Sélection des photons pour le processus $Z \rightarrow \mu \mu \gamma$

C. BÂTY* M. LETHUILLER* J. TAO** S. GASCON* O. BONDU*

* : Institut de Physique Nucléaire de Lyon **: IHEP (Pekin)

28 mai 2009

Journées Physique CMS France 2009 à Strasbourg (IPHC)

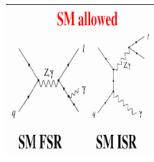
- Choix du canal
- Notre sélection et résultats

Conclusion

Plan de la présentation

- Choix du canal
 - Canal de recherche
 - Études précédentes
- Notre sélection et résultats

 - Échelle d'énergie : travaux préliminaires
- - Perspectives


Présentation de l'étude Vision d'ensemble

$Z \rightarrow \mu\mu + \gamma$, et son intérêt au LHC:

Les photons provenant des "bremstrahhlung internes" permettent les mesures suivantes sur les (futures) données expérimentales :

- efficacité de sélection des photons
- échelle d'énergie des photons
- efficacité d'identification des photons
- corrections en énergies des photons
- E_t : 5 200 GeV, gamme d'énergie permettant la calibration en énergie de l'ECAL

 π_0 < Pt < (γ provenant de la désintégration d'un boson de HIGGS).

Présentation de l'étude : étapes précédentes |/|| CMSSW 1_3_1 : continuation des travaux de l'analyse note CMS-AN 2005/040

Results for Signal and Backgrounds

Selection in CM:
 (1) >1 Global μ

(1) >1 Global μμ1, μ2 satisfy ALPGEN signal preselection cuts (pt>10 GeV, Int<3.0, m μ1, μ2 >20 GeV)

(2) >0 corrected γ

γ (flighest-pt corrected photon) satisfies ALPGEN signal preselection cuts (pt>10 GeV, |n|κ3.0, dR(γ), closest μ of μ1,μ2)>0.05)

(4)Cut Drell-Yan: 40<M(μμ)<80

(5) Exploit γιι correlation: ΔR(γιι)<0.8 + ET(γ)>15 GeV

(6) Mass window 87.2-95.2 GeV for signal Bin definitions: 1: 15 GeV<pt g<30 GeV 2: 30 GeV<pt g<45 GeV 3: 45 GeV<pt g<60 GeV

3: 40 GeV-cpt getti GeV (7) 70GeV-cm_μμγ<110 GeV, then divide number by 5. "Poor man's Poisson" Z mass window for background (in place of (6))

Summary	Ζ→μμγ Signal	Z + jets	γ + jets (*)	Bbar	ttbar
Nevents (/pb-1)	26.2	2750.3	1.706E08 (**)	7.8E06 (**)	561
After (1)	19.1	336.3	0.127 (**)	990.8 (**)	14.6
(2)	16.7	41.0	0.127(**)	381.7 (**)	12.3
(4)	13.7	3.28	0.121(**)	136.6 (**)	5.5
(5)	6.2	0.234	0.116(**)	70.4 (**)	.82
(6)	4.0+0.6+0.03=4.63				
(7)	-	0.029	<0.03(**)	8.74 + 3.02 + 0.24=12 (**)	0.08

(*)→Files in bins 30-50 and 80-120 could not be processed successfully

()→ insufficient stats (<1pb-1 eq. integrated lumi) could be as many as ~140 events/pb-1 from pthat bins<50 GeV for γ + jets)

D'ORCA à CMSSW

Première étude en simulation complète considerant presque l'ensemble de bruits de fonds pertinents

 \Rightarrow

Validation de la selection de Yuri dans CMSSW

Dans cette analyse on observe :

- bb est le bruit de fond le plus dangereux pour notre étude
- les autres bruits de fonds sont négligeables.
- amélioration pensée par l'utilisation des variables d'isolation du μ_{ΕΑΡ}

Cette analyse était calquée au plus prêt sur celle de Yuri (CMS-AN 2005/040) et est à la base de notre analyse actuelle.

4 / 17

Présentation de l'étude : étapes précédentes II/II CMSSW 1_6_12: sélection de Caltech (Jan Veverka)

Selection

Goal: Select FSR events while suppressing backgrounds. FSR "certifies" photon identity.

