0.01
pT(th) vs. M(tt) 93.0/32 <0.01 166/32 <0.01

Extreme test of SM:  Double differential cross section @13 TeV

theory uncertainties  
available only for 
POWHEG+PY8

Phys. Rev. D 97, 112003 (2018)

Absolute   
@ parton  

 level

• POWHEG +PY8 
inconsistency is 
reabsorbed if 
theory 
uncertainties are 
included 
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Table 2: Comparison between the measured normalized differential cross sections at the parton
level and the predictions of POWHEG combined with PYTHIA8 (P8) or HERWIG++ (H++), the
multiparton simulation MG5 aMC@NLO FxFx, and the NNLO QCD+NLO EW calculations. The
compatibility with the POWHEG+PYTHIA8 prediction is also calculated including its theoretical
uncertainties (with unc.), while those are not taken into account for the other comparisons. The
results of the c2 tests are listed, together with the numbers of degrees of freedom (dof) and the
corresponding p-values.

Distribution c2/dof p-value c2/dof p-value c2/dof p-value
POWHEG+P8 with unc. POWHEG+P8 NNLO QCD+NLO EW

pT(thigh) 18.4/11 0.073 24.4/11 0.011
pT(tlow) 16.6/11 0.120 40.0/11 <0.01
pT(th) 16.1/11 0.138 22.9/11 0.018 4.99/11 0.932
|y(th)| 1.25/10 1.000 1.33/10 0.999 2.23/10 0.994
pT(t`) 23.6/11 0.014 33.0/11 <0.01 8.67/11 0.652
|y(t`)| 2.03/10 0.996 2.29/10 0.994 8.18/10 0.611
M(tt) 7.78/9 0.556 11.3/9 0.259 24.4/9 <0.01
pT(tt) 5.52/7 0.597 40.9/7 <0.01
|y(tt)| 3.89/9 0.919 5.36/9 0.802 9.29/9 0.411
|y(th)| vs. pT(th) 22.7/43 0.995 38.8/43 0.654
M(tt) vs. |y(tt)| 20.2/34 0.970 33.2/34 0.507
pT(th) vs. M(tt) 34.4/31 0.309 57.4/31 <0.01

POWHEG+H++ MG5 aMC@NLO+P8 FxFx —
pT(thigh) 4.10/11 0.967 13.2/11 0.283
pT(tlow) 17.4/11 0.096 11.9/11 0.370
pT(th) 3.61/11 0.980 9.95/11 0.535
|y(th)| 1.63/10 0.998 1.11/10 1.000
pT(t`) 8.36/11 0.680 16.4/11 0.128
|y(t`)| 1.57/10 0.999 2.48/10 0.991
M(tt) 3.57/9 0.937 7.61/9 0.574
pT(tt) 43.4/7 <0.01 20.5/7 <0.01
|y(tt)| 5.94/9 0.746 4.65/9 0.864
|y(th)| vs. pT(th) 32.6/43 0.877 27.8/43 0.965
M(tt) vs. |y(tt)| 27.2/34 0.788 40.2/34 0.214
pT(th) vs. M(tt) 67.9/31 <0.01 77.9/31 <0.01

consistent  
with absolute

Phys. Rev. D 97, 112003 (2018)

Normalised   
@ parton  

 level

• POWHEG +PY8 
inconsistency is 
reabsorbed if 
theory 
uncertainties are 
included 

theory uncertainties  
available only for 
POWHEG+PY8
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Table 3: Comparison between the measured absolute differential cross sections at the particle
level and the predictions of POWHEG combined with PYTHIA8 (P8) or HERWIG++ (H++) and
the multiparton simulations of MG5 aMC@NLO FxFx and SHERPA. The compatibilities with the
POWHEG+PYTHIA8 and the SHERPA predictions are also calculated including their theoretical
uncertainties (with unc.), while those are not taken into account for the other comparisons. The
results of the c2 tests are listed, together with the numbers of degrees of freedom (dof) and the
corresponding p-values.

Distribution c2/dof p-value c2/dof p-value c2/dof p-value
POWHEG+P8 with unc. SHERPA with unc. POWHEG+P8

pT(th) 15.9/12 0.197 7.21/12 0.844 29.5/12 <0.01
|y(th)| 1.96/11 0.999 1.48/11 1.000 2.23/11 0.997
pT(t`) 27.0/12 <0.01 22.3/12 0.034 80.2/12 <0.01
|y(t`)| 4.55/11 0.951 5.07/11 0.928 4.99/11 0.932
M(tt) 5.83/10 0.829 2.40/10 0.992 9.07/10 0.525
pT(tt) 4.96/8 0.761 28.9/8 <0.01 41.2/8 <0.01
|y(tt)| 5.93/10 0.821 6.63/10 0.760 8.61/10 0.570
|y(th)| vs. pT(th) 35.7/44 0.810 29.6/44 0.953 64.1/44 0.025
M(tt) vs. |y(tt)| 25.9/35 0.867 24.2/35 0.914 56.2/35 0.013
pT(th) vs. M(tt) 47.4/32 0.039 57.2/32 <0.01 73.2/32 <0.01

SHERPA POWHEG+H++ MG5 aMC@NLO+P8 FxFx
pT(th) 13.5/12 0.335 32.1/12 <0.01 17.4/12 0.137
|y(th)| 2.32/11 0.997 4.89/11 0.936 3.16/11 0.988
pT(t`) 39.4/12 <0.01 21.8/12 0.040 47.7/12 <0.01
|y(t`)| 5.54/11 0.902 4.04/11 0.969 7.22/11 0.781
M(tt) 2.86/10 0.985 52.8/10 <0.01 5.45/10 0.859
pT(tt) 68.7/8 <0.01 46.8/8 <0.01 21.3/8 <0.01
|y(tt)| 12.1/10 0.276 18.6/10 0.046 8.13/10 0.616
|y(th)| vs. pT(th) 48.3/44 0.305 116/44 <0.01 44.9/44 0.434
M(tt) vs. |y(tt)| 41.5/35 0.208 219/35 <0.01 55.7/35 0.014
pT(th) vs. M(tt) 66.5/32 <0.01 152/32 <0.01 48.9/32 0.028

consistent  
with absolute

Absolute 
@ particle  

 level

• POWHEG +PY8 
inconsistency is 
reabsorbed if 
theory 
uncertainties are 
included 

• FxFx is the most 
consistent already 
without theory 
uncertainties

theory uncertainties  available only for POWHEG+PY8 & SHERPA
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Table 4: Comparison between the measured normalized differential cross sections at the parti-
cle level and the predictions of POWHEG combined with PYTHIA8 (P8) or HERWIG++ (H++) and
the multiparton simulations of MG5 aMC@NLO FxFx and SHERPA. The compatibilities with the
POWHEG+PYTHIA8 and the SHERPA predictions are also calculated including their theoretical
uncertainties (with unc.), while those are not taken into account for the other comparisons. The
results of the c2 tests are listed, together with the numbers of degrees of freedom (dof) and the
corresponding p-values.

Distribution c2/dof p-value c2/dof p-value c2/dof p-value
POWHEG+P8 with unc. SHERPA with unc. POWHEG+P8

pT(th) 14.9/11 0.186 6.99/11 0.800 29.4/11 <0.01
|y(th)| 1.77/10 0.998 1.25/10 1.000 1.90/10 0.997
pT(t`) 25.3/11 <0.01 28.0/11 <0.01 74.0/11 <0.01
|y(t`)| 4.50/10 0.922 4.88/10 0.899 5.00/10 0.891
M(tt) 5.69/9 0.770 2.17/9 0.989 9.33/9 0.407
pT(tt) 5.36/7 0.616 12.5/7 0.086 34.8/7 <0.01
|y(tt)| 5.79/9 0.761 6.68/9 0.671 8.48/9 0.486
|y(th)| vs. pT(th) 27.6/43 0.967 32.7/43 0.872 53.8/43 0.126
M(tt) vs. |y(tt)| 26.5/34 0.817 22.7/34 0.931 54.0/34 0.016
pT(th) vs. M(tt) 42.5/31 0.082 39.2/31 0.149 64.8/31 <0.01

SHERPA POWHEG+H++ MG5 aMC@NLO+P8 FxFx
pT(th) 13.9/11 0.238 34.1/11 <0.01 15.2/11 0.173
|y(th)| 1.60/10 0.999 3.81/10 0.955 2.73/10 0.987
pT(t`) 37.3/11 <0.01 25.0/11 <0.01 40.5/11 <0.01
|y(t`)| 5.28/10 0.872 3.92/10 0.951 5.54/10 0.853
M(tt) 2.99/9 0.965 51.7/9 <0.01 4.98/9 0.836
pT(tt) 59.4/7 <0.01 43.8/7 <0.01 17.9/7 0.013
|y(tt)| 11.3/9 0.253 18.2/9 0.033 8.37/9 0.498
|y(th)| vs. pT(th) 47.7/43 0.287 108/43 <0.01 40.9/43 0.561
M(tt) vs. |y(tt)| 37.6/34 0.308 234/34 <0.01 55.5/34 0.011
pT(th) vs. M(tt) 63.2/31 <0.01 126/31 <0.01 43.0/31 0.074

consistent  
with absolute

Normalised 
@ particle  

 level

• POWHEG +PY8 
inconsistency is 
reabsorbed if 
theory 
uncertainties are 
included 

• FxFx is the most 
consistent already 
without theory 
uncertainties 

theory uncertainties  available only for POWHEG+PY8 & SHERPA
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12 19. Structure functions

Figure 19.4: Kinematic domains in x and Q2 probed by fixed-target and collider
experiments. Some of the final states accessible at the LHC are indicated in
the appropriate regions, where y is the rapidity. The incoming partons have
x1,2 = (M/14 TeV)e±y with Q = M where M is the mass of the state shown in
blue in the figure. For example, exclusive J/ψ and Υ production at high |y| at the
LHC may probe the gluon PDF down to x ∼ 10−5.

representation of the probability measure in the space of PDFs with the use of neural
networks. Fits are performed to a number of “replica” data sets obtained by allowing
individual data points to fluctuate randomly by amounts determined by the size of the
data uncertainties. This results in a set of replicas of unbiased PDF sets. In this case
the best prediction is the average obtained using all PDF replicas and the uncertainty is
the standard deviation over all replicas. It is now possible to convert the eigenvectors of
Hessian-based PDFs to Monte Carlo replicas [60] and vice versa [61]. PDFs are made

October 4, 2016 22:11

Parton distributions functions and top quark : the connection (II)

• maximum probed x at 13 
TeV  is ~0.25 given the bins 
of the rapidity and tt mass 
distributions ranges

In c.m. frame of pp system, the parton momentum components are written 

Hard Interactions of Quarks and Gluons: a Primer for LHC Physics 8

follows. Many of the remarks apply also to other processes, in particular those shown

in Figure 2, although of course the higher–order corrections and the initial–state parton

combinations are process dependent.

2.2. The Drell–Yan process

The Drell–Yan process is the production of a lepton pair (e+e− or µ+µ− in practice)
of large invariant mass M in hadron-hadron collisions by the mechanism of quark–

antiquark annihilation [1]. In the basic Drell–Yan mechanism, a quark and antiquark

annihilate to produce a virtual photon, qq̄ → γ∗ → l+l−. At high-energy colliders, such

as the Tevatron and LHC, there is of course sufficient centre–of–mass energy for the

production of on–shell W and Z bosons as well. The cross section for quark-antiquark

annihilation to a lepton pair via an intermediate massive photon is easily obtained from
the fundamental QED e+e− → µ+µ− cross section, with the addition of the appropriate

colour and charge factors.

σ̂(qq̄ → e+e−) =
4πα2

3ŝ

1

N
Q2

q , (6)

where Qq is the quark charge: Qu = +2/3, Qd = −1/3 etc. The overall colour factor of

1/N = 1/3 is due to the fact that only when the colour of the quark matches with the

colour of the antiquark can annihilation into a colour–singlet final state take place.

In general, the incoming quark and antiquark will have a spectrum of centre–

of–mass energies
√

ŝ, and so it is more appropriate to consider the differential mass
distribution:

dσ̂

dM2
=

σ̂0

N
Q2

qδ(ŝ − M2), σ̂0 =
4πα2

3M2
, (7)

where M is the mass of the lepton pair. In the centre–of–mass frame of the two hadrons,
the components of momenta of the incoming partons may be written as

pµ
1 =

√
s

2
(x1, 0, 0, x1)

pµ
2 =

√
s

2
(x2, 0, 0,−x2) . (8)

The square of the parton centre–of–mass energy ŝ is related to the corresponding

hadronic quantity by ŝ = x1x2s. Folding in the pdfs for the initial state quarks and

antiquarks in the colliding beams gives the hadronic cross section:

dσ

dM2
=

σ̂0

N

∫ 1

0
dx1dx2δ(x1x2s − M2)

×
[

∑

k

Q2
k (qk(x1, M

2)q̄k(x2, M
2) + [1 ↔ 2])

]

. (9)

From (8), the rapidity of the produced lepton pair is found to be y = 1/2 log(x1/x2),

and hence

x1 =
M√

s
ey , x2 =

M√
s

e−y. (10)
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From (8), the rapidity of the produced lepton pair is found to be y = 1/2 log(x1/x2),

and hence

x1 =
M√

s
ey , x2 =

M√
s

e−y. (10)

Using conservation of momentum & 
parsons in the leading order picture for ff → 
tt, the rapidity of the top quark pair is 

y(tt) =
1

2
ln(

E(tt) + pz(tt)

E(tt)� pz(tt)
) =

1

2
ln(

x1

x2
)

ŝ = x1x2s = M(tt)

x1 =
M(tt)p

s

e

y
x2 =

M(tt)p
s

e

�y

(assume massless partons)

q/gq/g
t

t-
-

-

REMINDER
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The Top pT saga, 
including the new chapter @13 TeV
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Overview of current results at LHC   

M. Aldaya 

Full Phase Space Fiducial Phase Space 

Top, tt 

Final state  
(leptons, b-jets) 
Global event  
(ET

miss, HT, …) 

tt+jets 

CMS 7 TeV, 8 TeV (lj, ll) 

Parton level Particle level 

ATLAS 7 TeV (lj) 

Boosted top ATLAS 8 TeV (lj)  

CMS 7 TeV, 8 TeV (lj, ll) 

ATLAS 7 TeV (lj)  

CMS 7 TeV, 8 TeV (lj, ll) 

CMS 7 TeV, 8 TeV (lj) 

  Difficult to compare ATLAS & CMS on equal footing for most measurements 

  Increasing variety of differential cross section results 

Objects 

★ ★ 

★ 

★ 
★ 

ATLAS 7 TeV (lj) 

•  More measurements in fiducial PS, exploiting particle-level object definition and pseudo-top 

CMS 8 TeV (ll) 

•  Pioneering results in boosted regime, first absolute differential cross sections appearing  

ATLAS 8 TeV (lj) ★ 

ll = dilepton channel 

lj = l+jets channel 

★ = new since Summer’14 

TOPLHCWG, 12.01.15 

A = absolute diff xsec 

N = normalized diff xsec 

A 
N N 

N 

N 

N 

A A 

A 

N 

Single top 
(t-channel) ATLAS 7 TeV 

CMS 8 TeV 
N 

N 
A 
★ 

★ 

t

νν

l+

W 
+

b

tW 
–

b

q

q'

mtt 
 ytt (rapidity) 

 pT,tt

sensitive to resonant&  
non resonant new physhigher order  

corrections (radiation)

tt system

individual  
top

 ηb-jet  pT,b-jet,

 ηlep pT,lep

 pT,lep-lep 
mlep-lep

pT,jet ,N,jet 
Qjet(veto)

ytop  
pT,top, 

5-10% 
3-6%

15-30% 
20-40%

pT,top-jet 

4-6%

4-6% 

15-40% 

10-20% (single top)
3-6%

4-6%

What we measured at √s=7,8 TeV: X in dσ(tt/t)/dX
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parton level
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• ATLAS & CMS 
measurements are 
generally 
consistent with  
each other   
• CMS shows slight 

slope 

Qualitative 
statement,  
no statistical test 
performed yet

ATLAS vs CMS vs NNLO Theory :1/σtt dσtt/dpT,top @ √s = 8 TeV

parton level
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The Top pT saga:  NLO+PS @13 TeV

Summary di↵erential cross sections

Measurements at 7, 8, and 13TeV in various tt̄ decay channels.

pT(t) observed softer, but compatible with standard model within uncertainties in
measurement and theory.

Persistent in boosted regime pT(t) > 400GeV.
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8.2 Parton-level phase-space di↵erential cross-sections

The unfolded parton-level phase-space di↵erential cross-sections are shown in Figs.12–16 for the kine-
matical variables describing the top quark, leading top quark, second-leading top quark and the tt̄ sys-
tem.

To measure the average top-quark pT distribution that can be compared with NNLO+NNLL calculations
[1–3], the data are unfolded by randomly selecting one of the two top-quark candidates at the detector
level for each event. The normalized average top-quark pT and rapidity di↵erential cross-sections are
shown in Fig. 12(a) and Fig. 12(b), respectively.
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Figure 12: The normalized parton-level di↵erential cross-sections as a function of (a) the transverse momentum and
(b) the rapidity of the top quark. The orange bands indicate the total uncertainty in the data in each bin. The vertical
bars indicate the statistical uncertainties in the theoretical models. The Powheg+Pythia8 event generator is used as
the nominal prediction to correct for detector e↵ects, parton showering and hadronization. Data points are placed
at the center of each bin. The unfolding has required the leading top-quark pT > 500 GeV and the second-leading
top-quark pT > 350 GeV.
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6. Results 13

MC-based predictions in the lowest bin is observed. For the NNLO+a3
EW and NNLO+NNLL’

predictions, this excess is larger. The kinematic properties of the leptons, b jets, dileptons and
b-jet pairs (pl

T, pb
T, pll̄

T, pbb̄
T , mll̄, and mbb̄) exhibit similar disagreements as the corresponding

top-quark-based observables pt
T and ptt̄

T to which they are correlated. An increasing deficit
of data with respect to the POWHEGV2 + PYTHIA8 and POWHEGV2 + HERWIG++ predictions
is observed for Njets � 4. Conversely, there is good agreement between MG5 aMC@NLO +
PYTHIA8 and data for Njets > 3 but disagreement for Njets = 2, 3.
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Figure 3: The differential tt̄ production cross sections at parton level in full phase space as a
function of pt

T are shown. The left and right columns correspond to absolute and normalised
measurements, respectively. The upper row corresponds to measurements at parton level in
the full phase space and the lower row to particle level in a fiducial phase space. The lower
panel in each plot shows the ratio of the theoretical prediction to the data.
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Figure 3: The differential tt̄ production cross sections at parton level in full phase space as a
function of pt

T are shown. The left and right columns correspond to absolute and normalised
measurements, respectively. The upper row corresponds to measurements at parton level in
the full phase space and the lower row to particle level in a fiducial phase space. The lower
panel in each plot shows the ratio of the theoretical prediction to the data.

Ndof = 5 

 Ndof =5 o 6 normalised absolute
NLO+PS 𝜒2 p-val 𝜒2 p-val
PW+PY8 63.5 <10-3 51 <10-3

PW+H++ 10 0.087 8 0.239
MG5+PY8 28 <10-3 18 0.007

Ndof = 6 

no theory  
uncertainties 

 included 
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Dilepton differential

June 2018 Javier Fdez. 12

CMS-TOP-17-014

• PowhegV2+Pythia8
(NLO) chosen as 
default generator 
setup in ATLAS and 
CMS for Run2: 

� Reasonable 
agreement except 
in top quark 
“direct” 
observables pT, 
pT

tt, mtt

� Need for full 
NNLO MC + PS 
predictions

• Similar results in em
ATLAS:  Eur. Phys. J. 
C77 (2017) 299

pTtop

pTtop

• 13TeV em 35.9fb-1 (2016) 

• Parton level in the full 
phase space

• Particle level, within a 
phase space close to 
experimental acceptance
(fiducial phase-space)

pTtop

mind pT range: up to 500 GeV
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mailto:fracesco.spano@cern.ch?subject=


francesco.spano@cern.ch Top Physics @ LHC: selected highlights LPNHE Seminar, Sorbonne Université, 24th June 2019 39

1/σtt dσtt/dX

 [1
/G

eV
]

t,h
ad

T
 / 

dp
tt

σ
 d

 
⋅ tt

σ
1/

5−10

4−10

3−10

2−10

1−10

1 Data
t=mdampPWG+PY6 h

 radHit=2mdampPWG+PY6 h
 radLot=mdampPWG+PY6 h

t=1.5 mdampPWG+PY8 h
 t=1.5 mdampPWG+H7 h

t=mdampPWG+H++ h
aMC@NLO+H++
aMC@NLO+PY8
Stat. unc.
Stat.+Syst. unc.

ATLAS

Fiducial phase-space

-1 = 13 TeV, 3.2 fbs
Resolved

  
Da

ta
Pr

ed
ict

io
n

0.8
1

1.2
1.4

  
Da

ta
Pr

ed
ict

io
n

0.8
1

1.2
1.4

 [GeV]t,had
T

p
0 200 400 600 800 1000

  
Da

ta
Pr

ed
ict

io
n

0.8
1

1.2
1.4

(a)

|]t
| [

1/
Un

it 
|y

t,h
ad

 / 
d|

y
tt

σ
 d

 
⋅ tt

σ
1/

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2 Data

t=mdampPWG+PY6 h
 radHit=2mdampPWG+PY6 h

 radLot=mdampPWG+PY6 h
t=1.5 mdampPWG+PY8 h

 t=1.5 mdampPWG+H7 h
t=mdampPWG+H++ h

aMC@NLO+H++
aMC@NLO+PY8
Stat. unc.
Stat.+Syst. unc.

ATLAS

Fiducial phase-space

-1 = 13 TeV, 3.2 fbs
Resolved

  
Da

ta
Pr

ed
ict

io
n

0.95
1

1.05

  
Da

ta
Pr

ed
ict

io
n

0.95

1

1.05

|t,had|y
0 0.5 1 1.5 2 2.5

  
Da

ta
Pr

ed
ict

io
n

0.95

1

1.05

(b)

 [1
/G

eV
]

t,h
ad

T
 / 

dp
tt

σ
 d

 
⋅ tt

σ
1/

5−10

4−10

3−10

2−10

1−10

1 Data
t=mdampPWG+PY6 h

 radHit=2mdampPWG+PY6 h
 radLot=mdampPWG+PY6 h

t=1.5 mdampPWG+PY8 h
 t=1.5 mdampPWG+H7 h

t=mdampPWG+H++ h
aMC@NLO+H++
aMC@NLO+PY8
Stat. unc.
Stat.+Syst. unc.