Preselection

- Require two global leptons with opposite charge and a supercluster.
- p_i(I) > 10 GeV and |n(I)| < 2.4 p_{*}(γ) > 10 GeV and |η(γ)| < 1.5
- min₋₁ , ΔR(I₂) > 0.05 (avoid biases on photon)
- Kinematical cuts. Suppress mainly the Z-related background.
 - Leading Muon p. > 15 GeV
 - $-\min_{\alpha \in \Omega} \Delta R(I\gamma) < 0.9$
- 45 GeV < M(I, I_n) < 85 GeV
- Jet veto. Suppress mainly than.
 - 2nd leading central (InI < 2.4) iet p_e < 15 GeV
- I/y candidate event multiplicity < 4 (EB), 3 (EE) Far lepton isolation. Suppress mainly bbbar w/o biasing photon ID.
 - "Inspired" by Higgs photon ID cuts. Use a solid ∆R < 0.3 cone around the far lepton while excluding l/y
 - tracks/depositions. Tracker. (1) Number of tracks with p.>1.5 GeV be zero. (2) sum of track p.<1 GeV
 - ECAL. Sum of island basic cluster deposits < 3 GeV
 - HCAL, Let H = sum of rechits; H/E < 0.3 (EB), 0.35 (EE)

Remarque : l'échantillon $b\bar{b}$ à été crée à Caltech avec les caractéristiques suivantes :

 $b\bar{b}$: 300k evts, $pT(\mu_1, \mu_2) > 8.13 \text{ GeV}$, $|\eta| < 2.5$,

$$\sigma_{b\bar{b}} = 7.52$$
nb, $L = 93$ pb⁻¹

Sianal

CUT	FSR	Puretée	Détail de la coupure
0	4097	0.45 %	Échantillon complet
1	1276	1.0 %	Préselection
2	873	2.9 %	3 coupures cinématiques
3	836	3.0 %	Jet veto
4	667	69 %	Isolation μ éloigné
5	667	72 %	Nb candidats $\mu\mu\gamma$
6	573	93 %	Masse invariante du $\mu\mu\gamma$

Bruits de fonds

CUT	Z	t₹	bĒ
0	79370	84600	752080
1	7443	4100	109609
2	130	455	29007
3	119	157	26473
4	82	73	140
5	77	52	132
6	20	12	14

5 / 17 Clément Bâty

Notre étude : ses objectifs

Différences avec l'étude de Jan Veverka

- Relache du seuil de l' Et_{γ} (lui : 10 GeV, nous 12 GeV coupures niveau générateur),
- Imposition d'une coupure sur $pt_{\mu_{HIGH}}$.

Mais même but : mise en oeuvre de l'isolation du muon éloigné (far).

But de notre étude

- amélioration de la sélection pour l'isolation du μ_{FAR}
- intégrer en plus de l'analyse de Yuri les améliorations de Jan VEVERKA (coupure sur pt d'un muon, relache du seuil en pt des photons)

But: Augmenter le taux d'évenement signal en maintenant un même rejet du bruits de fond, pour obtenir les résultats avec moins de luminosité intégrée.

Plan de la présentation

- - Canal de recherche
 - Études précédentes
- Notre sélection et résultats
 - Coupures
 - Résultats obtenus
 - Échelle d'énergie : travaux préliminaires
- - Perspectives

Sélection

Description des coupures

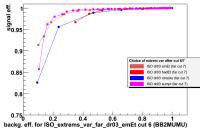
- CUT 1 :> 1 Muon, chaque μ as pt > 10 GeV && $|\eta| < 3.0 \&\& m_{\mu_1 \mu_2} > 20 \text{ GeV}$
- CUT 2 : > 0 γ corrigé et ce photon reconstruit satisfait les coupures de préselections suivantes: (pt > 10 GeV, $|\eta| < 3.0$, $\Delta_R(\gamma_1)$ closestmu of μ_1, μ_2) > 0.05
- CUT 3 : $pt_{\gamma_1} > 1 GeV$ (toujours le cas)
- CUT 4 : 40 GeV < $m_{\mu_1 \mu_2}$ < 80 GeV
- CUT 5 : $\Delta_R (\mu_1, \mu_2 \gamma_1) < 0.8, pt_{\gamma_1} > 12 \text{ GeV}$ (15)
- CUT 6-7 :
- 6 SIGNAL 87.2 $< m_{\mu\mu\gamma} < 95.2$
- 7 BRUITS DE FOND 70 $< m_{\mu\mu\gamma} < 110$,
- CUT 8 : ISO_{emFT} < 1 pour le muon lointain dans un cone de $\Delta_P = 0.3$
- CUT 9 : $PT_{II} > 30$ pour le muon le plus éloigné.

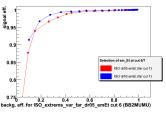
Les coupures (1) et (2) impose les préselections ALPGEN imposées au signal sur le sianal et les bruits de fonds

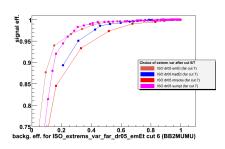
Les coupures (4) à (7) sont là pour lutter contre les autres bruits de fonds.

Autres coupures

- Pour les bruits de fonds autre aue les Z + jets: Isolation
- Isolation des μ pour supprimer les γ /jbb
- \triangleright le γ proche du μ caractérise le signal, on cherche donc un autre muon isolé : μ_{FAR}
- Autres possibilitées (activitée des jets ?) ...







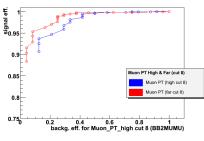
Sélection

Choix de la variable de sélection pour le CUT 8

Comparaison

- Des variables d'isolation
- 2 Des différentes valeur de Δ_R
- **③** finale pour emET ⇒ $emEt_{\Delta_R=0.3}$.

CUT 8 : $emEt_{\Delta_R=0.3}>1$



Sélection

Choix de la variable de sélection pour le CUT 9

Choix effectué

- variables pertinentes :
 - ⊳ Pt_u éloigné (far)
 - ▷ Pt_u maximum (high)
- comparaison des deux
- Pt,, éloigné (far)

Extrait du tableau de points étudiés (Pt_{μ} far)					
Coupure en Pt	% BB2MUMU	% SIGNAL			
28	8.33333	94.305			
29	8.33333	92.8965			
30	4.16667	91.5493			
31	4.16667	90.3246			

|||/|||

Resultats pour le signal

CUT	Signal (efficacité absolue & relative)	Pureté
0	2615.3820 (N/A)	0 %
1	1964.5710 (75.116 & 75.116 %)	.007 %
2	1709.6730 (65.369 & 87.025 %)	.018 %
3	1709.6730 (65.369 & 100.000 %)	.018 %
4	1416.7545 (54.170 & 82.866 %)	.054 %
5	849.8385 (32.493 & 59.984 %)	.095 %
6	637.9590 (24.392 & 75.068 %)	.708 %
7		
8	582.9810 (22.290 & 91.382 %)	5.810 %
9	526.5750 (20.133 & 90.324 %)	59.564 %

S 1		10		
)h	ser'	vati	ıor	IS .

- Passage d'une puretée de $\sim 1\%$ à 60%
- Suppression de tous les bruits de fonds étudiés (à part bb2mumu)
- Éfficacité ~ 20%

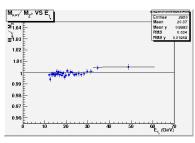
Resultats pour les bruits de fonds

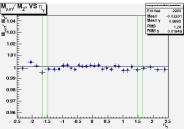
CUT	BB2MUMU (abs & rel)	BBNJETS (abs & rel)	PHNJETS-ALL (abs & rel)
0	3227299937.6 (N/A)	37798866.6 (N/A)	13680611.29 (N/A)
- 1	26452208.8 (.819 & .819 %)	22228.3 (.058 & .058 %)	49.33 (.278 & 0 %)
2	9177844.1 (.284 & 34.695 %)	9807.1 (.025 & 44.119 %)	47.65 (.263 & 96.592 %)
3	9177844.1 (.284 & 100.000 %)	9807.1 (.025 & 100.000 %)	47.65 (.263 & 100.000 %)
4	2534407.6 (.078 & 27.614 %)	3260.9 (.008 & 33.249 %)	14.11 (.093 & 29.619 %)
5	865058.8 (.026 & 34.132 %)	1663.8 (.004 & 51.021 %)	5.77 (.010 & 40.901 %)
6	_	_	_
7	85791.9 (.002 & 9.917 %)	117.9 (0 & 7.088 %)	.036 (0 & .618 %)
8	8579.2 (0 & 10.000 %)	7.41 (0 & 6.276 %)	< 0.036 (0 & — %)
9	357 5 (0 & 4 166 %)	< 7.41 (0.8 — %)	< 0.036 (0.8 — %)