ATLAS

Fiducial phase-space

-1 = 13 TeV, 3.2 fbs
Boosted

  
Da

ta
Pr

ed
ict

io
n

1

2

  
Da

ta
Pr

ed
ict

io
n

1

2

 [GeV]t,had
T

p
400 600 800 1000 1200 1400

  
Da

ta
Pr

ed
ict

io
n

1

2

(c)

|]t
| [

1/
Un

it 
|y

t,h
ad

 / 
d|

y
tt

σ
 d

 
⋅ tt

σ
1/

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2 Data

t=mdampPWG+PY6 h
 radHit=2mdampPWG+PY6 h

 radLot=mdampPWG+PY6 h
t=1.5 mdampPWG+PY8 h

 t=1.5 mdampPWG+H7 h
t=mdampPWG+H++ h

aMC@NLO+H++
aMC@NLO+PY8
Stat. unc.
Stat.+Syst. unc.

ATLAS

Fiducial phase-space

-1 = 13 TeV, 3.2 fbs
Boosted

  
Da

ta
Pr

ed
ict

io
n

1

1.5

  
Da

ta
Pr

ed
ict

io
n

1

1.5

|t,had|y
0 0.5 1 1.5 2

  
Da

ta
Pr

ed
ict

io
n

1

1.5

(d)

Figure 17: Fiducial phase-space relative di↵erential cross-sections as a function of the (a) transverse momentum
(pt,had

T ) and (b) the absolute value of the rapidity (
���yt,had

���) of the hadronic top quark in the resolved topology, and
corresponding results in the boosted topology (c), (d). The yellow bands indicate the total uncertainty of the data
in each bin. The Powheg+Pythia6 generator with hdamp =mt and the CT10 PDF is used as the nominal prediction
to correct for detector e↵ects. The lower three panels show the ratio of the predictions to the data. The first
panel compares the three Powheg+Pythia6 samples with di↵erent settings for additional radiation, the second panel
compares the nominal Powheg+Pythia6 sample with the other Powheg samples and the third panel compares the
nominal Powheg+Pythia6 sample with the MadGraph5_aMC@NLO samples.
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+jets “resolved” 

Ndof = 14 

𝜒2=15.4 p=0.35 (-)

• Tension with most NLO+PS predictions: slope w.r.t measurement 

21.5<𝜒2<24.4  
0.03<p<0.09

except for 
POWHEG+HERWIG 

Different
generator
& hadronization 

@13TeVExtreme test of SM: the top pT “saga”
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Figure 17: Fiducial phase-space relative di↵erential cross-sections as a function of the (a) transverse momentum
(pt,had

T ) and (b) the absolute value of the rapidity (
���yt,had

���) of the hadronic top quark in the resolved topology, and
corresponding results in the boosted topology (c), (d). The yellow bands indicate the total uncertainty of the data
in each bin. The Powheg+Pythia6 generator with hdamp =mt and the CT10 PDF is used as the nominal prediction
to correct for detector e↵ects. The lower three panels show the ratio of the predictions to the data. The first
panel compares the three Powheg+Pythia6 samples with di↵erent settings for additional radiation, the second panel
compares the nominal Powheg+Pythia6 sample with the other Powheg samples and the third panel compares the
nominal Powheg+Pythia6 sample with the MadGraph5_aMC@NLO samples.
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+jets “boosted” 

Ndof = 7 
9.9<𝜒2<11.5   
0.12<p<0.20

• Tension with most NLO+PS predictions: slope w.r.t measurement. 
• Less tension than in “resolved”, larger statistical uncertainties

JHEP 11 (2017) 191

Different
generator
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In all-jets final state

Resolved

Selection: at least 6 jets, 2 b tagged.
Perform kinematic fit for tt̄ reconstruction (based on W and top
mass constrains)
Accept events with 150 < mfit

t < 200GeV, and fit probability
greater than 0.02.

Boosted

1 jet pT > 200GeV and 1 jet pT > 450GeV
each jet: softdrop mass > 50GeV, b tagged subjet, n-jettiness
requirements.
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Figure 7: Normalized particle-level fiducial phase-space di↵erential cross-sections as a function of (a) transverse
momentum of the leading top-quark jet, (b) transverse momentum of the second-leading top-quark jet, (c) absolute
value of the rapidity of the leading top-quark jet and (d) absolute value of the rapidity of the second-leading top-
quark jet. The gray bands indicate the total uncertainty in the data in each bin. The vertical bars indicate the
statistical uncertainties in the theoretical models. The Powheg+Pythia8 event generator is used as the nominal
prediction. Data points are placed at the center of each bin.
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7.7<𝜒2<9.7  
0.27<p<0.36

Particle level vs NLO+PS

Ndof = 7 

Particle level vs NLO+PS

@13TeVExtreme test of SM: the top pT “saga”

Reco level

Ndof = 7 

• Measurements agree with predictions.
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CMS-PAS-TOP-17-014
The Top pT saga: dilepton  NLO+PS @13 TeV

 Ndof =5 o 6 normalised absolute
NLO+PS 𝜒2 p-val 𝜒2 p-val
PW+PY8 128 <10-3 52 <10-3

PW+H++ 6 0.306 3 0.830
MG5+PY8 45 <10-3 17 0.008

no theory  
uncertainties 

 included 

6. Results 13

MC-based predictions in the lowest bin is observed. For the NNLO+a3
EW and NNLO+NNLL’

predictions, this excess is larger. The kinematic properties of the leptons, b jets, dileptons and
b-jet pairs (pl

T, pb
T, pll̄

T, pbb̄
T , mll̄, and mbb̄) exhibit similar disagreements as the corresponding

top-quark-based observables pt
T and ptt̄

T to which they are correlated. An increasing deficit
of data with respect to the POWHEGV2 + PYTHIA8 and POWHEGV2 + HERWIG++ predictions
is observed for Njets � 4. Conversely, there is good agreement between MG5 aMC@NLO +
PYTHIA8 and data for Njets > 3 but disagreement for Njets = 2, 3.
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Figure 3: The differential tt̄ production cross sections at parton level in full phase space as a
function of pt

T are shown. The left and right columns correspond to absolute and normalised
measurements, respectively. The upper row corresponds to measurements at parton level in
the full phase space and the lower row to particle level in a fiducial phase space. The lower
panel in each plot shows the ratio of the theoretical prediction to the data.
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Figure 3: The differential tt̄ production cross sections at parton level in full phase space as a
function of pt

T are shown. The left and right columns correspond to absolute and normalised
measurements, respectively. The upper row corresponds to measurements at parton level in
the full phase space and the lower row to particle level in a fiducial phase space. The lower
panel in each plot shows the ratio of the theoretical prediction to the data.
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Figure 17: Fiducial phase-space relative di↵erential cross-sections as a function of the (a) transverse momentum
(pt,had

T ) and (b) the absolute value of the rapidity (
���yt,had

���) of the hadronic top quark in the resolved topology, and
corresponding results in the boosted topology (c), (d). The yellow bands indicate the total uncertainty of the data
in each bin. The Powheg+Pythia6 generator with hdamp =mt and the CT10 PDF is used as the nominal prediction
to correct for detector e↵ects. The lower three panels show the ratio of the predictions to the data. The first
panel compares the three Powheg+Pythia6 samples with di↵erent settings for additional radiation, the second panel
compares the nominal Powheg+Pythia6 sample with the other Powheg samples and the third panel compares the
nominal Powheg+Pythia6 sample with the MadGraph5_aMC@NLO samples.
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Different
hadronization

Particle level vs NLO+PS

JHEP 11 (2017) 191

+jets “resolved” 

Ndof = 14 

𝜒2=15.4 p=0.35 (-)

• Tension with most NLO+PS predictions: slope w.r.t measurement 

21.5<𝜒2<24.4  
0.03<p<0.09

except for 
POWHEG+HERWIG 

Different
generator
& hadronization 

@13TeVExtreme test of SM: the top pT “saga”

mailto:fracesco.spano@cern.ch?subject=
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2016-01/


francesco.spano@cern.ch Top Physics @ LHC: selected highlights LPNHE Seminar, Sorbonne Université, 24th June 2019 45

1/σtt dσtt/dX

 [1
/G

eV
]

t,h
ad

T
 / 

dp
tt

σ
 d

 
⋅ tt

σ
1/

5−10

4−10

3−10

2−10

1−10

1 Data
t=mdampPWG+PY6 h

 radHit=2mdampPWG+PY6 h
 radLot=mdampPWG+PY6 h

t=1.5 mdampPWG+PY8 h
 t=1.5 mdampPWG+H7 h

t=mdampPWG+H++ h
aMC@NLO+H++
aMC@NLO+PY8
Stat. unc.
Stat.+Syst. unc.

ATLAS

Fiducial phase-space

-1 = 13 TeV, 3.2 fbs
Resolved

  
Da

ta
Pr

ed
ict

io
n

0.8
1

1.2
1.4

  
Da

ta
Pr

ed
ict

io
n

0.8
1

1.2
1.4

 [GeV]t,had
T

p
0 200 400 600 800 1000

  
Da

ta
Pr

ed
ict

io
n

0.8
1

1.2
1.4

(a)

|]t
| [

1/
Un

it 
|y

t,h
ad

 / 
d|

y
tt

σ
 d

 
⋅ tt

σ
1/

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2 Data

t=mdampPWG+PY6 h
 radHit=2mdampPWG+PY6 h

 radLot=mdampPWG+PY6 h
t=1.5 mdampPWG+PY8 h

 t=1.5 mdampPWG+H7 h
t=mdampPWG+H++ h

aMC@NLO+H++
aMC@NLO+PY8
Stat. unc.
Stat.+Syst. unc.

ATLAS

Fiducial phase-space

-1 = 13 TeV, 3.2 fbs
Resolved

  
Da

ta
Pr

ed
ict

io
n

0.95
1

1.05

  
Da

ta
Pr

ed
ict

io
n

0.95

1

1.05

|t,had|y
0 0.5 1 1.5 2 2.5

  
Da

ta
Pr

ed
ict

io
n

0.95

1

1.05

(b)

 [1
/G

eV
]

t,h
ad

T
 / 

dp
tt

σ
 d

 
⋅ tt

σ
1/

5−10

4−10

3−10

2−10

1−10

1 Data
t=mdampPWG+PY6 h

 radHit=2mdampPWG+PY6 h
 radLot=mdampPWG+PY6 h

t=1.5 mdampPWG+PY8 h
 t=1.5 mdampPWG+H7 h

t=mdampPWG+H++ h
aMC@NLO+H++
aMC@NLO+PY8
Stat. unc.
Stat.+Syst. unc.

ATLAS

Fiducial phase-space

-1 = 13 TeV, 3.2 fbs
Boosted

  
Da

ta
Pr

ed
ict

io
n

1

2

  
Da

ta
Pr

ed
ict

io
n

1

2

 [GeV]t,had
T

p
400 600 800 1000 1200 1400

  
Da

ta
Pr

ed
ict

io
n

1

2

(c)

|]t
| [

1/
Un

it 
|y

t,h
ad

 / 
d|

y
tt

σ
 d

 
⋅ tt

σ
1/

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2 Data

t=mdampPWG+PY6 h
 radHit=2mdampPWG+PY6 h

 radLot=mdampPWG+PY6 h
t=1.5 mdampPWG+PY8 h

 t=1.5 mdampPWG+H7 h
t=mdampPWG+H++ h

aMC@NLO+H++
aMC@NLO+PY8
Stat. unc.
Stat.+Syst. unc.

ATLAS

Fiducial phase-space

-1 = 13 TeV, 3.2 fbs
Boosted

  
Da

ta
Pr

ed
ict

io
n

1

1.5

  
Da

ta
Pr

ed
ict

io
n

1

1.5

|t,had|y
0 0.5 1 1.5 2

  
Da

ta
Pr

ed
ict

io
n

1

1.5

(d)

Figure 17: Fiducial phase-space relative di↵erential cross-sections as a function of the (a) transverse momentum
(pt,had

T ) and (b) the absolute value of the rapidity (
���yt,had

���) of the hadronic top quark in the resolved topology, and
corresponding results in the boosted topology (c), (d). The yellow bands indicate the total uncertainty of the data
in each bin. The Powheg+Pythia6 generator with hdamp =mt and the CT10 PDF is used as the nominal prediction
to correct for detector e↵ects. The lower three panels show the ratio of the predictions to the data. The first
panel compares the three Powheg+Pythia6 samples with di↵erent settings for additional radiation, the second panel
compares the nominal Powheg+Pythia6 sample with the other Powheg samples and the third panel compares the
nominal Powheg+Pythia6 sample with the MadGraph5_aMC@NLO samples.
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Different
Radiation

Different
Hadronization

Particle level vs NLO+PS

+jets “boosted” 

Ndof = 7 
9.9<𝜒2<11.5   
0.12<p<0.20

• Tension with most NLO+PS predictions: slope w.r.t measurement. 
• Less tension than in “resolved”, larger statistical uncertainties

JHEP 11 (2017) 191

Different
generator
& hadronization 

@13TeVExtreme test of SM: the top pT “saga”

mailto:fracesco.spano@cern.ch?subject=
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2016-01/


francesco.spano@cern.ch Top Physics @ LHC: selected highlights LPNHE Seminar, Sorbonne Université, 24th June 2019 46

In all-jets final state

Resolved

Selection: at least 6 jets, 2 b tagged.
Perform kinematic fit for tt̄ reconstruction (based on W and top
mass constrains)
Accept events with 150 < mfit

t < 200GeV, and fit probability
greater than 0.02.

Boosted

1 jet pT > 200GeV and 1 jet pT > 450GeV
each jet: softdrop mass > 50GeV, b tagged subjet, n-jettiness
requirements.
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In all-jets final state

Resolved

Selection: at least 6 jets, 2 b tagged.
Perform kinematic fit for tt̄ reconstruction (based on W and top
mass constrains)
Accept events with 150 < mfit

t < 200GeV, and fit probability
greater than 0.02.

Boosted
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Figure 7: Normalized particle-level fiducial phase-space di↵erential cross-sections as a function of (a) transverse
momentum of the leading top-quark jet, (b) transverse momentum of the second-leading top-quark jet, (c) absolute
value of the rapidity of the leading top-quark jet and (d) absolute value of the rapidity of the second-leading top-
quark jet. The gray bands indicate the total uncertainty in the data in each bin. The vertical bars indicate the
statistical uncertainties in the theoretical models. The Powheg+Pythia8 event generator is used as the nominal
prediction. Data points are placed at the center of each bin.
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7.7<𝜒2<9.7  
0.27<p<0.36

Particle level vs NLO+PS

Ndof = 7 

Particle level vs NLO+PS

@13TeVExtreme test of SM: the top pT “saga”

Reco level

Ndof = 7 

• Measurements agree with predictions.
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CMS-PAS-TOP-17-014
The Top pT saga: dilepton  NLO+PS @13 TeV

 Ndof =5 o 6 normalised absolute
NLO+PS 𝜒2 p-val 𝜒2 p-val
PW+PY8 128 <10-3 52 <10-3

PW+H++ 6 0.306 3 0.830
MG5+PY8 45 <10-3 17 0.008

no theory  
uncertainties 

 included 

6. Results 13

MC-based predictions in the lowest bin is observed. For the NNLO+a3
EW and NNLO+NNLL’

predictions, this excess is larger. The kinematic properties of the leptons, b jets, dileptons and
b-jet pairs (pl

T, pb
T, pll̄

T, pbb̄
T , mll̄, and mbb̄) exhibit similar disagreements as the corresponding

top-quark-based observables pt
T and ptt̄

T to which they are correlated. An increasing deficit
of data with respect to the POWHEGV2 + PYTHIA8 and POWHEGV2 + HERWIG++ predictions
is observed for Njets � 4. Conversely, there is good agreement between MG5 aMC@NLO +
PYTHIA8 and data for Njets > 3 but disagreement for Njets = 2, 3.
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Figure 3: The differential tt̄ production cross sections at parton level in full phase space as a
function of pt

T are shown. The left and right columns correspond to absolute and normalised
measurements, respectively. The upper row corresponds to measurements at parton level in
the full phase space and the lower row to particle level in a fiducial phase space. The lower
panel in each plot shows the ratio of the theoretical prediction to the data.

6. Results 13

MC-based predictions in the lowest bin is observed. For the NNLO+a3
EW and NNLO+NNLL’

predictions, this excess is larger. The kinematic properties of the leptons, b jets, dileptons and
b-jet pairs (pl

T, pb
T, pll̄

T, pbb̄
T , mll̄, and mbb̄) exhibit similar disagreements as the corresponding

top-quark-based observables pt
T and ptt̄

T to which they are correlated. An increasing deficit
of data with respect to the POWHEGV2 + PYTHIA8 and POWHEGV2 + HERWIG++ predictions
is observed for Njets � 4. Conversely, there is good agreement between MG5 aMC@NLO +
PYTHIA8 and data for Njets > 3 but disagreement for Njets = 2, 3.
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Figure 3: The differential tt̄ production cross sections at parton level in full phase space as a
function of pt

T are shown. The left and right columns correspond to absolute and normalised
measurements, respectively. The upper row corresponds to measurements at parton level in
the full phase space and the lower row to particle level in a fiducial phase space. The lower
panel in each plot shows the ratio of the theoretical prediction to the data.
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In all-jets final state

Resolved

Selection: at least 6 jets, 2 b tagged.
Perform kinematic fit for tt̄ reconstruction (based on W and top
mass constrains)
Accept events with 150 < mfit

t < 200GeV, and fit probability
greater than 0.02.

Boosted

1 jet pT > 200GeV and 1 jet pT > 450GeV
each jet: softdrop mass > 50GeV, b tagged subjet, n-jettiness
requirements.
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Template Fit: Signal template from MC, background template from data by inverting b tagging.
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Soft pT(t) confirmed in all-jets channel and persisting in boosted regime.
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CMS-TOP-16-013, 2.5 fb�1, 13TeV

ALL HADRONIC CMS @ 13 TeV
(still preliminary)

O, HIndrichs
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Summary di↵erential cross sections

Measurements at 7, 8, and 13TeV in various tt̄ decay channels.

pT(t) observed softer, but compatible with standard model within uncertainties in
measurement and theory.

Persistent in boosted regime pT(t) > 400GeV.
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top pair associated production
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t

02/10/2014 Tamara&Vázquez&Schröder

Motivation

3

top Z

W

Hg

γ t t+̄Z, "
t+Z

t t+̄γ

single top, top decay "
(Wtb vertex)

t t+̄
H, t+

Ht t,̄ t t+̄jets

+     coupling, how to measure it?Top X

• The&top&quark&couples&to&other&SM&fields&through&its&gauge&and&Yukawa%interactions%
• t→Wb%coupling&measured&already&at&the&Tevatron&
• High&statistics&top&physics&at&the&LHC:&tt&̄+&bosons&(γ,&Z&and&H)&becomes&accessible!&
• First&evidence&on&the&coupling&of&the&top&quark&to&these&particles&from&production%rate%
• Important&Standard&Model&test:&new%physics&modifies&the&structure&of&the&EW&couplings

see inclusive top cross section 
&  d𝜎/dX with jets 

(Lecture 5)
Tamara&Vázquez&Schröder

Conclusions

3102/10/2014

&~20&years&after&discovery&of&the&top,&we&start&to&have&enough&top&pairs&to&explore&
the&top+γ/Z/W&couplings&(via&production&rate&/&top&decay&Wtb&vertex)&

!
&Evidence&for&ttZ̄&and&ttW̄&at&√s=8&TeV&!&
&Wtb&coupling&via&precision&tt/̄single&top&measurements&
!
&No&deviations&from&the&SM&predictions&with&current&precision

&TopDEW&coupling&measurement&
is&a&long&term&project:&&&&&&&&&&&&&&&&&&&&&
high&luminosity&&&high&√s

arXiv:1309.1947+[hep/ex]

JUST THE BEGINNING!
T. Vazquez 
Schroder @ 

Top2014
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tt+photon: latest ATLAS
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Inclusive & Differential tt̄! Cross Section 
(√s = 13 TeV,  36.1 fb-1)

σSL
fid. = 521 ± 9 (stat.) ± 41 (syst.) fb

• binned likelihood fit to shown ELD 
(event-level discriminator) distribution 

• yields measured fiducial cross-sections for 
single-lepton (SL) or dilepton (DL):

σDL
fid. = 69 ± 3 (stat.) ± 4 (syst.) fb

• measured ratios also summarized  
per channel + in combination (right)

σpred
fid. = 495 ± 99 fbin agreement with NLO prediction:

σpred
fid. = 63 ± 9 fbin agreement with NLO prediction:

Eur. Phys. J. C 79 (2019) 382   [1]
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Inclusive & Differential tt̄! Cross Section 
(√s = 13 TeV,  36.1 fb-1)

σSL
fid. = 521 ± 9 (stat.) ± 41 (syst.) fb

• binned likelihood fit to shown ELD 
(event-level discriminator) distribution 

• yields measured fiducial cross-sections for 
single-lepton (SL) or dilepton (DL):

σDL
fid. = 69 ± 3 (stat.) ± 4 (syst.) fb

• measured ratios also summarized  
per channel + in combination (right)

σpred
fid. = 495 ± 99 fbin agreement with NLO prediction:

σpred
fid. = 63 ± 9 fbin agreement with NLO prediction:

Eur. Phys. J. C 79 (2019) 382   [1]
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Inclusive & Differential tt̄! Cross Section 
(√s = 13 TeV,  36.1 fb-1)

• measurement of tt̄ production in association with high-pT photon 
 (previously measured @ Tevatron √s = 1.96 TeV, ATLAS @ √s = 7 TeV, ATLAS+CMS @ √s = 8 TeV) 

• tt̄ decays targeted:  
single lepton (e,µ) + jets       (Njets ≥ 4,  Nb-tag ≥ 1, N!==1) 
dilepton (ee,µµ,eµ)                (Njets ≥ 2,  Nb-tag ≥ 1, N!==1)  

• several sources of background, suppress Z with me!, mℓℓ(!) vetoes 
• sensitive to ! originating from several possible sources in signal events:  

  charged IS parton, intermediate top quark (shown left), or any charged top decay product

Eur. Phys. J. C 79 (2019) 382   [1]

, ℓ+

, νℓ

JHEP 10 (2017) 006   [14]

Inclusive Fiducial Cross-Section Measurement  
of Semileptonic tt̄! @ √s = 8 TeV

• full Run-2 dataset (19.7 fb-1) 
• target e/µ + jets tt̄ decays

Diagram from related analysis:

    LO MG_aMC@NLO tt̄!         (photon from 2 ➝ 7 process) 
    NLO Powheg + Pythia8 tt̄  (photon from parton shower)

Note that care is taken not to double-count:

(+ analogously for V+jets, V!+jets)

(references given in above link)
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Inclusive & Differential tt̄! Cross Section 
(√s = 13 TeV,  36.1 fb-1)

• unfold distributions to particle level using Iterative Bayesian Unfolding (IBU)  
• normalized differential distributions ➝ comparison of measured shapes with several predictions 
• below right: normalized photon pT distribution shown (single-lepton channel) 
• Powheg + Pythia8 tt̄ prediction (! from parton shower) seen to be poorly modelled, especially visible for high- and low-pT 

• LO tt̄! predictions mostly describe data well, largest disagreement for ∆"(ℓ-,ℓ+) (not shown)    [sensitivity to tt̄ spin correlation]

Eur. Phys. J. C 79 (2019) 382   [1]

PW+PY: photon from PS

Eur. Phys. J. C 79 (2019) 382 
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Inclusive tt̄W + tt̄Z Cross-Section 
(√s = 13 TeV,  36.1 fb-1)

• final combined fit performed to signal and control regions 
➝ extract fitted signal strength for: 
         signal processes of interest tt̄Z, tt̄W 
     + dominant WZ,ZZ backgrounds

• results in inclusive cross-section measurements of: 

σtt̄Z = 0.95 ± 0.08 (stat.) ± 0.10 (syst.) pb
σtt̄W = 0.87 ± 0.13 (stat.) ± 0.14 (syst.) pb

• additionally several constraints placed on BSM couplings (modify ttZ vertex) in the context of Effective Field Theory

(both in agreement with SM predictions)

Phys. Rev. D 99 (2019) 072009   [2]

Eur. Phys. J. C 77 (2017) 40   [15](earlier 3.2 fb-1 result)
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Inclusive tt̄W + tt̄Z Cross-Section 
(√s = 13 TeV,  36.1 fb-1)

• final combined fit performed to signal and control regions 
➝ extract fitted signal strength for: 
         signal processes of interest tt̄Z, tt̄W 
     + dominant WZ,ZZ backgrounds

• results in inclusive cross-section measurements of: 

σtt̄Z = 0.95 ± 0.08 (stat.) ± 0.10 (syst.) pb
σtt̄W = 0.87 ± 0.13 (stat.) ± 0.14 (syst.) pb

• additionally several constraints placed on BSM couplings (modify ttZ vertex) in the context of Effective Field Theory

(both in agreement with SM predictions)

Phys. Rev. D 99 (2019) 072009   [2]

Eur. Phys. J. C 77 (2017) 40   [15](earlier 3.2 fb-1 result)
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Inclusive & Differential tt̄Z Cross Section 
(√s = 13 TeV,  77.5 fb-1)

CMS-PAS-TOP-18-009 (Mar 2019)   [3]
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Consider only visible leptonic Z decays:

2

1

Representative leading-order tt̄Z 
production diagrams at the LHC. 
     radiated Z boson from (anti-) top 

Z boson recoiling against tt̄ pair 

1

2

• multi-channel analysis targeting most sensitive 3ℓ, 4ℓ channels  
➝ further divided into several orthogonal SR,CR (below) 

• most precise inclusive cross-section measurement of tt̄Z production  
(+ better than theoretical NLO QCD precision!) 

• differential measurement for two key variables (later slide)

14

Table 5: Definition of the signal and control regions.
N` Nj Nb NZ pT(Z) (GeV) �1  cos(q⇤) < �0.6 �0.6  cos(q⇤) < 0.6 0.6  cos(q⇤)

3 � 3 � 1 1

0–100 SR1 SR2 SR3
100–200 SR4 SR5 SR6
200–400 SR7 SR8 SR9
� 400 SR10 SR11 SR12

4 � 1 � 1 1
0–100 SR13

100–200 SR14
� 200 SR15

3 � 1 0 1

0–100 CR1 CR2 CR3
100–200 CR4 CR5 CR6
200–400 CR7 CR8 CR9
� 400 CR10 CR11 CR12

4 � 1 � 0 2
0–100 CR13

100–200 CR14
� 200 CR15

Table 6: Expected and observed 68% and 95% CL intervals from this measurement for the listed
Wilson coefficients. Constraints from a previous CMS measurement [4] and indirect constraints
from precision electroweak data [77] are shown for comparison.

Coefficient Expected Observed Previous CMS constraints Indirect constraints
68% CL 95% CL 68% CL 95% CL Exp, 95% CL Obs, 95% CL 68% CL

ctZ/L2 [�0.7, 0.7] [�1.1, 1.1] [�0.8, 0.5] [�1.1, 1.1] [�2.0, 2.0] [�2.6, 2.6] [�4.7, 0.2]

c[I]tZ/L2 [�0.7, 0.7] [�1.1, 1.1] [�0.8, 1.0] [�1.2, 1.2] – – –

cft/L2 [�1.6, 1.4] [�3.4, 2.8] [2.2, 4.7] [0.7, 5.9] [�20.2, 4.0] [�22.2,�13.0]
[�0.1, 3.7]

[�3.2, 6.0]
c�fQ/L2 [�1.1, 1.1] [�2.1, 2.2] [�3.0,�1.0] [�4.0, 0.0] – – [�4.7, 0.7]
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Inclusive & Differential tt̄Z Cross Section 
(√s = 13 TeV,  77.5 fb-1)

dσ
dpZ

T

1
σ

dσ
dpZ

T

pT of reconstructed Z bosonpZ
T1st differential variable:

• unfolding to particle level via correction for acceptance and detector inefficiencies 
• absolute differential cross-section exhibits similar feature that data higher than prediction 
• however good agreement in shapes (normalized differential distributions)

(✓) (  )

CMS-PAS-TOP-18-009 (Mar 2019)   [3]

ATLAS (36/fb)
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tt̄V Combined Inclusive Cross-Section Measurement 
(tt̄Z+tt̄W @ √s = 13 TeV,  35.9 fb-1)

• in agreement with SM predictions

• tt̄W: significance of 4.8σ (5.3σ) observed (expected) 
• tt̄Z:   significance > 5σ (*) 

JHEP 08 (2018) 011   [4]

• multi-channel analysis  
• tt̄W: same-sign dilepton (ℓ±ℓ±) + jets 
• tt̄Z: 3ℓ or 4ℓ + jets   (*) 
• cross sections σtt̄W & σtt̄Z  

measured simultaneously 
• substantial contribution from  

fake-lepton background 
(multiple sources)

ℓ+ℓ+ℓ−ℓ−

σtt̄W = 0.77 +0.12
−0.11 (stat.) +0.13

−0.12 (syst.) pb
σtt̄Z = 0.99 +0.09

−0.08 (stat.) +0.12
−0.10 (syst.) pb

(*) focus on tt̄W since tt̄Z covered in more precise 77.5 fb-1 result
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tt̄V Combined Inclusive Cross-Section Measurement 
(tt̄Z+tt̄W @ √s = 13 TeV,  35.9 fb-1)

• in agreement with SM predictions

• tt̄W: significance of 4.8σ (5.3σ) observed (expected) 
• tt̄Z:   significance > 5σ (*) 

JHEP 08 (2018) 011   [4]

• multi-channel analysis  
• tt̄W: same-sign dilepton (ℓ±ℓ±) + jets 
• tt̄Z: 3ℓ or 4ℓ + jets   (*) 
• cross sections σtt̄W & σtt̄Z  

measured simultaneously 
• substantial contribution from  

fake-lepton background 
(multiple sources)

ℓ+ℓ+ℓ−ℓ−

σtt̄W = 0.77 +0.12
−0.11 (stat.) +0.13

−0.12 (syst.) pb
σtt̄Z = 0.99 +0.09

−0.08 (stat.) +0.12
−0.10 (syst.) pb

(*) focus on tt̄W since tt̄Z covered in more precise 77.5 fb-1 result

CMS (75/fb)
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Inclusive tt̄W + tt̄Z Cross-Section 
(√s = 13 TeV,  36.1 fb-1)

Phys. Rev. D 99 (2019) 072009   [2]

• analysis incorporates multi-lepton (2ℓ,3ℓ,4ℓ) channels targeting:

Z → ee, μμ tt̄ → jets 2ℓOS

Z → ee, μμ tt̄ → ℓ + jets 3ℓ

tt̄ → dileptonic 4ℓ

W± → ℓ±ν tt̄ → ℓ± + jets 2ℓSS

Z → ee, μμ

W± → ℓ±ν tt̄ → dileptonic 3ℓ

• dedicated treatment of various channel-dependent backgrounds

(most sensitive, shown)

3ℓ, WZ CR 4ℓ, ZZ CR

JHEP 08 (2018) 011 Phys. Rev. D 99 (2019) 072009 
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and systematic uncertainties in similar proportions. For the tt̄Z determination, the dominant systematic
uncertainty sources are the modeling of the backgrounds and of the signal. For the tt̄W determination, the
dominant systematic uncertainty sources are the modeling of the signal and the limited amount of data
available in the control regions and simulated event samples.

Table 8: List of relative uncertainties in the measured cross sections of the tt̄Z and tt̄W processes from the fit,
grouped in categories. All uncertainties are symmetrized. The sum in quadrature may not be equal to the total due to
correlations between uncertainties introduced by the fit.

Uncertainty �
t t̄Z

�
t t̄W

Luminosity 2.9% 4.5%
Simulated sample statistics 2.0% 5.3%
Data-driven background statistics 2.5% 6.3%
JES/JER 1.9% 4.1%
Flavor tagging 4.2% 3.7%
Other object-related 3.7% 2.5%
Data-driven background normalization 3.2% 3.9%
Modeling of backgrounds from simulation 5.3% 2.6%
Background cross sections 2.3% 4.9%
Fake leptons and charge misID 1.8% 5.7%
tt̄Z modeling 4.9% 0.7%
tt̄W modeling 0.3% 8.5%

Total systematic 10% 16%
Statistical 8.4% 15%

Total 13% 22%

8 Interpretation

The e�ective field theory (EFT) framework provides a model-independent approach to the parameterization
of possible deviations from the SM predictions. In this framework, e�ects due to BSM physics are described
by adding additional operators of dimension six or higher to the SM Lagrangian. Each EFT operator O

i

is associated with a Wilson coe�cient C
i

, and the operators enter the modified Lagrangian in the form
(C

i

/⇤2)O
i

, where ⇤ is the characteristic energy scale of the BSM physics.

The complete set of independent, gauge-invariant and baryon-number conserving EFT operators at
dimension six contains 59 di�erent operators [83, 84]. In the present analysis, five of these operators are
considered, all of which modify the ttZ vertex: O(3)

�Q, O(1)
�Q, O�t , OtW

, O
tB

. The operators are defined in
Table 9, following Ref. [85]. The first two operators enter the ttZ vertex as a linear combination, such that
the measurement is sensitive to the di�erence C(3)

�Q � C(1)
�Q. For this paper, the e�ect of this combination is

evaluated by varying C(3)
�Q with C(1)

�Q set to zero.

27
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ATLAS (36/fb)

tt+W

s
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Top Properties : Spin correlations 

55

mailto:fracesco.spano@cern.ch?subject=


francesco.spano@cern.ch Top quark properties measurements with ATLAS at LHC EPS , Venice, 5th-12th July 2017 56

Standard reasons:Top quark (t) properties

•  W helicity in Wtb 
vertex? SM says 
F0~0.7  FL ~0.3 FR~0

• Wtb vertex ? SM says V-A: i.e. spin density matrix as 
foreseen in combination of tt production and decay?

• Are tt spins 
correlated in pp 
→ tt production? 
SM says YES

• is top quark 
unpolarised in pp→ 
tt  production? SM 
says yes 

• is top polarised in single 
top production? SM says 
YES

• are t and anti-t 
angular distribution 
different ? SM says 
yes @NLO

undiluted by hadronization→angles of tt decay products are correlated
top quark decays before its spin flips  → Spin information is passed to decay products

• is CP violation 
visible in b-decay 
from tt? SM says 
yes at <10-2 

-

-

-

-

-

-
All angular properties are found to be consistent with SM
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The spin of the top quark

57

Top2012 -  Keith Ellis, Winchester, September 2012 

Why top now?

Top is unstudied

Tevatron studies of the top quark have limited statistical 
precision.

Top is special

1/mt       <    1/Γt    <    1/Λ           <     mt/Λ2                                      
Production time <    Lifetime     <  Hadronization time   <  Spin decorrelation time

Top quark may play a special role in Electroweak 
symmetry breaking and other BSM physics.

Top is ubiquitous. 

Top cross section is large at LHC because of large gluon 
flux

Top-related processes are significant backgrounds for new  
physics.

2

Friday, September 21, 2012

• Angular distribution of  top 
quark decay products 
follows the predictions of the 
top quark spin (differently from b 
quark in which B meson decays 
isotropically)  

• Top quark polarization and 
(and consequently its spin) is 
directly observable by such 
angular distributions

Top.quark*decay

09/03/2017((((((((((((((((((((Wolfgang(Wagner Top>quark(production(and(properties 18

! Large(decay(width(due( to(large(mass: Γ ∝ M!3

! Life(time(≪ formation( time(of(hadrons,( spin(de>correlation(time

! Polarisation(and(spin(correlations(in(production( are(transferred(to(
decay(products.(

! Source(of(on>shell(polarised(W bosons.

• Observation of the top quark spin is strongly linked to its production and 
decay process

Spin for 
top quark 

pairs 

individual  
top quark

•  in qq/gg  tt interaction at pp 
collider

• top and anti-top quarks are 

~unpolarised (as  the initial 
g and q)


• the spins of t and t are 
correlated

see Liss,Maltoni,Quadt, 
PDG Review, 2016

• chiral coupling in SM 
Wtb vertex enhances 
specifically polarized 
W-boson and b-quark 

single 
top

mailto:fracesco.spano@cern.ch
http://pdg.lbl.gov/2016/reviews/rpp2016-rev-top-quark.pdf
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The spin of the top quark in pp → tt

• Top is narrow resonance:𝚪t/mt <<1 →the qq/gg  tt production amplitude 
is factorizable in decay and production  in the leading pole approx

58

J A Saavedra @ Top2014B Lemmer, arXiv 1410.1791

2. Standard Model, Top Quarks and Spin Correlation

Width / Lifetime

As stated in Section 2.3, the large mass of the top quark, implying a large decay width,
leads to a short top quark lifetime. As it is predicted to be shorter than the timescale of
hadronisation, the direct measurement of the top quark spin, reflected in its polarization
and tt̄ spin correlation, is possible. A short top quark lifetime is required to perform top
quark spin measurements. Vice versa, dilutions in the spin measurements can be a sign
for a top lifetime longer than the prediction.

Concerning measurements at the Tevatron, neither CDF nor D0 have observed devia-
tions from the NLO SM prediction of �t = 1.36 GeV. D0 measured �t = 2.00+0.47

�0.43 GeV

(⌧t = 3.29+0.90
�0.63 · 10�25 s) via the partial decay width �t(t ! bW ) taken from the t-

channel single top cross section measurement and the branching fraction B(t ! bW )
from tt̄ events [164]. While this measurement assumed SM couplings, CDF performed
a direct measurement and obtained the 68 % CL interval of 1.1 < �t < 4.04 GeV
(1.6 · 10�25 < ⌧t < 6.0 · 10�25 s). At the LHC, CMS has recently published a result with
impressive precision. By combining a measurement of the ratio B(t ! Wb)/B(t ! Wq)
with the results from the single top t-channel cross section measurement [117] they
measured �t = 1.36 ± 0.02 (stat.)+0.14

�0.11 (syst.) GeV [165].

These results justify measurements involving top quark spin and the transfer to its
decay products. The following sections report expectations of the top quark polariza-
tion and the top quark spin correlation. Furthermore, they provide a prescription for
accessing these quantities as well as an overview of their measurements.

2.4. Top Quark Polarization and Spin Correlation in t¯t Events

The spin of the top quark is determined by its production process and transferred to
the decay products via the decay process. As �t ⌧ mt, the leading pole approximation
[166, 167] can be used to factorize the production and the decay process. By averaging
over spin and colour configurations of the initial states, the squared matrix element can
be expressed [168] as

⇣
1

32 or 82
P

colours

⌘⇣
1
22

P
spins

⌘ ��M( qq̄/gg ! tt̄ ! (f1f̄
0
1b) (f̄2f

0
2b̄) )

��2 = �ab ⇢ab,āb̄ �̄āb̄,

(2.41)

where fi represent the fermions of the W boson decay, a, b the top quark spins and �
and ⇢ the spin density matrix for the production and the decay, respectively. The bar on
top of the variables indicates the corresponding values for the anti-top and the number
used for colour averaging varies for qq̄ annihilation (3) and gg fusion (8). Using the Pauli

30

Production and decay of top quarks
The top is not stable but decays. The full matrix element contains a top 
propagator. Since the top is a narrow resonance [Γt/mt ≪ 1], the amplitude 

can decomposed into production╳decay.

6p+mt

p2 �m2
t + i�tmt

⇡

�tmt
�(p2 �m2

t )
X

�

u(p,�)ū(p,�)

Barger et al. ’88

M /
X
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A� ⇥B�

Aλ Bλ
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Production and decay of top quarks
The top is not stable but decays. The full matrix element contains a top 
propagator. Since the top is a narrow resonance [Γt/mt ≪ 1], the amplitude 

can decomposed into production╳decay.
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Production and decay of top quarks
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Therefore, the squared matrix element [and the differential cross section] can be 
written as

spin density
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General form for a spin 1/2
particle, with Pi = 2 ⟨Si⟩

[also after integration in production phase space]

By introducing ρ we are “ignoring” on purpose the details of the top production process. 
This applies to tops produced singly, in pairs, from a black hole, etc.

Here, we are taking the z direction as the top momentum in the CM frame [helicity].
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SU(2)

a,b: top /anti-top quark spins,  f : decay products

2.4. Top Quark Polarization and Spin Correlation in tt̄ Events

matrices � the production density matrix can be expressed [168] as
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(2.43)

Here, M00 represents the total, spin independent production rate, Pi = h2Sii the po-
larization of the top quark and bCīi = h4SiS̄īi the correlation between the top and the
anti-top quark spin, using the top quark spin operators S. Examples for the spin correla-
tion matrix bCīi were calculated in [168] and are shown in Appendix A. The spin density
matrix � of a top quark can be simplified by integrating the decay phase space except
one decay product i, which serves as spin analyser of the top. With ~ei as its direction
of flight in the top quark rest frame one obtains [168]

�̃ (~e)ab ⇠ �ab + ↵i~ei · ~�ab. (2.44)

The degree to which the top quark spin is transferred to the decay product i is quantified
by the spin analysing power ↵i. This quantity, and in particular its numerical value for
several spin analyser candidates, is further discussed in Section 2.4.2. The analysing
powers for the decay products of the anti-top have the same magnitude, but opposite
sign [168].

By choosing one spin analyser for each top quark of a tt̄ event, i from t and j from t̄,
Equation 2.41 leads to

d�

d2~eid~ej
⇠ 1 + ↵i

~P~ei + ↵j
~̄P~ej + ↵i↵j~ei bC~ej (2.45)

Moving from these generalized quantities to measurable ones requires the definition of
a spin quantization axis. One can define this spin axis as z-direction and use polar co-
ordinates.24 Di↵erential distributions of cos ✓ allow to access the top quark polarization
P 3:

1

�

d�

d cos ✓i
=

1

2

�
1 + ↵i · P 3 · cos ✓

�
. (2.46)

Here, ✓ denotes the angle of the spin analyser with respect to the spin basis in the
top quark rest frame. In publications motivating spin correlation measurements (such
as [169]) the following equation is often quoted for the double di↵erential tt̄ cross section:

1

�

d2�

d cos ✓id cos ✓j
=

1

4
(1 + ↵iB1 cos ✓i + ↵jB2 cos ✓j + ↵i↵jC cos ✓i cos ✓j) (2.47)

24In polar coordinates, ~e = (cos� sin ✓, sin� sin ✓, cos ✓).
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⇢ab,āb̄ ⌘
⇣

1
32 or 82

P
colours

⌘⇣
1
22

P
initial spins

⌘
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āb̄

=
1

4

⇣
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Here, M00 represents the total, spin independent production rate, Pi = h2Sii the po-
larization of the top quark and bCīi = h4SiS̄īi the correlation between the top and the
anti-top quark spin, using the top quark spin operators S. Examples for the spin correla-
tion matrix bCīi were calculated in [168] and are shown in Appendix A. The spin density
matrix � of a top quark can be simplified by integrating the decay phase space except
one decay product i, which serves as spin analyser of the top. With ~ei as its direction
of flight in the top quark rest frame one obtains [168]
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The degree to which the top quark spin is transferred to the decay product i is quantified
by the spin analysing power ↵i. This quantity, and in particular its numerical value for
several spin analyser candidates, is further discussed in Section 2.4.2. The analysing
powers for the decay products of the anti-top have the same magnitude, but opposite
sign [168].
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Equation 2.41 leads to
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Here, ✓ denotes the angle of the spin analyser with respect to the spin basis in the
top quark rest frame. In publications motivating spin correlation measurements (such
as [169]) the following equation is often quoted for the double di↵erential tt̄ cross section:

1

�

d2�

d cos ✓id cos ✓j
=

1

4
(1 + ↵iB1 cos ✓i + ↵jB2 cos ✓j + ↵i↵jC cos ✓i cos ✓j) (2.47)
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Here, ✓ denotes the angle of the spin analyser with respect to the spin basis in the
top quark rest frame. In publications motivating spin correlation measurements (such
as [169]) the following equation is often quoted for the double di↵erential tt̄ cross section:
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Here, M00 represents the total, spin independent production rate, Pi = h2Sii the po-
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Here, ✓ denotes the angle of the spin analyser with respect to the spin basis in the
top quark rest frame. In publications motivating spin correlation measurements (such
as [169]) the following equation is often quoted for the double di↵erential tt̄ cross section:
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ab �ī
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Here, M00 represents the total, spin independent production rate, Pi = h2Sii the po-
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Here, ✓ denotes the angle of the spin analyser with respect to the spin basis in the
top quark rest frame. In publications motivating spin correlation measurements (such
as [169]) the following equation is often quoted for the double di↵erential tt̄ cross section:

1

�

d2�

d cos ✓id cos ✓j
=

1

4
(1 + ↵iB1 cos ✓i + ↵jB2 cos ✓j + ↵i↵jC cos ✓i cos ✓j) (2.47)

24In polar coordinates, ~e = (cos� sin ✓, sin� sin ✓, cos ✓).