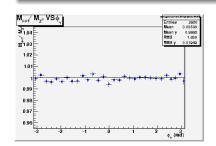
11 / 17 Clément Bâty

Détails sur les signaux et bruits de fonds

- seul les bruits de fonds contenant des b (BB2MUMU, BBNJETS) et des photons (PHNJETS-*) ont été étudiés, les autres étant maitrisé par les coupures précédentes (cf étude effectuée en CMSSW 1 3 1)
- 2 I'échantillon appellé BB2MUMU n'est pas de type $bb \to \mu, \mu$ mais est en réalité de type QCD exigeant 1 seul quark b, et ayant un état final comportant deux muons. Cela explique l'énorme section efficace : 32ub (à comparer aux 7.5*nb* de l'échantillon de Jan)


	Efficacité bruit de fond	Efficacité signal
Selection CalTech	1.8 <i>E</i> ⁻⁵	14 %
Selection IPNL	1.1 <i>E</i> ⁻⁷	20 %


La statistique de l'échantillon (2.7 M évenements) ne permet pas d'améliorer plus les résultats.


Vers l'utilisation des photons certifies selectionnés

Photons certifiés

- On part du principe que les évenements sortant de notre analyse sont des événements de signal.
- On essaie d'observer les résultats selon les variables : $Et, \eta, \text{ et } \phi$

Plan de la présentation

- - Canal de recherche
 - Études précédentes
- Notre sélection et résultats

 - Échelle d'énergie : travaux préliminaires
- Conclusion
 - Conclusion
 - Perspectives

- Réutilisation et amélioration des analyses précédentes effectuées
- Découverte et maîtrise d'un bruit de fond particulièrement dangereux (BB2MUMU)
- Implémentation de deux nouvelles coupures :
 - 8 une coupure d'isolation : emET > 1
 - 9 une coupre cinétique : $PT_{uulGH} > 30$
- Amélioration de l'efficacité des coupures : \sim 20%, en augmentant la puretée (par rapport à avant).
- Suppression des bruits de fonds dans la limite imposée par la statistique (insuffisante)

- Passer en version 2_2_9 pour analyser des échantillons ayant une statistique plus importante
- Améliorer la sélection et vérifier l'absence d'autres bruits de fonds "dangereux" pour notre signal
- Implémenter la sélection dans le framework CMSSW
- Contribuer à la calibration du calorimètre électromagnétique par le canal $Z \rightarrow \mu \mu \gamma$

Fin de l'exposé

Merci de votre attention

Introduction I

- 0: 14652 events
- 1: 1805673 events
- 2:330821 events
- 3 : 210343 events
- BB1JETS: 319263 events
- BB2JETS: 215707 events
- BB4JETS: 109146 events
- BB5JETS: 46169 events
 - PH1-20: 93947 events
- PH1-60: 86036 events
- PH1-120: 87518 events
- PH1-180: 5000 events

Introduction II

- PH1-240: 0 events
- PH1-300: 93922 events PH2-20: 128544 events
 - PH2-60: 71715 events
- PH2-120: 151379 events
- PH2-180: 84041 events
- PH2-240: 96453 events PH2-300: 67178 events
 - PH3-20: 91806 events
- PH3-60: 0 events
- PH3-120: 55683 events
- PH3-180: 80000 events
- PH3-240: 79216 events

Introduction III

- PH3-300: 61592 events
 - PH4-20: 30938 events
- PH4-60: 28226 events PH4-120: 70000 events
- PH4-180: 54782 events
- PH4-240: 45031 events
- PH4-300: 46458 events

Reminder

- * Sample 0 = SIGNAL Morgan
- * Sample 1 = BACKGROUND BB2MuMu
- * Sample 2 = BACKGROUND BB3JETS
- * Sample 3 = BACKGROUND STEW
- * Sample BBNJETS = BACKGROUND BBNJETS
- * Sample PHNJETS = BACKGROUND PHNJETS (PHN-20, PHN-60, PHN-120, PHN-180, PHN-240, PHN-300)