31

S, top quark spin
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2. Standard Model, Top Quarks and Spin Correlation

Width / Lifetime

As stated in Section 2.3, the large mass of the top quark, implying a large decay width,
leads to a short top quark lifetime. As it is predicted to be shorter than the timescale of
hadronisation, the direct measurement of the top quark spin, reflected in its polarization
and tt̄ spin correlation, is possible. A short top quark lifetime is required to perform top
quark spin measurements. Vice versa, dilutions in the spin measurements can be a sign
for a top lifetime longer than the prediction.

Concerning measurements at the Tevatron, neither CDF nor D0 have observed devia-
tions from the NLO SM prediction of �t = 1.36 GeV. D0 measured �t = 2.00+0.47

�0.43 GeV

(⌧t = 3.29+0.90
�0.63 · 10�25 s) via the partial decay width �t(t ! bW ) taken from the t-

channel single top cross section measurement and the branching fraction B(t ! bW )
from tt̄ events [164]. While this measurement assumed SM couplings, CDF performed
a direct measurement and obtained the 68 % CL interval of 1.1 < �t < 4.04 GeV
(1.6 · 10�25 < ⌧t < 6.0 · 10�25 s). At the LHC, CMS has recently published a result with
impressive precision. By combining a measurement of the ratio B(t ! Wb)/B(t ! Wq)
with the results from the single top t-channel cross section measurement [117] they
measured �t = 1.36 ± 0.02 (stat.)+0.14

�0.11 (syst.) GeV [165].

These results justify measurements involving top quark spin and the transfer to its
decay products. The following sections report expectations of the top quark polariza-
tion and the top quark spin correlation. Furthermore, they provide a prescription for
accessing these quantities as well as an overview of their measurements.

2.4. Top Quark Polarization and Spin Correlation in t¯t Events

The spin of the top quark is determined by its production process and transferred to
the decay products via the decay process. As �t ⌧ mt, the leading pole approximation
[166, 167] can be used to factorize the production and the decay process. By averaging
over spin and colour configurations of the initial states, the squared matrix element can
be expressed [168] as

⇣
1

32 or 82
P

colours

⌘⇣
1
22

P
spins

⌘ ��M( qq̄/gg ! tt̄ ! (f1f̄
0
1b) (f̄2f

0
2b̄) )

��2 = �ab ⇢ab,āb̄ �̄āb̄,

(2.41)

where fi represent the fermions of the W boson decay, a, b the top quark spins and �
and ⇢ the spin density matrix for the production and the decay, respectively. The bar on
top of the variables indicates the corresponding values for the anti-top and the number
used for colour averaging varies for qq̄ annihilation (3) and gg fusion (8). Using the Pauli
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Here, M00 represents the total, spin independent production rate, Pi = h2Sii the po-
larization of the top quark and bCīi = h4SiS̄īi the correlation between the top and the
anti-top quark spin, using the top quark spin operators S. Examples for the spin correla-
tion matrix bCīi were calculated in [168] and are shown in Appendix A. The spin density
matrix � of a top quark can be simplified by integrating the decay phase space except
one decay product i, which serves as spin analyser of the top. With ~ei as its direction
of flight in the top quark rest frame one obtains [168]

�̃ (~e)ab ⇠ �ab + ↵i~ei · ~�ab. (2.44)

The degree to which the top quark spin is transferred to the decay product i is quantified
by the spin analysing power ↵i. This quantity, and in particular its numerical value for
several spin analyser candidates, is further discussed in Section 2.4.2. The analysing
powers for the decay products of the anti-top have the same magnitude, but opposite
sign [168].

By choosing one spin analyser for each top quark of a tt̄ event, i from t and j from t̄,
Equation 2.41 leads to

d�

d2~eid~ej
⇠ 1 + ↵i

~P~ei + ↵j
~̄P~ej + ↵i↵j~ei bC~ej (2.45)

Moving from these generalized quantities to measurable ones requires the definition of
a spin quantization axis. One can define this spin axis as z-direction and use polar co-
ordinates.24 Di↵erential distributions of cos ✓ allow to access the top quark polarization
P 3:
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�
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d cos ✓i
=

1
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�
1 + ↵i · P 3 · cos ✓

�
. (2.46)

Here, ✓ denotes the angle of the spin analyser with respect to the spin basis in the
top quark rest frame. In publications motivating spin correlation measurements (such
as [169]) the following equation is often quoted for the double di↵erential tt̄ cross section:

1

�

d2�

d cos ✓id cos ✓j
=

1

4
(1 + ↵iB1 cos ✓i + ↵jB2 cos ✓j + ↵i↵jC cos ✓i cos ✓j) (2.47)

24In polar coordinates, ~e = (cos� sin ✓, sin� sin ✓, cos ✓).
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āb̄

⌘

⌘ 1

4
M00

⇣
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Here, M00 represents the total, spin independent production rate, Pi = h2Sii the po-
larization of the top quark and bCīi = h4SiS̄īi the correlation between the top and the
anti-top quark spin, using the top quark spin operators S. Examples for the spin correla-
tion matrix bCīi were calculated in [168] and are shown in Appendix A. The spin density
matrix � of a top quark can be simplified by integrating the decay phase space except
one decay product i, which serves as spin analyser of the top. With ~ei as its direction
of flight in the top quark rest frame one obtains [168]

�̃ (~e)ab ⇠ �ab + ↵i~ei · ~�ab. (2.44)

The degree to which the top quark spin is transferred to the decay product i is quantified
by the spin analysing power ↵i. This quantity, and in particular its numerical value for
several spin analyser candidates, is further discussed in Section 2.4.2. The analysing
powers for the decay products of the anti-top have the same magnitude, but opposite
sign [168].

By choosing one spin analyser for each top quark of a tt̄ event, i from t and j from t̄,
Equation 2.41 leads to
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Moving from these generalized quantities to measurable ones requires the definition of
a spin quantization axis. One can define this spin axis as z-direction and use polar co-
ordinates.24 Di↵erential distributions of cos ✓ allow to access the top quark polarization
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1

�

d�

d cos ✓i
=

1

2

�
1 + ↵i · P 3 · cos ✓

�
. (2.46)

Here, ✓ denotes the angle of the spin analyser with respect to the spin basis in the
top quark rest frame. In publications motivating spin correlation measurements (such
as [169]) the following equation is often quoted for the double di↵erential tt̄ cross section:

1

�

d2�

d cos ✓id cos ✓j
=

1

4
(1 + ↵iB1 cos ✓i + ↵jB2 cos ✓j + ↵i↵jC cos ✓i cos ✓j) (2.47)

24In polar coordinates, ~e = (cos� sin ✓, sin� sin ✓, cos ✓).
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Including production and integrated decay density matrix in |ME|2  gives

- -
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• Going from generalized quantities to observable quantities requires the 
choice of the spin quantization axis : define spin axis as z direction an 
use associated polar coordinates
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2.4. Top Quark Polarization and Spin Correlation in tt̄ Events

matrices � the production density matrix can be expressed [168] as

⇢ab,āb̄ ⌘
⇣

1
32 or 82

P
colours

⌘⇣
1
22

P
initial spins

⌘
M(qq̄/gg ! tat̄ā)M(qq̄/gg ! tbt̄b̄)

⇤ (2.42)

=
1

4
Mµµ̄ �µ

ab �µ̄

āb̄

=
1

4

⇣
M00 �ab �āb̄ + M i0 �i

ab �āb̄ + M 0̄i �ab �ī
āb̄ + M īi �i

ab �ī
āb̄

⌘

⌘ 1

4
M00

⇣
�ab �āb̄ + P i �i

ab �āb̄ + P̄ ī �ab �ī
āb̄ + bC īi �i

ab �ī
āb̄

⌘
(2.43)

Here, M00 represents the total, spin independent production rate, Pi = h2Sii the po-
larization of the top quark and bCīi = h4SiS̄īi the correlation between the top and the
anti-top quark spin, using the top quark spin operators S. Examples for the spin correla-
tion matrix bCīi were calculated in [168] and are shown in Appendix A. The spin density
matrix � of a top quark can be simplified by integrating the decay phase space except
one decay product i, which serves as spin analyser of the top. With ~ei as its direction
of flight in the top quark rest frame one obtains [168]

�̃ (~e)ab ⇠ �ab + ↵i~ei · ~�ab. (2.44)

The degree to which the top quark spin is transferred to the decay product i is quantified
by the spin analysing power ↵i. This quantity, and in particular its numerical value for
several spin analyser candidates, is further discussed in Section 2.4.2. The analysing
powers for the decay products of the anti-top have the same magnitude, but opposite
sign [168].

By choosing one spin analyser for each top quark of a tt̄ event, i from t and j from t̄,
Equation 2.41 leads to

d�

d2~eid~ej
⇠ 1 + ↵i

~P~ei + ↵j
~̄P~ej + ↵i↵j~ei bC~ej (2.45)

Moving from these generalized quantities to measurable ones requires the definition of
a spin quantization axis. One can define this spin axis as z-direction and use polar co-
ordinates.24 Di↵erential distributions of cos ✓ allow to access the top quark polarization
P 3:

1

�

d�

d cos ✓i
=

1

2

�
1 + ↵i · P 3 · cos ✓

�
. (2.46)

Here, ✓ denotes the angle of the spin analyser with respect to the spin basis in the
top quark rest frame. In publications motivating spin correlation measurements (such
as [169]) the following equation is often quoted for the double di↵erential tt̄ cross section:

1

�

d2�

d cos ✓id cos ✓j
=

1

4
(1 + ↵iB1 cos ✓i + ↵jB2 cos ✓j + ↵i↵jC cos ✓i cos ✓j) (2.47)

24In polar coordinates, ~e = (cos� sin ✓, sin� sin ✓, cos ✓).
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• Degree of top quark polarization 
• single top : strong polarization

• tt production: B coefficents vanish at LO (pair invariance) : tt almost 

unpolarized

•  Degree of top quark pair spin correlations: depends on choice of spin 
quantization axis

-

The spin of the top quark in pp collisions
J A Saavedra @ Top2014B Lemmer, arXiv 1410.1791

in tt production

top quark 
 polarisation

anti-top quark 
polarisation

top-anti-top 
spin correlation
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The Wtb vertex in tt prod & decay: 
full spin density matrix

15 spin density 
matrix elements 

<|MatrixEl(tt)|2>

J
H
E
P
0
3
(
2
0
1
7
)
1
1
3

The inner-detector system is immersed in a 2 T axial magnetic field and provides

charged-particle tracking in the pseudorapidity range |η| < 2.5. A high-granularity silicon

pixel detector covers the interaction region and typically provided three measurements per

track in 2012. It is surrounded by a silicon microstrip tracker designed to provide eight two-

dimensional measurement points per track. These silicon detectors are complemented by

a transition radiation tracker, which enables radially extended track reconstruction up to

|η| = 2.0. The transition radiation tracker also provides electron identification information

based on the fraction of hits (typically 30 in total) exceeding an energy-deposit threshold

consistent with transition radiation.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region

|η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity

lead/liquid-argon (LAr) electromagnetic calorimeters, with an additional thin LAr pre-

sampler covering |η| < 1.8 to correct for energy loss in the material upstream of the

calorimeters. Hadronic calorimetry is provided by a steel/scintillator-tile calorimeter, seg-

mented into three barrel structures within |η| < 1.7, and two copper/LAr hadronic endcap

calorimeters. The solid angle coverage is completed with forward copper/LAr and tung-

sten/LAr calorimeters used for electromagnetic and hadronic measurements, respectively.

The muon spectrometer comprises separate trigger and high-precision tracking cham-

bers measuring the deflection of muons in a magnetic field generated by superconducting

air-core toroids. The precision chamber system covers the region |η| < 2.7 with drift tube

chambers, complemented by cathode strip chambers. The muon trigger system covers the

range |η| < 1.05 with resistive plate chambers, and the range 1.05 < |η| < 2.4 with thin

gap chambers.

A three-level trigger system is used to select interesting events. The Level-1 trigger

is implemented in hardware and uses a subset of detector information to reduce the event

rate to a design value of at most 75 kHz. This is followed by two software-based trigger

levels, which together reduce the event rate to about 400 Hz.

3 Observables

The spin information of the top quarks, encoded in the spin density matrix, is transferred to

their decay particles and affects their angular distributions. The spin density matrix can be

expressed by a set of several coefficients: one spin-independent coefficient, which determines

the cross section and which is not measured here, three polarisation coefficients for the

top quark, three polarisation coefficients for the antitop quark, and nine spin correlation

coefficients. By measuring a set of 15 polarisation and spin correlation observables, the

coefficient functions of the squared matrix element can be probed. The approach used in

this paper was proposed in ref. [19]. The normalised double-differential cross section for tt̄

production and decay is of the form [6, 21]

1

σ

d2σ

d cos θa+d cos θ
b
−

=
1

4
(1 +Ba

+ cos θa+ +Bb
− cos θb− − C(a, b) cos θa+ cos θb−), (3.1)

– 3 –

t & anti-t polarisation tt spin corr 

cos𝛳a,b± :  6 angles:   
2 lepton directions 
in top/anti-top parent 
rest frame w.r.t 
3 spin quantization 
axes (a or b) 

‣ k: top quark direction in tt rest frame 
‣ n: ⊥ to k & laboratory beam direction

‣ r : ⊥ to k and n

anti-top

n

beam 

top

r
k

dilepton events

a,b={k,n,r} +=top decay   -=anti-top decay

𝛳k± 𝛳r± 

𝛳n± 

JHEP12(2015)026

-

-

-

• approximate CP symmetry 
of SM →

‣ C (i,j) is symmetric

‣ top and anti top quarks 

have same polarisation 
coefficients 


‣ QCD invariant under P→ 
only P even and CP even 
coefficients are allowed
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Spin correlation: beyond the Standard Model 

3 

�  Measured spin correlation can alter due to 
�  Different decays 
�  Different production 

�  Spin correlation: test full chain from production to decay  

 
  X 

�  Decays: charged 
Higgs, b’,… 

 

�  Production: stop pairs, 
KK gravitons, Z’, 
Higgs… 

 
Miriam Watson 

 Spin density matrix elements are consistent with SM predictions
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Spin correlation: Δφ observable 

6 

�  Highest spin analysing power: 
leptons from top decay 

�  Use dileptonic tt events  
�  Very clean samples 

�  Spin correlation can be inferred 
from the Δφ distribution: 
�  Δφ: difference in azimuthal angle 

between the leptons, lab frame 
�  No event reconstruction required 
�  Excellent lepton resolution 

 

Use angles 

Δφ
Lepton 1 Lepton 2 

¤ Beam 

Miriam Watson 

- 

 Spin correlation with ∆𝜑
•Dilepton selection: ATLAS: 2 OS ℓ (e𝜇 only), ≥ 1 

b-jet,  
• lepton has highest spin analysing power 

•Derive ∆𝜑 difference in azimuthal angle between 
leptons in lab frame  
•no event reco, use lepton reco and resol

√s=13TeV

•Reconstruct tt final state :  
•constrains by mW and  mtop ,  
•test different 𝜂 assumptions for 2𝜈: select assumption 

highest weight based on ETmiss  expected  resolution

•Subtract bkg and unfold
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Spin correlation: Δφ observable 

6 

�  Highest spin analysing power: 
leptons from top decay 

�  Use dileptonic tt events  
�  Very clean samples 

�  Spin correlation can be inferred 
from the Δφ distribution: 
�  Δφ: difference in azimuthal angle 

between the leptons, lab frame 
�  No event reconstruction required 
�  Excellent lepton resolution 

 

Use angles 

Δφ
Lepton 1 Lepton 2 

¤ Beam 

Miriam Watson 

- 

 Spin correlation with ∆𝜑
•Dilepton selection: ATLAS: 2 OS ℓ (e𝜇 only), ≥ 1 

b-jet,  
• lepton has highest spin analysing power 

•Derive ∆𝜑 difference in azimuthal angle between 
leptons in lab frame  
•no event reco, use  lepton reek and resolMeasured distributions: Δφ, Δη

10 
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�  Inclusive selection for simple angular distributions (note: hint of disagreement) 
�  For Δφ as a function of mtt: 

�  Require tt event reconstruction 
�  Use Neutrino Weighting 

Miriam Watson 10 

- 
- 
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Figure 4: Unfolded normalized differential cross sections for the tt spin correlation observables.
The vertical bars on the data points represent the total uncertainties, with the statistical com-
ponent indicated by a horizontal bar. The ratios of various predictions to the data are shown in
the lower panels.
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ATLAS comparisons (I)
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New theoretical predictions: NNLO 

22 
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�  New fixed-order NNLO 

predictions for Δφ and Δη 

directly, with renormalisation 
and factorisation scale 
uncertainties 

�  Closer to parton-level 
unfolded data, but does not 
cover observed discrepancy 

Behring, Czakon, Mitov, 
Papanastasiou and Poncelet, 
arXiv:1901.05407 

Miriam Watson 

Further checks 

21 

 
�  Effect of NNLO in production: 

reweight the top pT to match 
fixed-order NNLO predictions or 
unfolded data from several 
previous ATLAS measurements 

�  Deviations reduced slightly but 
consistent within scale 
uncertainties already considered 

 

Miriam Watson 

�  NLO generators used here (e.g. Powheg + Pythia8): 
�  NLO in production 
�  Not full NLO in top quark decays 
�  Use Narrow Width Approximation (NWA) to factorise production and 

decay: interference effects neglected between initial + final state 
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�  NLO effects in the decays 
of the top quarks: compare 
the Δɸ distribution with MCFM 
(full NLO, including NLO 
decays) à very close to 
nominal template 
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�  NLO generators used here (e.g. Powheg + Pythia8): 
�  NLO in production 
�  Not full NLO in top quark decays 
�  Use Narrow Width Approximation (NWA) to factorise production and 

decay: interference effects neglected between initial + final state 

  

 

MCFM with NLO in decay

Add NNLO  prediction

reweight top pT to  
match NNLO 

mailto:fracesco.spano@cern.ch


francesco.spano@cern.ch Dottorato in Fisica - UniRoma La Sapienza - AA 2016-2017Heavy Quark Physics with LHC multipurpose  det. - Lect.9 65

New theoretical predictions: NNLO inclusive 
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�  Closer to parton-level unfolded data, 
but does not cover observed 
discrepancy 

�  Similar to our results with reweighting 
to top pT for NNLO(*) or data  
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Behring, Czakon, Mitov, 
Papanastasiou and Poncelet, 
arXiv:1901.05407 

(*) Also to NNLO QCD + NLO EW 
top pT in JHEP 10 (2017) 186  
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More theoretical predictions: NLO QCD + weak corrections 

26 

�  NLO QCD+weak (NLOW): 
previous  calculation now 
produced for our binning at 13 
TeV 
�  NLO QCD including weak 

interaction corrections 
�  Expanded as a ratio to fixed 

order (c.f. computation of cross-
section numerator/denominator) 

�  Fixed scale choice: µR/F = mtop 
�  PDF set CT10 (NLO) 

�  Better agreement with data, but 
large scale uncertainties 

�  Gives fSM = 1.03 ± 0.13 (scale) 

Bernreuther, Heisler & Si, JHEP 12 (2015) 026 
Bernreuther and Si, Nucl. Phys. B 837 (2010) 90, 
Bernreuther and Si, Phys. Lett. B 725 (2013) 
115, Erratum: Phys. Lett.B744 (2015) 413 

Miriam Watson 

NLO+EWK corrNNLO inclusive

ATLAS comparisons (II)
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Spin correlation: Δφ observable 

6 

�  Highest spin analysing power: 
leptons from top decay 

�  Use dileptonic tt events  
�  Very clean samples 

�  Spin correlation can be inferred 
from the Δφ distribution: 
�  Δφ: difference in azimuthal angle 

between the leptons, lab frame 
�  No event reconstruction required 
�  Excellent lepton resolution 

 

Use angles 

Δφ
Lepton 1 Lepton 2 

¤ Beam 

Miriam Watson 

- 

 Spin correlation with ∆𝜑
•spin correlation sensitivity to ∆𝜑  is enhanced at low mtt

•Reconstruct tt final state : with constrains by mw and 
motion , test different eta assumptions for nus,select 
highest weight based on ETmiss expected  resolution

•Subtract bkg and unfold

Results: extracting spin correlation vs. mtt 

38 

�  MC parton-level distributions follow theoreretical predictions at low mtt 
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 < 450 GeVttm

 0.14± = 1.12 SMf

momenta and energies. Given the ease of measuring the azimuthal angles of charged leptons,
it is worthwhile to investigate an alternative to the true tt̄ invariant mass cut.

FIG. 8: The differential distribution of ∆φ, (1/σT ) dσ/d(∆φ). The solid curve is for the fully

correlated case whereas the dashed curve assumes that the top quarks decay spherically in their
respective rest frames. A cut restricting the invariant mass of the tt̄ pairs to a maximum of 400 GeV
has been applied to these distributions.

The simplest option one could imagine is to simply take the (näıve) unweighted average
⟨mtt̄⟩ of all of the real solutions returned by the neutrino reconstruction algorithm. In Fig. 9
we present the results of implementing just that option: the cut used to generate this figure
requires that ⟨mtt̄⟩ be less than 400 GeV. With this cut approximately 5% of the total
cross section for tt̄ production survives at leading order. This is smaller than the fraction
passing a 400 GeV cut on the true value of mtt̄ since only those events where all the spurious
solutions are sufficiently small will survive. On the other hand, the sample passing this cut
will contain a few events where the true value of mtt̄ is above 400 GeV, but, because the
spurious solutions produced smaller values, the average was below 400 GeV. Turing to the
∆φ distribution and comparing to the cut on the true value of mtt̄, one sees a rather large
effect on the shape of the distributions. However, this effect (an enhancement near ∆φ = 0
and a depletion near ∆φ = π) occurs for both the correlated and uncorrelated data sets.
Thus the difference between the two distributions remains at roughly the 40% level. No
effort has been to optimize this invariant mass cut. Perhaps there are other variables that
will do better than unweighted average ⟨mtt̄⟩, or perhaps 400 GeV is not the optimal cut

any given pairing of the b jets with the two charged leptons. Since there are two possible pairings, as

many as 8 different solutions could result. However, not all of these solutions need be real, and so there

are often fewer than the maximum possible number of solutions.

17

Mahlon and Parke 
Phys. Rev. D 81, 074024 

Miriam Watson 
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W mass from ATLAS  
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mw and mtop 
are from ATLAS 
measurements 
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• Select ℓ+>=4jets events (subtract W+jets, fakes, 
dibosons &sigle top top), require 2 b-jets 

•  likelihood-fit 3 mtop sensitive 
variables to data

Special reasons:Measure the top quark mass

• Likelihood-based kinematic fit (mW & mtop constr)

assign jets/
leptons to tt 
decay products

• Kine variables→ Boosted 
Decision Tree→discriminant 
to select correct jet/lepton 
assignment. 

• mtopreco

• mWreco 

• R =∑ pT,b-jets/
∑ pT,jets_in_W

• mtop + 2 scale factors: jet and b-jet-to-light-jet 
energy → reduce dominant jet & b-jet uncertainties

Introduction News from CMS News from ATLAS Combination Prospects Run I Summary Backup

Result in data for r
BDT

> -0.05

20/ 36 – Latest Top Mass Results – Andrea Knue

m
top

= 172.08 ± 0.39 (stat)GeV
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JSF = 1.005 ± 0.001 (stat)
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Final result lepton+jets channel:

m
top

= 172.08 ± 0.39 (stat) ± 0.82 (syst) GeV

Eur. Phys. J. C79 (2019) 290
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• mtopreco

• mWreco 

• R =∑ pT,b-jets/
∑ pT,jets_in_W

• Combine with dilepton and all jets result

δmtop /mtop ~0.28% 

sensitive to 
mtop , JSF, 
bJSF

sensitive 
to JSF
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(a) Inputs to the combination
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Fig. 10 The combination of the six ATLAS results of mtop accord-
ing to importance Ref. [98]. a shows the inputs to the combination. b
shows results of the combination when successively adding results to
the most precise one. The values quoted are the combined value, the sta-
tistical uncertainty, the systematic uncertainty, the total uncertainty and

the uncertainty in the total uncertainty. In this figure, each line shows
the combined result when adding the result listed to the combination
indicated by a ‘+’. The new ATLAS combination is given in the last
line, and shown in both figures as the vertical grey bands

are not Gaussian and are also not exactly centred around the
combined value and the combined uncertainty. For m(3)

top, the
root mean square of the distribution of the combined value
is 0.03 GeV, and that of the distribution of its uncertainty
is 0.04 GeV. The corresponding values for the new ATLAS
combination are 0.07 GeV and 0.03 GeV, respectively.

The full breakdown of uncertainties for the new com-
bined ATLAS result for mtop is reported in the last column
of Table 6. The combined result is

mtop = 172.69 ± 0.25 (stat) ± 0.41 (syst) GeV

with a total uncertainty of 0.48±0.03 GeV, where the quoted
uncertainty in this uncertainty is statistical. This means that
the uncertainty in this combined result is only known to this
precision, which, given its size, is fully adequate.

The χ2 probability of m(3)
top is 78%. Driven by the larger

pulls of the remaining three results listed in Table 7, the χ2

probability of 64% for the new ATLAS combination of mtop
is lower but still good. The new ATLAS combined result of
mtop provides a 44% improvement relative to the most pre-
cise single input result, which is the t t̄ → dilepton analysis at√
s = 8 TeV. With a relative precision of 0.28%, it improves

on the previous combination in Ref. [14] by 31% and super-
sedes it. As shown in Appendix B, the new ATLAS combined
result of mtop is more precise than the results from the CDF
and D0 experiments, and has a precision similar to the CMS
combined result.

In Fig. 11, the 68% and 95% confidence-level contours of
the indirect determination of mW and mtop from the global
electroweak fit in Ref. [2] are compared with the correspond-
ing confidence-level contours of the direct ATLAS mea-
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Fig. 11 Comparison of indirect determinations and direct measure-
ments of the top quark and W boson masses. The direct ATLAS mea-
surements of mW and mtop are shown as the horizontal and vertical
bands, respectively. Their 68% and 95% confidence-level (CL) contours
are compared with the corresponding results from the electroweak fit

surements of the two masses. The top quark mass used in
this figure was obtained above, while the W boson mass is
taken from Ref. [101]. The electroweak fit uses as input the
LHC combined result of the Higgs boson mass of mH =
125.09 ± 0.24 GeV from Ref. [102]. There is good agree-
ment between the direct ATLAS mass measurements and
their indirect determinations by the electroweak fit.

11 Conclusion

The top quark mass is measured via a three-dimensional tem-
plate method in the t t̄ → lepton + jets channel and com-
bined with previous ATLAS mtop measurements at the LHC.

123

Special reasons:Measure the top quark mass
Eur. Phys. J. C79 (2019) 290• Optimize fit  w.rt. BDT: 19% improvement
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Table 3 Systematic
uncertainties in mtop. The
measured values of mtop are
given together with the
statistical and systematic
uncertainties in GeV for the
standard and the BDT event
selections. For comparison, the
result in the t t̄ → lepton + jets
channel at

√
s = 7 TeV from

Ref. [9] is also listed. For each
systematic uncertainty listed, the
first value corresponds to the
uncertainty in mtop, and the
second to the statistical
precision in this uncertainty. An
integer value of zero means that
the corresponding uncertainty is
negligible and therefore not
evaluated. Statistical
uncertainties quoted as 0.00 are
smaller than 0.005. The
statistical uncertainty in the total
systematic uncertainty is
calculated from uncertainty
propagation. The last line refers
to the sum in quadrature of the
statistical and systematic
uncertainties

Event selection
√
s = 7 TeV

√
s = 8 TeV

Standard Standard BDT

mtop result [GeV] 172.33 171.90 172.08

Statistics 0.75 0.38 0.39

– Stat. comp. (mtop) 0.23 0.12 0.11

– Stat. comp. (JSF) 0.25 0.11 0.11

– Stat. comp. (bJSF) 0.67 0.34 0.35

Method 0.11 ± 0.10 0.04 ± 0.11 0.13 ± 0.11

Signal Monte Carlo generator 0.22 ± 0.21 0.50 ± 0.17 0.16 ± 0.17

Hadronization 0.18 ± 0.12 0.05 ± 0.10 0.15 ± 0.10

Initial- and final-state QCD radiation 0.32 ± 0.06 0.28 ± 0.11 0.08 ± 0.11

Underlying event 0.15 ± 0.07 0.08 ± 0.15 0.08 ± 0.15

Colour reconnection 0.11 ± 0.07 0.37 ± 0.15 0.19 ± 0.15

Parton distribution function 0.25 ± 0.00 0.08 ± 0.00 0.09 ± 0.00

Background normalization 0.10 ± 0.00 0.04 ± 0.00 0.08 ± 0.00

W+jets shape 0.29 ± 0.00 0.05 ± 0.00 0.11 ± 0.00

Fake leptons shape 0.05 ± 0.00 0 0

Jet energy scale 0.58 ± 0.11 0.63 ± 0.02 0.54 ± 0.02

Relative b-to-light-jet energy scale 0.06 ± 0.03 0.05 ± 0.01 0.03 ± 0.01

Jet energy resolution 0.22 ± 0.11 0.23 ± 0.03 0.20 ± 0.04

Jet reconstruction efficiency 0.12 ± 0.00 0.04 ± 0.01 0.02 ± 0.01

Jet vertex fraction 0.01 ± 0.00 0.13 ± 0.01 0.09 ± 0.01

b-tagging 0.50 ± 0.00 0.37 ± 0.00 0.38 ± 0.00

Leptons 0.04 ± 0.00 0.16 ± 0.01 0.16 ± 0.01

Missing transverse momentum 0.15 ± 0.04 0.08 ± 0.01 0.05 ± 0.01

Pile-up 0.02 ± 0.01 0.14 ± 0.01 0.15 ± 0.01

Total systematic uncertainty 1.04 ± 0.08 1.07 ± 0.10 0.82 ± 0.06

Total 1.28 ± 0.08 1.13 ± 0.10 0.91 ± 0.06

the variations lie on opposite sides of the nominal result. If
they lie on the same side, the maximum observed difference
is taken as a symmetric systematic uncertainty. Since the
systematic uncertainties are derived from simulation or data
samples with limited numbers of events, all systematic uncer-
tainties have a corresponding statistical uncertainty, which is
calculated taking into account the statistical correlation of the
considered samples, as explained in Sect. 8.5. The statistical
uncertainty in the total systematic uncertainty is dominated
by the limited sizes of the simulation samples. The resulting
systematic uncertainties are given in Table 3 independent of
their statistical significance. Further information is given in
Tables 8, 9, 10, 11 and 12 in Appendix A. This approach
follows the suggestion in Ref. [81] and relies on the fact
that, given a large enough number of considered uncertainty
sources, statistical fluctuations average out.6 The uncertainty
sources are designed to be uncorrelated with each other, and

6 In the limit of many small systematic uncertainties with large statis-
tical uncertainties, this procedure on average leads to an overestimate
of the total systematic uncertainty.

thus the total uncertainty is taken as the sum in quadrature of
uncertainties from all sources. The individual uncertainties
are compared in Table 3 for three cases: the standard selec-
tion for the

√
s = 7 TeV [9] and 8 TeV data and the BDT

selection for
√
s = 8 TeV data. Many uncertainties in mtop

obtained with the standard selection at the two centre-of-mass
energies agree within their statistical uncertainties such that
the resulting total systematic uncertainties are almost iden-
tical. Consequently, repeating the

√
s = 7 TeV analysis on√

s = 8 TeV data would have only improved the statistical
precision. The picture changes when comparing the uncer-
tainties in

√
s = 8 TeV data for the standard selection and

the BDT selection. In general, the experimental uncertainties
change only slightly, with the largest reduction observed for
the JES uncertainty. In contrast, a large improvement comes
from the reduced uncertainties in the modelling of the t t̄ sig-
nal processes as shown in Table 3. This, together with the
improved intrinsic resolution in mtop, more than compen-
sates for the small loss in precision caused by the increased
statistical uncertainty. The individual sources of systematic

123
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Figure 5: Results of pseudo-experiment studies on simulated events for the extraction of the normalised di↵erential
cross-section distributions for (a) p`T, (b) peµ

T , (c) |⌘` | and (d) |yeµ|, shown as relative deviations (� � �ref)/�ref
from the reference cross-section values in the baseline Powheg+Pythia6 CT10 sample with mt = 172.5 GeV. The
black points show the mean deviations from the reference when fitting pseudo-data samples generated with the
baseline simulation sample, with error bars indicating the uncertainties due to the limited number of simulated
events. The cyan bands indicate the expected statistical uncertainties for a single sample corresponding to the data
integrated luminosity. The open red points show the mean deviations from the reference values when fitting pseudo-
experiments generated from alternative simulation samples with mt = 165 GeV (a, b) or with the HERAPDF 1.5
PDF (c, d), with error bars due to the limited size of these alternative samples. The red dotted lines show the true
deviations from the reference in the alternative samples.
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d𝜎tt/dX are sensitive to mtop

@ particle level

mtop =172.5 GeV 
mtop =165 GeV 

Extract mtop by minimising

‣ X=measured d𝜎tt/dX, P= predictions:NLO
+PS or fixed order NLO (pole scheme)


‣ C= covariance matrix
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Figure 19: Measurements of the top quark mass using predictions derived from MCFM with the CT14, MMHT,
NNPDF 3.0, HERAPDF 2.0, ABM 11 and NNPDF 3.0_nojet PDF sets. The central factorisation and renormalisa-
tion scales are set to µF = µR = mt/2. The results from fitting templates of the single lepton p`T and dilepton peµ

T ,
meµ, pe

T + pµT and Ee + Eµ distributions one at a time, and of a combined fit to these five distributions plus the |⌘` |,
|yeµ| and ��eµ distributions together, are shown. For comparison, the world-average of mass measurements from
reconstruction of the top quark decay products and its uncertainty [121] is shown by the cyan band.

(6 GeV), but all values are shifted up by a few GeV compared to the corresponding Powheg+Pythia6-
based template fit results for the same distribution. The �2 values are reasonable, indicating a satisfactory
description of the data by the predictions at the best-fit mt values. The various distributions show di↵erent
relative sensitivities to the PDF and QCD scale uncertainties.

As shown in Table 16, the combination of all eight measured distributions (including |⌘`|, |yeµ| and ��eµ

which are not sensitive to mt) significantly reduces the theoretical uncertainties due to both PDF and
QCD scale e↵ects. The �2 values for the combined description of all eight distributions are reasonable
for all PDFs, implying that there is no significant tension between the mass fit results from the individual
distributions, once the correlations between the distributions are taken into account. Several additional
tests using the predictions based on NNPDF 3.0 were performed to probe the compatibility of the top
quark mass values extracted from the di↵erent distributions, and the accuracy of the physics modelling
used to perform the extraction. The combined fit was repeated removing one distribution at a time. The
largest shift of �1.4 ± 1.1 GeV was observed when removing the peµ

T distribution, where the uncertainty
corresponds to the quadrature di↵erence of the fit uncertainties with and without the peµ

T distribution
included. The removal of any other single distribution changed the result by less than 0.3 GeV, and
a fit to only the five distributions directly sensitive to mt (excluding |⌘`|, |yeµ| and ��eµ) gave a result
of 173.1 ± 1.2 GeV, corresponding to a shift of �0.1 GeV with respect to the eight-distribution result.
Finally, the individual measurements from the five directly-sensitive distributions were combined using
the HAverager program [125, 126]. Correlated statistical and systematic uncertainties were taken into
account using nuisance parameters, but post-fit correlations between these nuisance parameters were
neglected, unlike in the simultaneous fit approach with xFitter. The average of the five measurements is
173.4 ± 1.6 GeV with a �2 of 6.4/4, in reasonable agreement with the result from the simultaneous fit of
the five distributions. No additional uncertainty was included as a result of these tests.
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• Final mtpole: combined (8 dist.) NNPDF fit 
• Add δmtpole : PDF (0.3 GeV), dynamic vs static scale (1.1 GeV),  δ𝛼s ~negligible 

in view of the likely reduction in the experimental statistical and systematic uncertainties from the larger
tt̄ samples now becoming available from LHC running at

p
s = 13 TeV.

9 Conclusions

Lepton and dilepton di↵erential cross-section distributions have been measured in tt̄ ! eµ⌫⌫̄bb̄ events
selected from 20.2 fb�1of pp collisions at

p
s = 8 TeV recorded by the ATLAS detector at the LHC.

The absolute and normalised cross-sections were measured using opposite-charge eµ events with one or
two b-tagged jets, and corrected to a fiducial volume corresponding to the experimental acceptance of
the leptons and no requirements on jets. Eight single lepton and dilepton di↵erential distributions were
measured, with relative uncertainties varying in the range 1–10 %, and presented with and without the
contribution from leptonic decays of ⌧-leptons produced in the W decays.

The results were compared to the predictions of various tt̄ NLO and LO multileg matrix element event
generators interfaced to several parton shower and hadronisation models. These generally give a good de-
scription of the distributions, though some distributions are modelled poorly by certain event generators.
Those involving rapidity information are better described by the HERAPDF PDF sets than the CT10 set
used as default. The distributions also show some sensitivity to NNLO corrections in the description of
the top quark pT spectrum. The data are sensitive to the gluon PDF around x ⇡ 0.1 and have the potential
to reduce PDF uncertainties in this region.

Several of the measured distributions are sensitive to the top quark mass, in a way which is complementary
to traditional measurements of mt using the invariant mass of the reconstructed top quark decay products.
Various techniques for extracting the top quark mass from the measured distributions were explored,
including fits using templates from Powheg+Pythia6 simulated samples, mass determinations based on
moments of the distributions, and fits to fixed-order NLO QCD predictions, giving access to the top
quark pole mass in a well-defined renormalisation scheme as implemented in MCFM. The most precise
result was obtained from a fit of fixed-order predictions to all eight measured distributions simultaneously,
extracting mpole

t whilst simultaneously constraining uncertainties due to PDFs and QCD scales. The final
result is:

mpole
t = 173.2 ± 0.9 ± 0.8 ± 1.2 GeV,

where the three uncertainties arise from data statistics, experimental systematic e↵ects, and uncertainties
in the theoretical predictions. This result is in excellent agreement with other determinations of mpole

t
from inclusive and di↵erential cross-sections, and traditional measurements based on reconstruction of
the top quark decay products.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support sta↵ from our
institutions without whom ATLAS could not be operated e�ciently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW
and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and
CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia;

58

stat exp theo
δmt/mt ~0.5%

Comparable to δmt/mt ~ 0.28% from standard method(NLO+PS template@reco level) 
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Top Yukawa from dN/dMtt d(yt -yanti-t)

• @ threshold tt-production, Higgs 
boson mediator in Htt loop at 𝛼s2𝛼 
→ d𝜎tt/dX depends on Yt2

CMS -PAS-TOP-17-004

1. Introduction 1

1 Introduction

Precise measurements of the top quark pair (tt) production cross section and the decay proper-
ties of the top quark provide crucial information to test the standard model (SM) and to search
for new phenomena. Recent calculations provide next-to-next-to-leading-order (NNLO) pre-
dictions within the framework of perturbative QCD for the tt production cross section [1, 2].
Weak force mediated corrections only affect the cross section at loop-induced order a2

s aweak
(Fig. 1), so they make a small contribution to the total cross section and are not implemented
in the Monte Carlo (MC) event generators. However, in kinematic regions with large momen-
tum transfer, weak corrections become large and may lead to large distortions of differential
distributions. In addition, it has been shown that in the threshold region, which corresponds
to kinematic regions with small relative velocity between the top quark and antiquark, the tt
cross section is sensitive to the top quark Yukawa coupling through weak force mediated cor-
rections [3]. For example, doubling the Yukawa coupling would lead to a change in the cross
section of about 9%, which is larger than the current experimental sensitivity of around 6% [4].

Figure 1: Example diagrams for gluon-induced process of tt production and the virtual correc-
tions. G stands for all contributions from the gauge boson, Goldstone boson and Higgs boson
exchanges.

A detailed study of the differential tt kinematic properties close to the production threshold
could, therefore, determine the value of top quark Yukawa coupling. In this analysis, we define
Yt as the ratio of the top quark Yukawa coupling to its SM predicted value. We calculate the
electroweak correction factors for different values of Yt using HATHOR [5] and apply them at
the parton level to the existing tt simulated samples. From these modified simulations, we
obtain distributions at detector level that can be directly compared to the data. The Yukawa
coupling is extracted from the distributions of the invariant mass of the top quark pair, Mtt,
and the rapidity difference between the top quark and antiquark, Dytt = yt � yt̄ , for different
jet multiplicities. The analysis covers the phase space from the production threshold in Mtt
(which is ⇡200 GeV at the detector level) to 2 TeV, and from 0 to 6 in |Dytt|. Low Mtt and small
|Dytt| regions are the most sensitive to Yt.

Top quarks decay almost exclusively through t ! Wb and the final topology depends on the
W bosons’ decays. When one W boson decays leptonically and the other decays hadronically
tt̄ ! W+b W�b̄ ! `+nb qq̄0b̄, the final state at leading order consists of an isolated lepton
(electron or muon in this analysis), missing transverse momentum (from the neutrino), and
four jets (from two b quarks and two light quarks). This final state has a sizable branching
ratio (34%), small backgrounds, and allows for the kinematic reconstruction of the original top
candidates. This analysis follows the same methodology employed in Ref. [6] and introduces a
novel algorithm to reconstruct the tt pair when only three jets are present.

The outline of this note is as follows. In Sec. 2, the method of implementing electroweak cor-
rections in simulated samples and the variables sensitive to the top Yukawa coupling are in-
troduced. The data and simulated samples used for the analysis are described in Sec. 3. Event
selection criteria are explained in Sec. 4. The algorithm used to reconstruct tt events is de-
scribed in Sec. 5. Details on background estimation and the event yields are described in Sec. 6

𝛤=Z,H,Goldstone

2

and Sec. 7. The statistical methodologies and the systematic uncertainties are described in Sec. 8
and Sec. 9. In Sec. 10, the results are presented, including the limits on the Yukawa coupling.

2 Electroweak correction

Electroweak (EW) corrections to the tt production cross section were originally calculated [7]
before the top quark discovery, and were found to have a very small effect on the total cross
section. However, they can have a sizable impact on differential distributions and the top quark
charge asymmetry. There is no interference term of order asa between the lowest-order strong
force mediated and neutral current amplitudes in the quark-induced processes. Electroweak
corrections start entering the cross section at loop-induced order a2

s a, as shown in Fig. 1. A
majority of EW corrections do not depend on the top quark Yukawa coupling. Contributions
linear in Yt, which arise from the production of an intermediate s-channel Higgs boson through
a closed b-quark loop, can be ignored due to the small b-quark mass. Higgs boson exchange
between the final state top quark and antiquark, which involves two Htt vertices, as shown in
Fig. 1, leads to a quadratic dependence of the cross section on the top quark Yukawa coupling.

HATHOR [5] calculates the partonic cross section value, including the EW corrections at leading
order O(a2

s a) for a given Mtt and Dytt. The mass of the top quark is fixed at mt = 172.5 GeV, and
is treated as a source of systematic uncertainty. We use HATHOR to extract a two-dimensional
correction factor that contains the ratio of the tt production cross section with EW corrections
over the leading-order production cross section in bins of Mtt and Dytt. This is done for different
hypothesized values Yt. We then apply this correction factor at the parton level to each tt event
simulated with POWHEG [8–11]. Figure 2 shows the relative EW correction on the next-to-
leading-order (NLO) QCD production cross section as a function of Mtt and Dytt for different
values of Yt. Non-SM Yt values lead to large distortions in the Mtt and Dytt spectra. However, in
the distributions at detector level the experimental resolutions and the systematic uncertainties,
which are especially significant in the low Mtt region, can reduce the sensitivity to this effect.
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Figure 2: The dependence of the ratio of EW correction over the leading-order production
cross section on the sensitive kinematic variables Mtt and Dytt for different values of Yukawa
coupling, as evaluated with HATHOR [5]. The lines contain an uncertainty band derived from
the dependence of the EW correction on the top quark mass varied by ±1 GeV. The effect of the
top quark mass is very small at the parton level and not visible in the scale of the plot.