Récaptitlatif des coupures effectuees

Liste des cuts

CUT 1:>1 Muon, each mu have pt>10 GeV && $|\eta|$ < 3.0 and $m_{\mu_1\mu_2}$ > 20 GeV

CUT 2: > 0 corrected γ and this highest-pt reco photon satisfies following cuts (pt > 10 GeV, $|\eta|$ < 3.0, Δ_R (γ_1 , closestmu of μ_1, μ_2) > 0.05

CUT 3: $pt_{\gamma_1} > 1 GeV$ (always the case)

CUT 4: 40 GeV < $m_{\mu_1\mu_2}$ < 80 GeV

CUT 5: $\Delta_R (\mu_1, \mu_2 - \gamma_1) < 0.8$, $pt_{\gamma_1} > 15 GeV$

CUT 6-7:

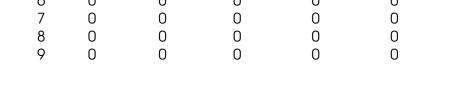
6 SIGNAL 87.2 < $m_{\mu\mu\gamma}$ < 95.2

7 BACKGROUND 70 < $m_{\mu\mu\gamma}$ < 110, $\frac{\#\text{evts}}{5}$

CUT 8: $ISO_{emET} < 1$ for muon far in a $\Delta_R = 0.3$ radius

CUT 9: $\mu_{hadT} > 30$ for muon far

CUT	Signal	BB2MUMU	BB3JETS	STEW
0	14652	1805673	330821	210343
1	11006	14800	264	68
2	9578	5135	145	26
3	9578	5135	145	26
4	7937	1418	40	12
5	4761	484	18	6
6	3574	484	18	6
7	3574	48.0	1.8	.8
8	3266	4.8	0	.2
9	2950	.2	0	0


7 / 17

CUT	BB1JETS	BB2JETS	BB4JETS	BB5JETS	BBNJETS
0	319263	215707	109146	46169	1021106
1	172	147	144	71	798
2	68	76	101	55	445
3	68	76	101	55	445
4	23	25	36	26	150
5	12	13	13	11	67
6	12	13	13	11	67
7	.6	1.4	1.2	1.8	6.8
8	0	.2	0	.2	.4
9	0	0	0	0	0

CUT	PH1J-20	PH1J-60	PH1J-120	PH1J-180	PH1J-240	PH1.
0	93947	86036	87518	5000	0	939
1	0	0	0	0	0	(
2	0	0	0	0	0	(
3	0	0	0	0	0	(
4	0	0	0	0	0	(

CUT	PH2J-20	PH2J-60	PH2J-120	PH2J-180	PH2J-240	PH2、
0	128544	71715	151379	84041	96453	67
1	0	2	4	2	6	ţ
2	0	2	3	2	5	ţ
3	0	2	3	2	5	ţ
4	0	1	1	2	1	1
5	0	0	0	0	0	
6	0	0	0	0	0	

CUT	PH3J-20	PH3J-60	PH3J-120	PH3J-180	PH3J-240	PH3、
0	91806	0	55683	80000	79216	615
1	0	0	4	12	5	1
2	0	0	4	11	4	1
3	0	0	4	11	4	1
4	0	0	1	2	1	(
5	0	0	0	1	0	(
6	0	0	0	1	0	(
_	_	_	_	^	_	,

VI

CUT	PH4J-20	PH4J-60	PH4J-120	PH4J-180	PH4J-240	PH4、
0	30938	28226	70000	54782	45031	464
1	5	5	17	14	29	3
2	5	4	17	13	27	3
3	5	4	17	13	27	3
4	1	2	7	3	5	1

CUT	PH1J-all	PH2J-all	PH3J-all	PH4J-all	PHNJ-all
0	366423	599310	368297	275435	1609465
1	0	19	33	101	153
2	0	17	31	97	145
3	0	17	31	97	145
4	0	7	10	36	53
5	0	1	1	4	6
6	0	1	1	4	6
7	0	0	.2	.2	.4
8	0	0	0	0	0
9	0	0	0	0	0

Resultats des coupures (pour $100 pb^{-1}$)

	Signal avec efficacite relative :	
CUT	Signal (abs & rel)	Pureté
0	2615.3820 (N/A)	0 %
1	1964.5710 (75.116 & 75.116 %)	.007 %
2	1709.6730 (65.369 & 87.025 %)	.018 %
3	1709.6730 (65.369 & 100.000 %)	.018 %
4	1416.7545 (54.170 & 82.866 %)	.054 %
5	849.8385 (32.493 & 59.984 %)	.095 %
6	637.9590 (24.392 & 75.068 %)	.708 %
7	— (N/A %)	_
8	582.9810 (22.290 & 91.382 %)	5.810 %
9	526.5750 (20.133 & 90.324 %)	59.564 %

Bruits de fonds avec efficacite absolue & relative :					
CUT	BB2MUMU (rel)	BB3JETS (rel)	STEW (rel)		
0	3227299937.5722 (N/A)	1699989.8727 (N/A)	497038806.1935 (N/A)		
1	26452208.7200 (.819 & .819 %)	1356.6168 (.079 & .079 %)	293862.8772 (.059 & .059 %)		
2	9177844.0390 (.284 & 34.695 %)	745.1115 (.043 & 54.924 %)	112359.3354 (.022 & 38.235 %)		
3	9177844.0390 (.284 & 100.000 %)	745.1115 (.043 & 100.000 %)	112359.3354 (.022 & 100.000 %)		
4	2534407.5652 (.078 & 27.614 %)	205.5480 (.012 & 27.586 %)	51858.1548 (.010 & 46.153 %)		
5	865058.7176 (.026 & 34.132 %)	92.4966 (.005 & 45.000 %)	25929.0774 (.005 & 50.000 %)		
6	_	_	_		
7	85790.94720 (.002 & 9.917 %)	9.24966 (0 & 10.000 %)	3457.21032 (0 & 13.333 %)		
8	8579.09472 (0 & 10.000 %)	0 (0 & 0 %)	864.30258 (0 & 25.000 %)		
9	357.46228 (0 & 4.166 %)	0 (0 & NaN %)	0 (0 & 0 %)		

14 / 17 Clément Bâty

Resultats des coupures (pour $100 pb^{-1}$)

	Bruits de fonds avec efficacite absolue & relative :					
CUT	BB1JETS (abs & rel)	BB2JETS (abs & rel)	BB3JETS (abs & rel)			
0	27999971.6997 (N/A)	7699984.9255 (N/A)	1699989.8727 (N/A)			
1	15084.7268 (.053 & .053 %)	5247.3855 (.068 & .068 %)	1356.6168 (.079 & .079 %)			
2	5963.7292 (.021 & 39.534 %)	2712.9340 (.035 & 51.700 %)	745.1115 (.043 & 54.924 %)			
3	5963.7292 (.021 & 100.000 %)	2712.9340 (.035 & 100.000 %)	745.1115 (.043 & 100.000 %			
4	2017.1437 (.007 & 33.823 %)	892.4125 (.011 & 32.894 %)	205.5480 (.012 & 27.586 %)			
5	1052.4228 (.003 & 52.173 %)	464.0545 (.006 & 52.000 %)	92.4966 (.005 & 45.000 %)			
6	· <u> </u>	<u> </u>	· —			
7	52.62114 (0 & 5.000 %)	49.97510 (0 & 10.769 %)	46.2483 (0 & 10.000 %)			
8	0 (0 & 0 %)	7.13930 (0 & 14.285 %)	0 (0 & 0 %)			
9	0 (0 & NaN %)	0 (0 & 0 %)	0 (0 & NaN %)			
CUT	BB4JETS (abs & rel)	BB5JETS (abs & rel)	BBNJETS (abs & rel)			
0	338221.6248 (N/A)	60698.3843	37798866.5070			
1	446.2272 (.131 & .131 %)	93.3437 (.153 & .153 %)	22228.3000 (.058 & .058 %)			
2	312.9788 (.092 & 70.138 %)	72.3085 (.119 & 77.464 %)	9807.0620 (.025 & 44.119 %)			
3	312.9788 (.092 & 100.000 %)	72.3085 (.119 & 100.000 %)	9807.0620 (.025 & 100.000 %)			
4	111.5568 (.032 & 35.643 %)	34.1822 (.056 & 47.272 %)	3260.8432 (.008 & 33.249 %)			
5	40.2844 (.011 & 36.111 %)	14.4617 (.023 & 42.307 %)	1663,7200 (.004 & 51.021 %)			
6		_				
7	3.71856 (.001 & 9.230 %)	2.36646 (.003 & 16.363 %)	117.93092 (0 & 7.088 %)			
8	0 (0 & 0 %)	.26294 (0 & 11.111 %)	7.40224 (0 & 6.276 %)			
9	0 (0 & NaN %)	0 (0 & NaN %)	0 (0 & 0 %)			