3 Data set and modeling

Events are taken from certified runs, for which a good performance and full functionality of
the CMS detector is ensured. These runs correspond to an integrated luminosity of 35.8 fb�1.

• Require 1 ℓ (e,mu), ≧3 jets,  ≧2 b-tag(s), mTW < 140 GeV, if Njets =3 pT,lead b-jet >50 GeV
• Bkg: data driven multi jets (from control region) , simulated single top , W/Z+jets,
• Reconstruct tt system by likelihood discriminant: extend to 3-jets!

• b-jets with largest b-tag weight → b-quarks (2 possibilities)

• Derive 𝜈 momentum: point on ellipse in 3-
mom 𝜈 space from (mW,mtop ) intersection 
with minimum D𝜈,min ,distance of (x,y) 
projection from pTmiss 

• m(b, )>mtop→ discard assignment  
• Define discriminant 

≧4 jets

5. Reconstruction of the top quark-antiquark system 5

� ln(l4) =� ln(Pm(m2, m3))� ln(Pn(Dn,min)), (1)

where Pm is the two-dimensional probability distribution to correctly reconstruct the W boson
and top quark invariant masses.

The probability Pn describes the distribution of Dn,min for a correctly selected b`. On average,
the distance Dn,min for a correctly selected b` is smaller and has a lower tail compared to the
distance obtained for other jets. Jet assignments with values of Dn,min > 150 GeV are rejected
since they are very unlikely to originate from a correct b` association. The distributions for Pm,
Dn,min, and l4 can be found in Figs. 2 and 4 of Ref. [6].

The efficiency of the reconstruction algorithm is defined as the probability that the most likely
assignment, as identified by the largest value of l4, is the correct one, given that all decay prod-
ucts from the tt decay are reconstructed and selected. Since the number of possible assignments
increases drastically with the number of jets, it is more likely to select a wrong assignment if
there are additional jets. The algorithm identifies the correct assignment in around 84% of the
four-jet events, 69% in five-jet events, and 53% in six-jet events.

5.2 Reconstruction of events with one missing jet

The most sensitive region of phase space to probe the size of the top Yukawa coupling is at the
threshold of tt production. However, the efficiency for selecting tt events in this region is rather
low, since one or more quarks from tt decay are likely to have pT or h outside of the selection
thresholds resulting in a missing jet. To mitigate this effect, we developed an algorithm of tt
reconstruction for events with one missing jet [30].

We require that there are exactly three jets in the event with at least two of them b-tagged. We
assume that the two jets with the highest value of the CSV discriminator are associated with
b quarks from tt decays. In 93% of the selected three-jet tt events, the missing jet is associated
with the quark from the W decay. The remaining two-fold ambiguity is in the assignment of
the b-tagged jets: which one originates from the hadronic top quark decay and which one from
the leptonic top quark decay. For each of the two possible b-jet assignments, the algorithm
proceeds in the following way:

• use the Neutrino Solver to calculate the corresponding minimum distance Dn,min;
• if the Neutrino Solver yields no solution, this jet assignment is discarded;
• if instead both b-jet candidates have solutions for neutrino momentum, a likelihood

discriminant is constructed using the minimum distance Dn,min and the invariant
mass mth of the two jets hypothesized to belong to the hadronic top decay. We choose
the jet assignment with the lowest value of the negative log likelihood � ln(l3) (label
3 refers to the requirement of three jets):

� ln(l3) =� ln(Pmth
)� ln(Pn(Dn,min)), (2)

where Pn(Dn,min), shown in Fig. 3 upper left, is the probability to correctly identify
b` using Dn,min; Pmth

, shown in Fig. 3 upper right, is the probability of the invari-
ant mass of the hypothesized bh and the jet from W boson decay. The distribution
of � ln(l3) is shown in the lower plot of Fig. 3. Jet assignments with values of
� ln(l3) > 13 are discarded to improve the signal to background ratio.

mW and mtop prob to reconstruct correct D𝜈,min 
84% (69%)correct in 4-(5-)jets 

correct D𝜈,min m(bh+W-jet) 

=3 jets,
Prob(missing jet is from W) :93% 

5. Reconstruction of the top quark-antiquark system 5

� ln(l4) =� ln(Pm(m2, m3))� ln(Pn(Dn,min)), (1)

where Pm is the two-dimensional probability distribution to correctly reconstruct the W boson
and top quark invariant masses.

The probability Pn describes the distribution of Dn,min for a correctly selected b`. On average,
the distance Dn,min for a correctly selected b` is smaller and has a lower tail compared to the
distance obtained for other jets. Jet assignments with values of Dn,min > 150 GeV are rejected
since they are very unlikely to originate from a correct b` association. The distributions for Pm,
Dn,min, and l4 can be found in Figs. 2 and 4 of Ref. [6].

The efficiency of the reconstruction algorithm is defined as the probability that the most likely
assignment, as identified by the largest value of l4, is the correct one, given that all decay prod-
ucts from the tt decay are reconstructed and selected. Since the number of possible assignments
increases drastically with the number of jets, it is more likely to select a wrong assignment if
there are additional jets. The algorithm identifies the correct assignment in around 84% of the
four-jet events, 69% in five-jet events, and 53% in six-jet events.

5.2 Reconstruction of events with one missing jet

The most sensitive region of phase space to probe the size of the top Yukawa coupling is at the
threshold of tt production. However, the efficiency for selecting tt events in this region is rather
low, since one or more quarks from tt decay are likely to have pT or h outside of the selection
thresholds resulting in a missing jet. To mitigate this effect, we developed an algorithm of tt
reconstruction for events with one missing jet [30].

We require that there are exactly three jets in the event with at least two of them b-tagged. We
assume that the two jets with the highest value of the CSV discriminator are associated with
b quarks from tt decays. In 93% of the selected three-jet tt events, the missing jet is associated
with the quark from the W decay. The remaining two-fold ambiguity is in the assignment of
the b-tagged jets: which one originates from the hadronic top quark decay and which one from
the leptonic top quark decay. For each of the two possible b-jet assignments, the algorithm
proceeds in the following way:

• use the Neutrino Solver to calculate the corresponding minimum distance Dn,min;
• if the Neutrino Solver yields no solution, this jet assignment is discarded;
• if instead both b-jet candidates have solutions for neutrino momentum, a likelihood

discriminant is constructed using the minimum distance Dn,min and the invariant
mass mth of the two jets hypothesized to belong to the hadronic top decay. We choose
the jet assignment with the lowest value of the negative log likelihood � ln(l3) (label
3 refers to the requirement of three jets):

� ln(l3) =� ln(Pmth
)� ln(Pn(Dn,min)), (2)

where Pn(Dn,min), shown in Fig. 3 upper left, is the probability to correctly identify
b` using Dn,min; Pmth

, shown in Fig. 3 upper right, is the probability of the invari-
ant mass of the hypothesized bh and the jet from W boson decay. The distribution
of � ln(l3) is shown in the lower plot of Fig. 3. Jet assignments with values of
� ln(l3) > 13 are discarded to improve the signal to background ratio.

prob to reconstruct 

• find D𝜈,min  for b-jet assignment 

• Discard assignment with no D𝜈,min 

• Define discriminant

80% correct in 3-jets 
 choose jet assignment with maximum discriminant 
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• Build binned likelihood for dN/dMttd(yt -yanti-t) as function of EW correction 
strength, R=Ntt(Yt )/Ntt(POWHEG), a bin-dependent quadratic function of Yt  for 3,4,5 
jets and all events 

Top Yukawa from dN/dMtt d(yt -yanti-t)

8

Table 1: Expected and observed yields with statistical uncertainties after event selection. Events
are categorized in the tt simulation as: correctly identified tt systems (tt right); events where
all decay products are available, but the tt reconstruction algorithm did not identify the correct
tt permutation (tt wrong); non-reconstructible events where the algorithm failed to identify at
least one top candidate (tt not reco); and events arising from the dileptonic or fully hadronic tt
channels (tt background).

Source 3 jets 4 jets �5 jets
tt right reco 130 523±154 92 895±130 71 643±114
tt wrong reco 29 298±73 17 356±57 43 073±89
tt not reco 50 695±96 88 763±127 80 960±122
tt background 53 465±99 26 085±69 25 047±68
single t 17 849±40 6922±27 6294±26
V+jets 8990±100 2824±52 2478±49
QCD multijet 19 835±6 247 2100±603 1083±210
Expected sum 310 653±254 236 945±212 230 574±211
Observed data 308 932±556 237 491±487 226 788±476

Figures 5–7 show the comparison of data to simulation in the missing transverse momentum,
the pseudorapidity of the lepton, and several kinematic variables of the top quark and tt sys-
tem. The distributions for QCD multijet backgrounds are derived from the data CR, described
in Sec. 6. In general, good agreement between data and prediction is observed.

8 Statistical treatment

Two-dimensional data distributions in (Mtt, Dytt) are fit to the sum of the predicted contribu-
tions to infer the value of Yt for events with three, four, and five or more jets in the final state.
There are three bins in |Dytt|: 0 – 0.6, 0.6 – 1.2, and 1.2 or above. A minimum of 10 000 simu-
lated events are required in each bin of Mtt and |Dytt|. This results in a first Mtt bin range of 0 –
300 GeV, 0 – 340 GeV, and 0 – 400 GeV for |Dytt|: 0 – 0.6, 0.6 – 1.2, and 1.2 or above, respectively.
Under these conditions, there are 21, 17, and 17 bins for event categories with three, four, and
five or more jets, respectively. The Mtt binning is labeled in the axis of the event distributions
in Fig. 10.

The bin limits are selected to capture the different behavior of the EW correction, as seen in
different regions of Fig. 2. For example, the corrections for |Dytt| > 1.2 differ significantly,
depending on Yt, and similarly for Mtt > 500 GeV. The likelihood model is constructed as a
product of Poisson likelihoods [31, 32] for the observed number of events, nbin

obs in each (Mtt,
|Dytt|) bin:

L = ’
bin 2(Mtt,|Dytt|)

Lbin = ’
bin

Pois(nbin
obs|sbin(q)⇥ Rbin(Yt) + bbin(q))⇥ r(q|q̃), (4)

where sbin is the POWHEG prediction for number of tt events; bbin is the prediction for the num-
ber of events due to each background process (single top quark, V+jets and multijet produc-
tion), Rbin(Yt) = sbin(Yt)/sbin(POWHEG) encodes the effect of different Yt coupling scenarios,
parametrized with a quadratic dependence on Yt in each bin (shown in Figs. 8 and 9 for the
first |Dytt| bin), and q represents the full suite of nuisance parameters with r(q|q̃) described
by Gaussian distributions parametrizing the uncertainty on their true values q̃. The different
sources of systematic uncertainties are described in detail in Sec. 9. The quantity Rbin(Yt) is

• Scan likelihood to find minimum and 
upper limit:  Yt <1.67 @ 95% CL 

16

Table 2: Summary of the sources of systematic uncertainties, their effects and magnitudes on
signal and backgrounds. If the uncertainty shows a shape dependency on the Mtt and Dytt
distributions, it is being considered in the likelihood and labeled as “shape” in the table. For
columns with several numbers, the numbers refer to the events with three, four, five and more
jets.

Uncertainty tt single t V+jets QCD
Luminosity 2.5% 2.5% 2.5% 2.5%
Pileup shape shape - -
Lepton ID/trigger shape shape shape -
JEC (19 independent variations) shape shape - -
JER shape - - -
b tagging scale factor shape shape shape -
b-mistag scale factor shape shape shape -
Background normalization - 15% 30% 30%
CSV inversion on QCD template - - - shape
Factorization & renormalization scale shape shape shape -
PDF shape shape - -
as(MZ) in PDFs shape shape - -
Top quark mass shape - - -
Top quark pT modeling shape - - -
Parton Shower
-NLO shower matching shape - - -
-ISR 2%/2%/3% - - -
-FSR shape shape - -
-Color reconnection shape - - -
-b-jet fragmentation shape shape - -
-B hadron branching fraction shape shape - -
Weak correction dQCDdEW shape - - -

Table 3: The expected and observed 95% CL limits on Yt.
Channel Expected 95% CL Observed 95% CL
3 jets Yt < 2.17 Yt < 2.59
4 jets Yt < 1.88 Yt < 1.77
5 jets Yt < 2.03 Yt < 2.23
Combined Yt < 1.62 Yt < 1.67
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Figure 11: The test-statistic scan versus Yt for each channel (three jets, four jets, five or more
jets), and all channels combined. The test-statistic minimum indicates the best fit of Yt. The
horizontal lines indicate 68% CL and 95% CL.
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Figure 10: The Mtt distribution in |Dytt| bins for all channels combined, after the likelihood
fit. The hatched bands show the total post-fit uncertainty. The ratios of data to the sum of the
predicted yields are provided at the bottom of each panel.

Inclusion of 3-jets events: higher yield at sensitive low Mtt, reduce migration in Njet  
→smaller JES/Had uncertainties  

CMS -PAS-TOP-17-004

 Gaussian for 
nuisance par → 
syst uncertainties
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Example: Search for ttH, H→bb @ √s = 13TeV

• in the bkg only hypothesis (μ=0), derive the probability to observe a 
more discrepant f-value than the observed one → test bkg hypothesis


• in the sig+bkg hypothesis, derive [0,upper limit] interval that covers 
the “true” μ value 95% of the times→ test signal hypothesis

tt̄H(bb̄) Results

SM
Httσ/Httσ = µBest fit 

1− 0 1 2 3 4 5 6

Combined

 combined fit)µ(two-
         Single Lepton

 combined fit)µ(two-
                  Dilepton -0.24 1.02+

1.05− ( 0.54+
0.52−

0.87+
0.91− )

0.95 0.65+
0.62− ( 0.31+

0.31−
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H)t(tSMσ/σ95% CL limit on 
0 1 2 3 4 5
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         Single Lepton

 combined fit)µ(two-
                  Dilepton

ATLAS Preliminary -1 = 13 TeV, 36.1 fbs

 = 125 GeVHm

σ 1±Expected 
σ 2±Expected 

Observed
=1)µExpected (

• Signal strength: µt̄tH= 0.84+0.64
�0.61

� Sensitivity dominated by the single lepton channel

• Significance w.r.t background-only hypothesis: 1.4� (exp: 1.6�)

• Can exclude µtt̄H > 2.0 at 95% CL

Ximo Poveda (CERN) October 24, 2017 25

bkg only assumption
sig+bkg assumption

Given model for probability distributions for signal, bkg, systematic 
uncertainties (det⊗theory) build likelihood-based variable f(μ) to

• Estimate signal strength from maximum likelihood fit
upper limit signal strength

1.4 sigma significance w.r.t bkg only, excludes  μttH > 2 at 95%CL

assume 
mH= 

125 GeV

-

tt̄H(bb̄) Results
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Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time

‣ remember, the contour is a function of 
the data, which is random.  So it moves 
around from experiment to experiment

100

80.3

80.4

80.5

150 175 200

mH [GeV]
114 300 1000

mt  [GeV]

m
W

  [
G

eV
]

68% CL

∆α

LEP1 and SLD
LEP2 and Tevatron (prel.)

P (� � V ) =
⇥

V
⇥(�|x) =

⇥

V
d�

f(x|�)⇥(�)�
d�f(x|�)⇥(�)

‣Bayesian “credible interval” does 
mean probability parameter is 
in interval.  The procedure is 
very intuitive:
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Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

Discovery in pictures

102

N events

P(
 N

 |
 s

+
b
 )

b-only s+b
b-only p-valueobs

more discrepant

Discovery: test b-only (null: s=0 vs. alt: s>0)
• note, one-sided alternative.  larger N is “more discrepant” 

aka “CLb”
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Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

Upper limits in pictures

103

N events

P(
 N

 |
 s

+
b
 )

b-only s95+b

5%

obs
ok excluded

more discrepant

aka “CLs+b”

What is meant by “95% upper limit” ?

See the picture below?
‣ ie. increase s, until the probability to have 

data “more discrepant” is < 5%
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Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

HCP Summer School, Sept. 2013

The sensitivity problem

104

N events

P(
 N

 |
 s

+
b
 )

b-only

5%

s95+b

The physicist’s worry about limits in general is that if there is a strong 
downward fluctuation, one might exclude arbitrarily small values of s
‣ with a procedure that produces proper frequentist 95% confidence 

intervals, one should expect to exclude the true value of s 5% of the time, 
no matter how small s is!

‣ This is not a problem with the procedure, but an undesirable consequence of the Type I / Type 
II error-rate setup
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N events

P(
 N

 |
 s

+
b
 )

b-only s95+b

"CLs+b"

"CLb"

CLs
To address the sensitivity problem, CLs was introduced
‣ common (misused) nomenclature: CLs = CLs+b/CLb

‣ idea: only exclude if CLs<5%  (if CLb is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%

● Note: CLs is NOT a probability

105

http://inspirehep.net/record/599622

• when CLs+b is small, a small CLb 
implies that the two distributions are 
close because CLb is calculated 
over the same range as CLs+b : it 
measures the superposition of the 
two. Small CLb→large 
superposition ➝small sensitivity 
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the 95% CL for mu is determined when prob to have 
higher vaule of test stat for the sign+bkg hypo is 5% of  
the prob to have higher test stat for the bkg option: so it 
means that the bkg only hypothesis can be rare i.e. its tail 
is small, but the sig+bkg is much rarer as its tail is only 
5% of the bkg only tail.

~

~
~

Figure 1: Test statistic distributions for ensembles of pseudo-data generated for sig-
nal+background and background-only hypotheses. See the text for definitions of the test
statistic and methodology of generating pseudo-data.

108

1� pb = P ( q̃µ � q̃obsµ | background-only) =

Z 1

qobs
0

f(q̃µ|0, ✓̂obs
0

) dq̃µ , (7)

and calculate CL
s

(µ) as a ratio of these two probabilities 1

109

CLs(µ) =
pµ

1� pb
(8)

7. If, for µ = 1, CL
s

 ↵, we would state that the SM Higgs boson is excluded110

with (1 � ↵) CL
s

confidence level (C.L.). It is known that the CL
s

method gives111

conservative limits, i.e. the actual confidence level is higher than (1 � ↵). See112

Appendix A for more details.113

8. To quote the 95% Confidence Level upper limit on µ, to be further denoted as114

µ95%CL, we adjust µ until we reach CL
s

= 0.05.115

2.2 Expected limits116

The most straightforward way for defining the expected median upper-limit and ±1� and117

±2� bands for the background-only hypothesis is to generate a large set of background-118

1Note that we define p
b

as p
b

= P ( q̃
µ

< q̃obs
µ

| background-only), excluding the point q̃
µ

= q̃obs
µ

. With
these definitions one can identify p

µ

with CL
s+b

and p
b

with 1� CL
b

.

6
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ATLAS Open Reading, Jan. 23, 2012
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CMS top tagging

• top tagged jet: anti-kT  (R=0.8) jet  with

‣  τ32  < 0.65  
‣  105<mjet,SoftDrop<210 GeV  


❖soft drop with 𝛽=0 , zcut =0.1

❖R0=0.8
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Recognising “highly boosted “ top quarks
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Math Appendix : Mass, PT and DR
As we know that for any 4-

momentum

8 39. Kinematics

In the center-of-mass frame

t = (E1cm − E3cm)2 − (p1cm − p3cm)2 − 4p1cm p3cm sin2(θcm/2)

= t0 − 4p1cm p3cm sin2(θcm/2) , (39.33)

where θcm is the angle between particle 1 and 3. The limiting values t0 (θcm = 0) and
t1 (θcm = π) for 2 → 2 scattering are

t0(t1) =
[
m2

1 − m2
3 − m2

2 + m2
4

2
√

s

]2

− (p1 cm ∓ p3 cm)2 . (39.34)

In the literature the notation tmin (tmax) for t0 (t1) is sometimes used, which should
be discouraged since t0 > t1. The center-of-mass energies and momenta of the incoming
particles are

E1cm =
s + m2

1 − m2
2

2
√

s
, E2cm =

s + m2
2 − m2

1

2
√

s
, (39.35)

For E3cm and E4cm, change m1 to m3 and m2 to m4. Then

pi cm =
√

E2
i cm − m2

i and p1cm =
p1 lab m2√

s
. (39.36)

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations
see Eqs. (39.2)–(39.4).]

39.5.2. Inclusive reactions : Choose some direction (usually the beam direction) for
the z-axis; then the energy and momentum of a particle can be written as

E = mT cosh y , px , py , pz = mT sinh y , (39.37)

where mT , conventionally called the ‘transverse mass’, is given by

m2
T

= m2 + p2
x + p2

y . (39.38)

and the rapidity y is defined by

y =
1
2

ln
(

E + pz

E − pz

)

= ln
(

E + pz

mT

)
= tanh−1

(pz

E

)
. (39.39)

Note that the definition of the transverse mass in Eq. (39.38) differs from that used
by experimentalists at hadron colliders (see Sec. 39.6.1 below). Under a boost in the
z-direction to a frame with velocity β, y → y − tanh−1 β. Hence the shape of the rapidity
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Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations
see Eqs. (39.2)–(39.4).]

39.5.2. Inclusive reactions : Choose some direction (usually the beam direction) for
the z-axis; then the energy and momentum of a particle can be written as

E = mT cosh y , px , py , pz = mT sinh y , (39.37)

where mT , conventionally called the ‘transverse mass’, is given by

m2
T

= m2 + p2
x + p2

y . (39.38)

and the rapidity y is defined by

y =
1
2

ln
(

E + pz

E − pz

)

= ln
(

E + pz

mT

)
= tanh−1

(pz

E

)
. (39.39)

Note that the definition of the transverse mass in Eq. (39.38) differs from that used
by experimentalists at hadron colliders (see Sec. 39.6.1 below). Under a boost in the
z-direction to a frame with velocity β, y → y − tanh−1 β. Hence the shape of the rapidity
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distribution dN/dy is invariant, as are differences in rapidity. The invariant cross section
may also be rewritten

E
d3σ

d3p
=

d3σ

dφ dy pT dpT

=⇒ d2σ

π dy d(p2
T

)
. (39.40)

The second form is obtained using the identity dy/dpz = 1/E, and the third form
represents the average over φ.

Feynman’s x variable is given by

x =
pz

pz max
≈ E + pz

(E + pz)max
(pT ≪ |pz |) . (39.41)

In the c.m. frame,

x ≈ 2pz cm√
s

=
2mT sinh ycm√

s
(39.42)

and
= (ycm)max = ln(

√
s/m) . (39.43)

The invariant mass M of the two-particle system described in Sec. 39.4.2 can be
written in terms of these variables as

M2 = m2
1 + m2

2 + 2[ET (1)ET (2) cosh∆y − pT (1) · pT (2)] , (39.44)

where
ET (i) =

√
|pT (i)|2 + m2

i , (39.45)

and pT (i) denotes the transverse momentum vector of particle i.
For p ≫ m, the rapidity [Eq. (39.39)] may be expanded to obtain

y =
1
2

ln
cos2(θ/2) + m2/4p2 + . . .

sin2(θ/2) + m2/4p2 + . . .

≈ − ln tan(θ/2) ≡ η (39.46)

where cos θ = pz/p. The pseudorapidity η defined by the second line is approximately
equal to the rapidity y for p ≫ m and θ ≫ 1/γ, and in any case can be measured when
the mass and momentum of the particle are unknown. From the definition one can obtain
the identities

sinh η = cot θ , cosh η = 1/ sin θ , tanh η = cos θ . (39.47)
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where

Now if 1) the masses of the particles are  small w.r.t. their momenta and 2) the splitting is quasi collinear  
i.e. cosDPhi ~1 - (DPhi)2/2  and  cosh(Dy)~1+Dy2/2 , so  ET(I)~ pT(i)

M2 = m12 + m12 +2[ ET(1) ET(2)  cosh(Dy) - pT(1) pT(2) cos(DPhi)
where 

DPhi =Phi(2)-Phi(1)is the 
angle between the  two 

momenta in the 
transverse plane 

This can be re-written as 

So

M2 ~ 2[ pT(1) pT(2) ( 1+Dy2/2  - 1+ (DPhi)2/2)]= pT(1) pT(2) (Dy2/2 + (DPhi)2)= pT(1) pT(2)(DR(1,2))2

therefore that the kt algorithm’s intrinsic internal information on substructure allowed one
to be more flexible in the compromise between identifying substructure and capturing the
bulk of the relevant radiation.

The next development on the subject was made by Butterworth, Cox and Forshaw [161]
who examined WW scattering, again with one leptonically and one hadronically decaying
W . They observed that the distribution of kt distance, dij (eq. (8)), between the two W
subjets was close to the W mass in W decays, but tended to have lower values in generic
massive jets. This allowed them to obtain a substantial reduction in the background. The
same idea was used later for electroweak-boson reconstruction in the context of a SUSY
search [162]. The tool associated with this technique is often referred to as “Y-splitter”.

It is worthwhile looking at some simple analytic results that relate to the techniques
of [161] and [160]. For a quasi-collinear splitting into two objects i and j, the total mass
is m2 ≃ ptiptj∆R2

ij . Labelling i and j such that ptj < pti and defining z = ptj/pt (pt =
pti + ptj), then

m2 ≃ z(1 − z)p2
t∆R2

ij , (55)

dij = z2p2
t∆R2

ij ≃
z

(1 − z)
m2 . (56)

It is the fact that electroweak bosons decay with a fairly uniform distribution in z (exactly
uniform for a Higgs boson), whereas a QCD splitting has a soft divergence, e.g.

Pgq ∝
1 + (1 − z)2

z
, (57)

that means that for a fixed mass window, the background will have lower dij values than the
signal. Indeed, the logarithm in eq. (54) comes from the integral over the 1/z divergence
in eq. (57), with lower limit z ! m2/p2

tR
2. If one places a cut on dij, or analogously on

z, then one eliminates that logarithm, thus reducing the QCD background (one can even
calculate, analytically, what the optimal cut is for given signals and backgrounds).

A second set of observations concerns mass resolution. Firstly, with a small cone of size
R ≪ ∆Rij used to reconstruct the two prongs of a colour-singlet qq̄ state, then there will
be an average loss of mass, dominated by a contribution from perturbative gluon radiation,

⟨δm2⟩ ≃ 2m2 · αsLq

π

(

ln
R

∆Rij
+ O (1)

)

, R ≪ ∆Rij , (58)

with Lq ≃ CF as given in eq. (28). If instead a single jet is used to reconstruct the whole
qq̄ system, then one can show that most of the perturbative radiation from the qq̄ system
will be contained in the jet. However there may then be significant contamination from
the UE and pileup,

⟨δm2⟩ ≃ ρ pt
πR4

2
, (59)

for a circular jet (cf. eq. (42), with ρ ≡ ΛUE/2π), with an additional contribution coming
also from perturbative radiation from the beam. Even though the above two equations
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Look into the  
jet substructure
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Prospects for early top anti-top 
resonance  searches  in  ATLAS

t

νν

l+

W 
+

b

tW 
–

b

q

q'

Motivation
Top anti-top resonances searches have gained increased interest in recent 
years with the anticipation of the upcoming physics programs of the Large 
Hadron Collider (LHC) experiments. The top quark A by far the heaviest 
known particle A is expected to play a crucial role in many Beyond the 
Standard Model (BSM) physics scenarios.

Feynman diagram of a top 
anti-top production in the 
lepton+jets final state: one of 
the W  bosons decays 
l e p t o n i c a l l y , t h e o t h e r 
hadronically.

Boosted tt topologies
b quark Light quarks

b 
quark

lepton
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Conclusion

The mono-jet approach

by Bertrand Chapleau 
on behalf of the ATLAS Collaboration.
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In the present study, prospects for early tt 
resonance searches in ATLAS are evaluated for 
early physics runs. Results are reported from a 
full Monte-Carlo study using three different 
(m

tt
) reconstruction schemes designed to 

enhance the sensitivity in the TeV regime.
   
Two types of benchmark models were 
considered: narrow resonances (sequential Z' 
boson) and broad resonances (KK gluons). In 
all cases, only the lepton+jets final state, where 
the lepton might be an electron or a muon, was 
investigated.

One of the most challenging aspects of heavy tt resonance searches lies in 
the reconstruction and identification of boosted top quark decays. A top 
quark being produced with very high transverse momentum is a source of a 
new experimental phenomenology: its decay products become very 
collimated and leave an unusual signature in the detector.  
Different boost regimes will give rise to different event topologies. The mass 
of the heaviest jet in the event can be used to classify such topologies.

Probability that partons from a 
hadronic top decay are found 
within a �R distance of 0.8.

Reconstructed invariant mass of 
the leading jet in  pp � X � tt  � 
lepton+jets events.  

� Driving motivations:Driving motivations:
� High signal efficiency over a wide range of m

tt
� Easy and fast commissioning
� Minimize systematic biases

� Highlights:Highlights:
� Relies on a small number of observables
� No flavour tagging (b-jets)
� No attempt to reconstruct top quarks 

individually

� Jet definition: Jet definition: ATLAS Cone algorithm, R=0.4, 
calorimeter towers, jet E

T
 > 40 GeV

� Events are classified  according      
to the jet mass and the number     
of jets in the event:

� 3 jets, m
jet 

> 65 GeV
� m

tt
 = m

jjjlv

� 3 jets, m
jet

 < 65 GeV
� m

tt
 = m

jjjlv
� 4 jets

� m
tt
 = m

jjjjlv
� >= 5 jets

� m
tt
 = m

jjjjlv 
(4 highest E

T
 jets)

ATLAS sensitivity projection (95 % 
confidence level signal cross-section limit)  
for a narrow resonance obtained from the 
minimal reconstruction approach. 

� Driving motivations:Driving motivations:
� Sensitive to the transition region
� Better control of the reducible background

� Highlights:Highlights:
� Full reconstruction of top and anti-top.
� Makes use of flavour tagging (b-jets)

� Jet definition: Jet definition: Anti-k
T
 algorithm, R=0.4, 

calorimeter towers, jet E
T
 > 20 GeV

� Events are classifed according to the     
highest invariant jet mass.

� m
jet

 < 65 GeV
� 4 jets required
� 2 b-tagged jets
� m

Z'
 = m

bjjblv
 " m

bjj
 " m

blv
 + 2m

t
PDG

� 65 GeV < m
jet

 < 130 GeV
� 3 jets required
� 1 b-tagged jets
� m

Z'
 = m

jjblv
 " m

jj
 " m

blv
 + 2m

t
PDG

� m
jet

 > 130 GeV
� 2 jets required
� 1 b-tagged jets
� m

Z'
 = m

jblv
 " m

j
 " m

blv
 + 2m

t
PDG

ATLAS sensitivity projection (95 % 
confidence level signal cross-section 
limit) for a narrow resonance obtained 
from the full reconstruction approach. Reconstructed m=2 TeV Z' 

mass distribution 
Reconstructed m=1 TeV Z' 
mass distribution 

� Driving motivations:Driving motivations:
� Favor the high end of the m

tt
 spectrum 

(boosted tops) 
� Good mass resolution
� Strong handle on background.

� Highlights:Highlights:
� Relies solely on the mono-jet topology A chose a 

jet definition that enhances this topology.
� No flavour tagging (b-jets)
� Makes use of jet substructure.

� Jet definition:Jet definition: Anti-k
T
 algorithm, R=1.0, 

3D locally calibrated topological 
clusters, jet E

T
 > 200 GeV.

� Semi-leptonic top decay
� Embedded lepton A traditional isolation 

requirement inefficient. 
� Need to disentangle from soft leptons 

(especially muons) coming from B- and 
D-hadrons.

� Cut on observables probing the 
presence of a hard lepton inside the jet 
coming from the W boson decay. 

� Hadronic top decayHadronic top decay
� Decay products are fully merged � top 

monojet (single reconstructed fat jet)
� Need to disentangle from QCD high-p

T
 

jets. 
� Run the k

T
 algorithm on the jet 

constituents to extract information 
about the jet substructure.

pT
lepton

pT
cone�	R�15 GeV

pT
lepton �

1�mb
2�mvisible

2 log�plepton� j�	Rlepton, j�

Reconstructed jet mass: 
sum of massless 
constituents.

Reconstructed W candidate 
mass: invariant mass of the 
subjet pair (out of 3 subjets) 
with lowest mass.

First k
T
 splitting scale.

ATLAS sensitivity projection (9 5 % 
confidence level signal cross-section limit) 
for a narrow resonance obtained from the 
mono-jet reconstruction approach. 

ATLAS sensitivity projection (9 5 % 
confidence level signal cross-section limit) 
for a broad resonance obtained from the 
mono-jet reconstruction approach. 

The SM tt  mass spectrum and all relevant background 
processes reconstructed with the minimal reconstruction 
approach in the 3 jets, m

jet 
> 65 GeV channel (left) and the 4 

jets channel (right).

� m
Z'
 = m

jjlv

Three complementary algorithms for the reconstruction of the tt  invariant mass spectrum 
have been developed and their performance evaluated on fully simulated events. Two 
adaptations of classical top reconstruction algorithms allow for high signal efficiency even in 
the TeV regime (~ 18% and 5% in the m=1-2 TeV range for the minimal and full 
reconstruction approaches respectively) . The mono-jet approach has been shown to be 
efficient down to m

tt
 = 1 TeV, with a signal efficiency of ~ 9% (15%) at m=1 TeV (2 TeV).

If no deviation from the Standard Model is observed, a 95 % C.L. limit of � × BR(X � tt) = 3 
pb is expected for a resonance mass of 1 TeV after 200 pb�1 at center-of-mass energy of 10 
TeV. Approximately the same sensitivity for m=1 TeV  is expected for 1 fb-1 of data at 7 TeV.

Reference: ATLAS Collaboration, Prospects for early tt resonance searches in ATLAS, 
ATL-PHYS-PUB-2010-008. 
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QCD
J

J

Declustering

Recognize energy pattern in unchanged jet
 Discard soft coherent radiation 
(“grooming”) to reveal boosted 

objects:redefine jets

Basic Mjet 

kT distance of 
1→2 splitting

(see Jose Juknevich, TOP2013)

Pattern/Matrix El./Jet shapes

essential clues

Use jet mass and product of pT* angular separation of two hardest 
jet constituents from jet algorithm

TopTemplate Tagger, Shower 
deconstruction, N_subjettiness ratio…

Soft-Drop mass, YSpliiter, ATLAS 
TopTagger, Mass-Drop, CMS Top Tagger, 
HEPTopTagger, Trimming, Pruning…

How to tag a boosted 
hadronic top quark?
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How to tag a boosted hadronic top quark? (II): Examples

Mass of  final  jet closer to top mass, light quark/gluon jet peak lower

Soft-drop Mass
Declustering: redefine jet 

•  Revert jet making steps → at each 
iter. break jet J in 2 subjets j1 and j2

stop: J is the final jet. 
Otherwise keep & decluster  higher pT subjet

tune 𝛽 zcut 

• if

JHEP05(2014)146

Recursively removes soft (small-pT ), wide angle (large 
∆R) radiation from initial state, pile up, rest of event

CMS-PAS-15-JME-15-002

CMS-PAS-15-JME-15-002

soft

wide -angle

1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-

phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods—

trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass

distributions, this study showed how their qualitative and quantitative features could be un-

derstood with the help of logarithmic resummation. Armed with this analytic understanding

of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)

which exhibits some surprising features in the resulting groomed jet mass distribution, in-

cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],

and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).

– 2 –
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How to tag a boosted hadronic top quark? (II): Examples

CMS-PAS-15-JME-15-002

N-Subjettiness ratio

describes how well the jet contains N (𝜏N→0)  or 
fewer (𝜏N→1) subjets 

• Make jet with N subjets (kT algo)
• ∆R(const,subjet)-weighted sum of constituents 

pT→ alignment of constituents to subjets hypo

• Top-jet : 3 subjets ;  
• light quark/gluon- jet < 3

jet radius

The lower, the more 
top-like (3-prong)

Radiation: 
JHEP03 (2011) 015

Use 𝜏32 =𝜏3/𝜏2 

ATLAS JETM-2016-005

small sum of pT ∆R

Example for N= 3

large sum of pT ∆R

~top jet  

~light quark/
gluon jet  

→ increasing pT→ 

constituent

subjet

subjet

constituent

mailto:fracesco.spano@cern.ch?subject=
http://inspirehep.net/record/1416681?ln=en
https://arxiv.org/ct?url=http://dx.doi.org/10.1007/JHEP03(2011)015&v=a70c24c4
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How to tag a boosted hadronic top quark? (II): Performance 

efficiency to tag 
top jet εS vs 
efficiency to 

mistake a light 
quark/gluon jet εB 

(or rejection against 
light-gluon jet)

efficiency to select 
the top final state vs 

bkg

sensitivity to energy 
from  superposed 
collisions (pile-up)

signal efficiency Sε
0 0.2 0.4 0.6 0.8 1

Bε

4−10

3−10

2−10

1−10
CMS
Simulation Preliminary 13 TeV

| < 2.4η < 470 GeV, |
T

300 < p
η and 

T
flat p

 R(top,parton) < 0.8∆

2, SD.τ/
3, SD.
τ R, ∆, 

Rec
HTT V2 - m, f

, b2, SD.τ/
3, SD.
τ R, ∆, 

Rec
HTT V2 - m, f

)χlog(
), bχlog(

2, SD.τ/
3, SD.
τ=1)  + β (z=0.2, SD.m

2τ/3
τ=1)  + β (z=0.2, SD.m

)χ=1)  + log(β (z=0.2, SD.m
 + b2, SD.τ/

3, SD.
τ=1) , β (z=0.2, SD.m

)χ, log(2, SD.τ/
3, SD.
τ=1) , β (z=0.2, SD.m

), bχ, log(2, SD.τ/
3, SD.
τ=1) , β (z=0.2, SD.m

better  
performance

(Receiver Operating Characteristic  curve)

CMS-PAS-15-JME-15-002

Combination of different tagging schemes improves  performance 
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‣ only zero or 1 large-R top 
tagged jet: anti-kT  (R=0.8) with 
τ32  < 0.69 and 
110<mjet,SoftDrop<210 GeV ( 50% 
εS, 3% εB ) (orth. to fully had)

‣ exactly 1 high pT (>50 GeV) 
central lepton (e,μ) with 2d 
isolation vs fake leptons: ΔR(lep, 
j)>0.4  or pT,rel(lep,j)>  20 GeV 

‣ ~90% to 94% efficient

‣ single lepton trigger

‣ ≥ 2 small-R anti-kT (R=0.4) jet with 
leading pT > 250 (150 GeV) in e(μ) 
chan,  pT > 30GeV for all jets

‣ b-tag on anti-kT (R=0.4) (65% eff)

‣ very high ETmiss (pTlep  + ETmiss ) 
>120 (150) GeV in e(μ) channel 

Search for excess in “boosted” tt production vs Mtt

 j =  ∆R-closest-to-lep anti-kT (R=0.4) jet 

(figure by A Ovcharova (UCSB))
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Prospects for early top anti-top 

resonance  searches  in  ATLAS
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Motivation

Top anti-top resonances searches have gained increased interest in recent 

years with the anticipation of the upcoming physics programs of the Large 

Hadron Collider (LHC) experiments. The top quark A by far the heaviest 

known particle A is expected to play a crucial role in many Beyond the 

Standard Model (BSM) physics scenarios.

Feynman diagram of a top 

anti-top production in the 

lepton+jets final state: one of 

the W  bosons decays 

l e p t o n i c a l l y , t h e o t h e r 

hadronically.

Boosted tt topologies b quark
Light quarks

b 
quark

lepton

neutrino

PT

Conclusion

The mono-jet approach

by Bertrand Chapleau 

on behalf of the ATLAS Collaboration.
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In the present study, prospects for early tt 

resonance searches in ATLAS are evaluated for 

early physics runs. Results are reported from a 

full Monte-Carlo study using three different 

(mtt
) reconstruction schemes designed to 

enhance the sensitivity in the TeV regime.

   
Two types of benchmark models were 

considered: narrow resonances (sequential Z' 

boson) and broad resonances (KK gluons). In 

all cases, only the lepton+jets final state, where 

the lepton might be an electron or a muon, was 

investigated.

One of the most challenging aspects of heavy tt resonance searches lies in 

the reconstruction and identification of boosted top quark decays. A top 

quark being produced with very high transverse momentum is a source of a 

new experimental phenomenology: its decay products become very 

collimated and leave an unusual signature in the detector.  

Different boost regimes will give rise to different event topologies. The mass 

of the heaviest jet in the event can be used to classify such topologies.

Probability that partons from a 

hadronic top decay are found 

within a �R distance of 0.8.

Reconstructed invariant mass of 

the leading jet in  pp � X � tt  � 

lepton+jets events.  

� Driving motivations:
Driving motivations:

� High signal efficiency over a wide range of mtt

� Easy and fast commissioning

� Minimize systematic biases

� Highlights:Highlights:
� Relies on a small number of observables

� No flavour tagging (b-jets)

� No attempt to reconstruct top quarks 

individually

� Jet definition: 
Jet definition: ATLAS Cone algorithm, R=0.4, 

calorimeter towers, jet ET
 > 40 GeV

� Events are classified  according      

to the jet mass and the number     

of jets in the event:

� 3 jets, mjet 
> 65 GeV

� mtt
 = mjjjlv

� 3 jets, mjet
 < 65 GeV

� mtt
 = mjjjlv

� 4 jets
� mtt

 = mjjjjlv

� >= 5 jets
� mtt

 = mjjjjlv 
(4 highest ET

 jets)

ATLAS sensitivity projection (95 % 

confidence level signal cross-section limit)  

for a narrow resonance obtained from the 

minimal reconstruction approach. 

� Driving motivations:
Driving motivations:

� Sensitive to the transition region

� Better control of the reducible background

� Highlights:Highlights:
� Full reconstruction of top and anti-top.

� Makes use of flavour tagging (b-jets)

� Jet definition: 
Jet definition: Anti-kT

 algorithm, R=0.4, 

calorimeter towers, jet ET
 > 20 GeV

� Events are classifed according to the     

highest invariant jet mass.

� mjet
 < 65 GeV

� 4 jets required

� 2 b-tagged jets

� mZ'
 = mbjjblv

 " mbjj
 " mblv

 + 2mt
PDG

� 65 GeV < mjet
 < 130 GeV

� 3 jets required

� 1 b-tagged jets

� mZ'
 = mjjblv

 " mjj
 " mblv

 + 2mt
PDG

� mjet
 > 130 GeV

� 2 jets required

� 1 b-tagged jets

� mZ'
 = mjblv

 " mj
 " mblv

 + 2mt
PDG

ATLAS sensitivity projection (95 % 

confidence level signal cross-section 

limit) for a narrow resonance obtained 

from the full reconstruction approach. Reconstructed m=2 TeV Z' 

mass distribution 

Reconstructed m=1 TeV Z' 

mass distribution 

� Driving motivations:
Driving motivations:

� Favor the high end of the mtt
 spectrum 

(boosted tops) 

� Good mass resolution

� Strong handle on background.

� Highlights:Highlights:
� Relies solely on the mono-jet topology A chose a 

jet definition that enhances this topology.

� No flavour tagging (b-jets)

� Makes use of jet substructure.

� Jet definition:
Jet definition: Anti-kT

 algorithm, R=1.0, 

3D locally calibrated topological 

clusters, jet ET
 > 200 GeV.

� Semi-leptonic top decay

� Embedded lepton A traditional isolation 

requirement inefficient. 

� Need to disentangle from soft leptons 

(especially muons) coming from B- and 

D-hadrons.
� Cut on observables probing the 

presence of a hard lepton inside the jet 

coming from the W boson decay. 

� Hadronic top decay
Hadronic top decay

� Decay products are fully merged � top 

monojet (single reconstructed fat jet)

� Need to disentangle from QCD high-pT
 

jets. 
� Run the kT

 algorithm on the jet 

constituents to extract information 

about the jet substructure.

pT
lepton

pT
cone �	R�

15 GeV

pT
lepton

�

1�mb
2 �mvisible

2
log�plepton� j�	Rlepton, j�

Reconstructed jet mass: 

sum of massless 

constituents.