15 / 17 Clément Bâty

Clément Bâty

Resultats des coupures (pour $100 pb^{-1}$)

Bruits de fonds avec efficacite absolue & relative :					
CUT	PH1JETS-ALL (abs & rel)	PH2JETS-ALL (abs & rel)	PH3JETS-ALL (abs & rel)		
0	9717375.7889 (N/A)	2706396.3373 (N/A)	1044061.0325 (N/A)		
1	0 (0 & 0 %)	8.8308 (.019 & 0 %)	4.4280 (.047 & 0 %)		
2	0 (0 & NaN %)	8.6082 (.017 & 97.479 %)	4.2300 (.044 & 95.528 %)		
3	0 (0 & NaN %)	8.6082 (.017 & 100.000 %)	4.2300 (.044 & 100.000 %)		
4	0 (0 & NaN %)	4.2503 (.006 & 49.375 %)	1.0209 (.013 & 24.134 %)		
5	0 (0 & NaN %)	.0022 (.001 & .051 %)	.1688 (.001 & 16.534 %)		
6	_	_	_		
7	0 (0 & NaN %)	0 (0 & NaN %)	.03376 (0 & NaN %)		
8	0 (0 & NaN %)	0 (0 & NaN %)	0 (0 & NaN %)		
9	0 (0 & NaN %)	0 (0 & NaN %)	0 (0 & NaN %)		

CUT	PH4JETS-ALL (abs & rel)	PHNJETS-ALL (abs & rel)
0	212778.1245 (N/A)	13680611.2832 (N/A)
1	36.0690 (.212 & .016 %)	49.3278 (.278 & 0 %)
2	34.8088 (.202 & 96.506 %)	47.6470 (.263 & 96.592 %)
3	34.8088 (.202 & 100.000 %)	47.6470 (.263 & 100.000 %)
4	8.8414 (.074 & 25.399 %)	14.1126 (.093 & 29.619 %)
5	5.6012 (.008 & 63.351 %)	5.7722 (.010 & 40.901 %)
6	_	_
7	.00192 (0 & .034 %)	.03568 (0 & .618 %)
8	0 (0 & NaN %)	0 (0 & NaN %)
0	0 (0 & NaN %)	0 (0 & NaN %)

17

Study's description Signal and backgrounds

Samples

```
\label{eq:signal: Z in mu} \begin{split} & \geq \text{ signal: } Z \to \mu\mu\gamma \text{ with } M_{\mu\mu} < M_Z \text{, small } \Delta_R \text{ (FSR)} \\ & \geq \text{ Backgrounds: } \\ & \text{ Considered for PTDR I (CMS-AN 2005/040)} \\ & Z + \text{ jets } \quad \mu\mu + \text{ fake } \gamma \text{ from jets, mostly real Z; no } \mu\mu \text{ correlation} \\ & Z \text{ (+ jets)} \quad \mu\mu + \text{ fake } \gamma \text{ from } \mu \text{ passage through ECAL, mostly real Z; } \mu \text{ extrapolation to ECAL will coincide with photon position} \\ & \text{Not considered for PTDR I (CMS-AN 2005/040) assumed to be eliminate by asking } > 1 \text{ isolated } \mu. \\ & \gamma + \text{n jets} \quad \text{few muons and non-Z but enormous cross-sections} \approx 1e8evts@0 - 15GeV \\ & b\bar{b} \\ & \gamma bb \quad \gamma \& \mu\mu \text{ from } b \text{, non-isolated muons, } \mu\gamma \text{ anti-correlate (g-splitting)} \\ & \text{ jbb } \quad \text{fake } \gamma + \mu\mu \text{ from } b \text{, non-isolated muons, no } \mu\gamma \text{ correlation} \\ & \text{W + jets} \\ & \text{ if } \end{aligned}
```


17 / 17 Clément Bâty