Reconstructed W candidate 

mass: invariant mass of the 

subjet pair (out of 3 subjets) 

with lowest mass.

First kT
 splitting scale.

ATLAS sensitivity projection (9 5 % 

confidence level signal cross-section limit) 

for a narrow resonance obtained from the 

mono-jet reconstruction approach. 

ATLAS sensitivity projection (9 5 % 

confidence level signal cross-section limit) 

for a broad resonance obtained from the 

mono-jet reconstruction approach. 

The SM tt  mass spectrum and all relevant background 

processes reconstructed with the minimal reconstruction 

approach in the 3 jets, mjet 
> 65 GeV channel (left) and the 4 

jets channel (right).

� mZ'
 = mjjlv

Three complementary algorithms for the reconstruction of the tt  invariant mass spectrum 

have been developed and their performance evaluated on fully simulated events. Two 

adaptations of classical top reconstruction algorithms allow for high signal efficiency even in 

the TeV regime (~ 18% and 5% in the m=1-2 TeV range for the minimal and full 

reconstruction approaches respectively) . The mono-jet approach has been shown to be 

efficient down to mtt
 = 1 TeV, with a signal efficiency of ~ 9% (15%) at m=1 TeV (2 TeV).

If no deviation from the Standard Model is observed, a 95 % C.L. limit of � × BR(X � tt) = 3 

pb is expected for a resonance mass of 1 TeV after 200 pb�1 at center-of-mass energy of 10 

TeV. Approximately the same sensitivity for m=1 TeV  is expected for 1 fb-1 of data at 7 TeV.

Reference: ATLAS Collaboration, Prospects for early tt resonance searches in ATLAS, 

ATL-PHYS-
PUB-2010-

008. 

2 flavours x
1 top tag 0 t-tag &1 b-tag 0 t-tag &0 b-tag

events 394 10447 8971
tt purity(%) 85 82 24

ingredients for 
leptonic W  

ingredients for 
hadronic  & leptonic top 

6 selection regions 

EVENT SELECTION

Hadronic top 
(Large R=1.0 jet - Trimmed)

jet pT > 300 GeV
jet mass > 100 GeV

jet 1st splitting scale > 40 GeV
jet eta < 2.

Separation
 dPhi(lepton, hadronic top) > 2.3 

 dR(jet from leptonic top, hadronic top) > 1.5  

Leptonic top
(lepton + MET + closest standard R=0.4 jet) 

jet pT > 25 GeV
lepton pT > 25 GeV

Missing Energy (MET) > 20 GeV (30GeV*)
(l + MET) Transverse Mass (MTW) + MET > 60 GeV (30GeV*)

dR(lepton, jet) < 1.5

t̄t
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q

Trigger

6ET

One B-tagged jet (anywhere)

- as in resonance search analysis, no news.

*Electron channel

4

EVENT SELECTION

Hadronic top 
(Large R=1.0 jet - Trimmed)

jet pT > 300 GeV
jet mass > 100 GeV

jet 1st splitting scale > 40 GeV
jet eta < 2.

Separation
 dPhi(lepton, hadronic top) > 2.3 

 dR(jet from leptonic top, hadronic top) > 1.5  

Leptonic top
(lepton + MET + closest standard R=0.4 jet) 

jet pT > 25 GeV
lepton pT > 25 GeV

Missing Energy (MET) > 20 GeV (30GeV*)
(l + MET) Transverse Mass (MTW) + MET > 60 GeV (30GeV*)

dR(lepton, jet) < 1.5

t̄t

µ

⌫µ
Wb

b̄

W

q̄

q

Trigger

6ET

One B-tagged jet (anywhere)

- as in resonance search analysis, no news.

*Electron channel

4

EVENT SELECTION

Hadronic top 
(Large R=1.0 jet - Trimmed)

jet pT > 300 GeV
jet mass > 100 GeV

jet 1st splitting scale > 40 GeV
jet eta < 2.

Separation
 dPhi(lepton, hadronic top) > 2.3 

 dR(jet from leptonic top, hadronic top) > 1.5  

Leptonic top
(lepton + MET + closest standard R=0.4 jet) 

jet pT > 25 GeV
lepton pT > 25 GeV

Missing Energy (MET) > 20 GeV (30GeV*)
(l + MET) Transverse Mass (MTW) + MET > 60 GeV (30GeV*)

dR(lepton, jet) < 1.5

t̄t

µ

⌫µ
Wb

b̄

W

q̄

q

Trigger

6ET

One B-tagged jet (anywhere)

- as in resonance search analysis, no news.

*Electron channel

4

8 6 Background model and normalization

Ev
en

ts
/b

in

50

100

150

Data
Matched to top quark
Unmatched to top quark

=1 pb)σZ' 3 TeV (

CMS
 (13 TeV)-12.6 fb

 < 210 GeV
SD

| < 2.4, 110 GeV < Mη > 500 GeV, |
T

AK8 jets with p

lepton+jets

32τJet 
0 0.2 0.4 0.6 0.8 1

D
at

a/
bk

g

0.5
1

1.5

Ev
en

ts
/1

0 
G

eV

50

100

150

Data
Matched to top quark
Unmatched to top quark

=1 pb)σZ' 3 TeV (

CMS
 (13 TeV)-12.6 fb

 < 0.69
32
τ| < 2.4, η > 500 GeV, |

T
AK8 jets with p

lepton+jets

Jet soft-drop mass [GeV]
0 50 100 150 200 250 300

D
at

a/
bk

g

0.5
1

1.5

Ev
en

ts
/b

in

50

100

150

200
CMS

 (13 TeV)-12.6 fb

 < 210 GeV
SD

subjet b-tag, 110 < M
| < 2.4,η > 400 GeV, |

T
AK8 jets with p

fully hadronic

Data
tt

QCD
=1 pb)σZ' 3 TeV (

32τJet 
0 0.2 0.4 0.6 0.8 1

D
at

a/
bk

g

0.5
1

1.5

Ev
en

ts
/1

0 
G

eV

50

100

150
CMS

 (13 TeV)-12.6 fb

 < 0.69
32
τ| < 2.4, subjet b-tag, η > 400 GeV, |

T
AK8 jets with p

fully hadronic

Data
tt

QCD
=1 pb)σZ' 3 TeV (

Jet soft-drop mass [GeV]
0 50 100 150 200 250 300

D
at

a/
bk

g

0.5
1

1.5

Figure 2: Distributions of the N-subjettiness ratio, t32, and the soft dropped mass, MSD, for
AK8 jets in data and simulation, after the signal selection. For lepton+jets, with pT > 500 GeV
(upper row). For the fully hadronic final state, with pT > 400 GeV and subjet b tag (lower
row). The distribution of t32 (left) is shown after the selection 110 < MSD < 210 GeV, and the
distribution of MSD (right) is shown after the selection t32 < 0.69. The lepton+jets channel plots
compare data to background simulation, where the latter is divided into contributions from jets
matched at the generator level to top quarks and other jets in top pair or W+jets events. The
fully hadronic channel plots compare data to tt and QCD multijet simulation. Contributions
from a benchmark narrow Z0 signal model are shown with the black dashed lines. In obtaining
the final results, NTMJ production is estimated from data, and simulated QCD multijet events
are not used. In all plots, the error bars include only statistical contributions.
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Figure 2: Distributions of the N-subjettiness ratio, t32, and the soft dropped mass, MSD, for
AK8 jets in data and simulation, after the signal selection. For lepton+jets, with pT > 500 GeV
(upper row). For the fully hadronic final state, with pT > 400 GeV and subjet b tag (lower
row). The distribution of t32 (left) is shown after the selection 110 < MSD < 210 GeV, and the
distribution of MSD (right) is shown after the selection t32 < 0.69. The lepton+jets channel plots
compare data to background simulation, where the latter is divided into contributions from jets
matched at the generator level to top quarks and other jets in top pair or W+jets events. The
fully hadronic channel plots compare data to tt and QCD multijet simulation. Contributions
from a benchmark narrow Z0 signal model are shown with the black dashed lines. In obtaining
the final results, NTMJ production is estimated from data, and simulated QCD multijet events
are not used. In all plots, the error bars include only statistical contributions.
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EFT
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Effective field theory in a nutshell
• Current absence of “light “ new states in SM → possible new 

physics at higher scales/masses than observed 

• Effective Field Theory: ultraviolet divergences = manifestation of new 

phys. Renormalisation= Lagrangian is “new phys scale”-dependent  
←absorb effects of fluctuations/momenta between observed and high 
new phys. scale in few parameters

We are all Wilsonians now ! (JPreskill, Caltech)

HiggsTools Young Researchers Forum - Bruxelles 21 Oct 2015Top WG - Nov 2016 - CERN Fabio Maltoni2

the BSM ambitions of the LHC Higgs/Top/SM physics programmes can be 
recast in a simple and powerful way in terms of one statement:

L(6)
SM = L(4)

SM +
X

i

ci
⇤2

Oi + . . .

“BSM goal” of the SM LHC programme: 

determination of the couplings of the SM L up to DIM=6

The matter content of SM has been experimentally verified and evidence for 
light states is not present. 

SM measurements can always be seen as searches for deviations from the 
dim=4 SM Lagrangian predictions. More in general one can interpret 
measurements in terms of an EFT: 

The EFT approach
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the BSM ambitions of the LHC Higgs/Top/SM physics programmes can be 
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ci
⇤2

Oi + . . .

“BSM goal” of the SM LHC programme: 

determination of the couplings of the SM L up to DIM=6

The matter content of SM has been experimentally verified and evidence for 
light states is not present. 

SM measurements can always be seen as searches for deviations from the 
dim=4 SM Lagrangian predictions. More in general one can interpret 
measurements in terms of an EFT: 

The EFT approach

(F Maltoni, LHCTopWG open meeting Nov 2016)
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the BSM ambitions of the LHC Higgs/Top/SM physics programmes can be 
recast in a simple and powerful way in terms of one statement:

L(6)
SM = L(4)

SM +
X

i

ci
⇤2

Oi + . . .

“BSM goal” of the SM LHC programme: 

determination of the couplings of the SM L up to DIM=6

The matter content of SM has been experimentally verified and evidence for 
light states is not present. 

SM measurements can always be seen as searches for deviations from the 
dim=4 SM Lagrangian predictions. More in general one can interpret 
measurements in terms of an EFT: 

The EFT approach

dimensionless Wilson coefficients 

•  SM measurements “searches for deviations predictions of SM in  
dim=4 .

• Parametric new degrees of freedom in terms of old 
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Initial attempt:Top Fitter
• Fit  ~40  measurements  from LHC & Tevatron ( five 1-

dim differential xsec for tt and single top too ) to 
predictions to derive 12 couplings

TopFitter Coll, JHEP04(2016)015

Phys.Lett.B 763 (2016) 9

Buckley et al, 
TopFitterColl, 
arxiv:1612.02294Results from TopFitter Michael Russell
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Figure 3: Individual (red) and marginal (blue) 95% confidence limits on the Wilson coefficients
for each operator we consider in this fit. Figure taken from Ref. [2].

duction in the semileptonic decay channel, by merging the decay products of the hadronic top into
a fat jet, and reconstructing the top pT using HepTopTagger[8]. For pt

T < 200 GeV we perform a
standard resolved analysis. We fit the operators of Eq. (2.1) that contribute to tt̄ production to Stan-
dard Model pseudodata in both the resolved and boosted regions. Theory uncertainties are treated
as before. On the experimental side, we take statistical uncertainties corresponding to 30 fb�1 of
SM data, and assume a 20% statistical uncertainty on each bin. We then ask: what improvements
can be made on current bounds when systematic and statistical uncertainties are reduced?

The results of this analysis are shown in Fig. 4. The conclusions are quite different for the
resolved and the boosted selections. For the former, improvements can be made both by taking
more data and by reducing systematics, but reducing systematics is more important. Taking C1

u
as an example, we see that improving systematics by 10% and taking 300 fb�1 of data produces
a comparable bound to keeping current systematics and taking a tenfold larger data sample. For
the boosted case, on the other hand, we see that, at low statistics there is no gain from reducing
systematics, which merely reflects that high-pT boosted measurements are statistics limited at this
stage. Even with larger data samples, the gain to be made by reducing systematics is more modest.
This says that another input to the fit becomes important: the theoretical modelling of the high-pT

tail. Approaching 3000 fb�1, theory uncertainties will become the main driving force in improving
the top EFT fit at the LHC. Therefore, there is work to be done on both sides if the LHC is to reach
its full potential for measuring or placing limits on D = 6 operators.
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Figure 1. Residuals distributions for interpolated observable values (left) and uncertainties (right),
evaluated over all input MC runs and all observables. The 4th order polynomial parameterisation
gives the best performance and the vast majority of entries are within 5% of the explicit MC value.
The poor performance of a constant uncertainty assumption based on the median input uncertainty
is evident — since all three lines have the same normalisation, the majority of residual mismodellings
for the median approach are (far) outside the displayed 10% interval.

3.3 Fitting procedure

Our fitting procedure, briefly outlined in ref. [52], uses the Professor framework. The

first step is to construct an N -dimensional hypercube in the space of dimension six cou-

plings, compute the observables at each point in the space, and then to fit an interpolating

function f(C) that parametrises the theory prediction as a function of the Wilson coeffi-

cients C = {Ci}. This can then be used to rapidly generate theory observables for arbitrary

values of the coefficients. Motivated by the dependence of the total cross-section with a

Wilson coefficient:

σ ∼ σSM + CiσD6 + C2
i σD62 , (3.1)

the fitting function is chosen to be a second-order or higher polynomial:

fb({Ci}) = αb
0 +

∑

i

βb
iCi +

∑

i≤j

γbi,jCiCj + . . . . (3.2)

In the absence of systematic uncertainties, each observable would exactly follow a

second-order polynomial in the coefficients, and higher-order terms capture bin uncertain-

ties which modify this. The polynomial also serves as a useful check that the dimension-six

approximation is valid. By comparing eq. (3.1) with eq. (3.2), we see that the terms

quadratic in Ci are small provided that the coefficients in the interpolating function γi,j
are small. This is a more robust way to ensure validity of the dimension-six approximation

than to assume a linear fit from the start.

In practice, to minimise the interpolation uncertainty, we use up to a 4th order poly-

nomial in eq. (3.2), depending on the observable of interest. The performance of the

interpolation method is shown in figure 1, which depicts the fractional deviation of the

– 6 –
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polynomial fit from the explicit MC points used to constrain it. The central values and the

sizes of the modelling uncertainties may both be parameterised with extremely similar per-

formance, with 4th order performing best for both. The width of this residual mismodeling

distribution being ∼ 3% for each of the value and error components is the motivation for a

total 5% interpolation uncertainty to be included in the goodness of fit of the interpolated

MC polynomial f(C) to the experimentally measured value E:

χ2(C) =
∑

O

∑

i,j

(fi(C)− Ei)ρi,j(fj(C)− Ej)

σiσj
, (3.3)

where we sum over all observables O and all bins in that observable i. We include the

correlation matrix ρi,j where this is provided by the experiments, otherwise ρi,j = δij .

The uncertainty on each bin is given by σi =
√
σ2
th,i + σ2

exp,i, i.e. we treat theory and

experimental errors as uncorrelated. The parameterisation of the theory uncertainties is

restricted to not become larger than in the training set, to ensure that polynomial blow-up

of the uncertainty at the edges of the sampling range cannot produce a spuriously low χ2

and disrupt the fit.

We hence have constructed a fast parameterisation of model goodness-of-fit as a func-

tion of the EFT operator coefficients. This may be used to produce χ2 maps in slices or

marginalised projections of the operator space, which are then transformed to confidence

intervals on the coefficients Ci, defined by the regions for which

1− CL ≥
∫ ∞

χ2(Ci)
fk(x)dx , (3.4)

where typically CL ∈ {0.68, 0.95, 0.99} and fk(x) is the χ2 distribution for k degrees of

freedom, which we define as k = Nmeasurements −Ncoefficients.

4 Results

The entire 59 dimensional operator set of ref. [54] was implemented in a FeynRules [120]

model file. The contributions to parton level cross-sections and decay observables from the

above operators were computed using MadGraph/Madevent [121], making use of the

Universal FeynRules Output (UFO) [122] format. We model NLO QCD corrections by in-

cluding Standard Model K-factors (bin-by-bin for differential observables), where the NLO

observables are calculated using MCFM [123], cross-checked with MC@NLO [124, 125].

These K-factors are used for arbitrary values of the Wilson coefficients, thus modelling

NLO effects in the pure-SM contribution only. More specifically, this amounts to perform-

ing a simultaneous expansion of each observable in the strong coupling αs and the (inverse)

new physics scale Λ−1, and neglecting terms ∼ O(αSΛ−2). Our final 95% confidence limits

for each coefficient are presented in figure 12; we discuss them in more detail below.

– 7 –

experimental value

correlation standard dev

Predictions as polynomials 

All operators are consistent with zero at 95% CL

95%CL

Including covariances where 
provided by experiments 
otherwise 𝜌i,j =δi,j
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change in the prediction for the observables considered with 
respect to {Ci}.

Motivated by the functional form of the cross section with re-
spect to the Wilson coefficient

dσ ∼ dσSM + CidσD6 + C2
i dσD62 , (2.2)

we choose a polynomial dependence on {Ci} as our response func-
tion for a single bin b.

fb({Ci}) = αb
0 +

∑

i

βb
i Ci +

∑

i≤ j

γ b
i, jCi C j + . . . . (2.3)

This way operators with vanishing interference with the SM am-
plitude piece can be treated separately and we gain complete an-
alytical control over the fit. The ellipsis in Eq. (2.3) denotes higher 
order terms in {Ci}. Comparing Eqs. (2.2) and (2.3), one would ex-
pect a quadratic polynomial to capture the full dependence on {Ci}. 
However, when one considers observables such as asymmetries, or 
distributions normalised to the total cross section, this simple rela-
tion is no longer valid. In order to capture the dependence on the 
coefficients as accurately as possible, we use a fourth-order poly-
nomial for fb .2

Once fb is constructed for each bin in the distribution, all that 
remains is to define a goodness of fit function between theory and 
data, and minimise it to obtain exclusion contours for {Ci}.

3. Improving the top EFT fit at the LHC

3.1. The impact of high pT top final states

As noted in the introduction, the bounds obtained on top quark 
operators from early LHC data are rather weak. In principle, dif-
ferential distributions provide much more sensitivity to higher-
dimensional operators than inclusive rates, because they isolate 
the regions of phase space where the operators are most sensitive. 
Typically, however, the differential measurements used in the fit 
have been based on standard top reconstruction techniques, which, 
while providing good coverage of the low pT ‘threshold’ region, 
suffer from poor statistical and systematic uncertainties in the tails 
of distributions, precisely the region of phase space we aim to iso-
late.

Moreover, the measurements used were typically unfolded; that 
is, the final-state objects were corrected for detector effects and 
the actual measured ‘fiducial’ cross section extrapolated to the full 
phase space, without cuts. This includes the treatment of reducible 
as well as irreducible backgrounds, which we implicitly understand 
as part of experimental systematic uncertainties in the follow-
ing. Unfolded distributions substantially ease the workflow of our 
fit, since we can compare them directly to parton level quanti-
ties without the need for showering, hadronisation and detector 
simulation at each point in the parameter space. However, the ex-
trapolation from the fiducial to full phase space, which makes use 
of comparing to Monte Carlo simulations, necessarily biases the 
unfolded distributions towards SM-like shapes. It also introduces 
additional correlations between neighbouring bins, broadening the 
χ2.

For top pair production, being a 2 → 2 process, the relevant 
observables which span the partonic phase space are scattering 
angle and partonic centre-of-mass energy. All other observables 
are functions of these parameters, of which the top quark trans-
verse momentum is the most crucial in determining the quality 

2 We have checked that our fit is numerically stable with respect to higher-order 
terms in the response function; the fourth-order polynomial captures the best bal-
ance between fit coverage and computational efficiency.

Fig. 1. Transverse momentum distributions for the reconstructed hadronic top quark 
candidate. The bars represent 30 fb−1 of pseudodata with √s = 13 TeV constructed 
with the SM-only hypothesis, while the shaded curves include the effects of four-
quark operators with Wilson coefficients Ci = 10 TeV−2 for illustration. Details of 
the top quark reconstruction are described in the text. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Table 2
Summary of the physics object definitions and event se-
lection criteria in our hadron-level analysis.

Leptons pT > 30 GeV

|η| < 4.2

Missing energy Emiss
T > 30 GeV

Small jets anti-kT R = 0.4

pT > 30 GeV, |η| < 2

Fat jets anti-kT R = 1.2

pT > 200 GeV, |η| < 2

Resolved ≥ 4 small jets w/≥ 2 b-tags
Boosted ≥ 1 fat jet, ≥ 1 small jet w/ b-tag

and efficiency of the boosted top tagging approach [50–56] which 
we will employ in the following. The advantage of selecting high 
pT objects is thus twofold [57]. Firstly, by making use of sophisti-
cated reconstruction techniques for boosted objects, we move to 
the region of phase space where the effects of heavy new de-
grees of freedom will be most pronounced, as illustrated in Fig. 1, 
and secondly, jet substructure techniques require, by definition, 
a hadron-level analysis, so we avoid the model-dependence that 
fitting parton-level distributions to unfolded measurements suffers 
from.

The sting in the tail for analyses selecting high pT objects is, 
of course, low rates. At 13 TeV, for instance, we find that 90% of 
the cross section comes from the resolved region pt

T < 200 GeV.3

We thus aim to quantify at what stage in the LHC programme, if 
at all, the increased sensitivity in this region can compensate for 
the relatively poor statistics. Our analysis setup, as implemented in
Rivet [58], is as follows (summarised in Table 2).

Restricting ourselves to the semileptonic top pair decay chan-
nel, we first require a single charged lepton with pT > 30 GeV,4

3 We choose pt
T ≥ 200 GeV as benchmark point of the boosted selection as the 

top tagging below this threshold suffers from large mistag rates and small efficien-
cies.

4 We do not consider τ decays here to avoid the more involved reconstruction.

Initial attempt:Top Fitter

20% sys improvement 
& 30/fb

20% sys improvement 
& 300/fb

20% sys improvement 
& 3000/fb

10% sys improvement 
& 30/fb

10% sys improvement 
& 300/fb

10% sys improvement 
& 3000/fb

Isolate region that are most 
sensitive to tails : fit resolved and 
boosted  
More data give modest gain in 
boosted.
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