Sélection des photons pour le processus $Z ightarrow \mu \mu \gamma$

- C. Bâty* M. Lethuiller* J. TAO** S. GASCON* O. BONDU*
 - * : Institut de Physique Nucléaire de Lyon ** : IHEP (Pekin)

28 mai 2009

Journées Physique CMS France 2009 à Strasbourg (IPHC)

1) Choix du canal

Plan de la présentation

Choix du canal

- Canal de recherche
- Études précédentes

Notre sélection et résultats

- Coupures
- Résultats obtenus
- Échelle d'énergie : travaux préliminaires

3 Conclusion

- Conclusion
- Perspectives

Présentation de l'étude Vision d'ensemble

$Z ightarrow \mu \mu + \gamma$, et son intérêt au LHC:

Les photons provenant des *"bremstrahhlung internes "* permettent les mesures suivantes sur les (futures) données expérimentales :

- efficacité de sélection des photons
- échelle d'énergie des photons

Von 1 UNIVERSITE DE LYON

- efficacité d'identification des photons
- corrections en énergies des photons
- E_t : 5 200 GeV, gamme d'énergie permettant la calibration en énergie de l'ECAL $\pi_0 < \text{Pt} < (\gamma \text{ provenant de la désintégration d'un boson de HIGGS}).$

Présentation Résultats Conclusion

Canal de recherche Études précédentes

Présentation de l'étude : étapes précédentes I/II CMSSW 1_3_1 : continuation des travaux de l'analyse note CMS-AN 2005/040

Results for Signal and Backgrounds

Selection in CMS-AN 2005/040

(1) >1 Global μ

 $\mu 1, \mu 2$ satisfy ALPGEN signal preselection cuts (pt>10 GeV, [h]<3.0, m_ $\mu 1, \mu 2$ >20 GeV)

(2) >0 corrected γ

 γ 1 (highest-pt corrected photon) satisfies ALPGEN signal preselection cuts (pt>10 GeV, [h]<3.0, dH(γ 1, closest μ of μ 1, μ 2)>0.05)

(4)Cut Drell-Yan: 40<M(μμ)<80

(5) Exploit γμ correlation: ΔR(γμ)<0.8 + ET(γ)>15 GeV

(6) Mass window 87.2-95.2 GeV for signal Bin definitions: 1: 15 GeV<pt g<30 GeV 2: 30 GeV<pt g<45 GeV 3: 45 GeV<pt g<60 GeV

(7) 70GeV<m_μμγ<110 GeV, then divide number by 5. "Poor man's Poisson" Z mass window for background (in place of (6))

Summary	Z-→μμγSignal	Z + jets	γ + jets (*)	Bbar	ttbar
Nevents (/pb-1)	26.2	2750.3	1.706E08 (**)	7.8E06 (**)	561
After (1)	19.1	336.3	0.127 (**)	990.8 (**)	14.6
(2)	16.7	41.0	0.127(**)	381.7 (**)	12.3
(4)	13.7	3.28	0.121(**)	136.6 (**)	5.5
(5)	6.2	0.234	0.116(**)	70.4 (**)	.82
(6)	4.0+0.6+0.03=4.63				
(7)		0.029	<0.03(**)	8.74 + 3.02 + 0.24=12 (**)	0.08

(*)→Files in bins 30-50 and 80-120 could not be processed successfully

(**) > insufficient stats (<1pb-1 eq. integrated lumi) could be as many as ~140 events/pb-1 from pthat bins<50 GeV for γ + jets)

D'ORCA à CMSSW

Première étude en simulation complète considerant presque l'ensemble de bruits de fonds pertinents

⇒

Validation de la selection de Yuri dans CMSSW

Dans cette analyse on observe :

- bb est le bruit de fond le plus dangereux pour notre étude
- les autres bruits de fonds sont négligeables.
- amélioration pensée par l'utilisation des variables d'isolation du µ_{FAR}

Cette analyse était calquée au plus prêt sur celle de Yuri (**CMS-AN 2005/040**) et est à la base de notre analyse actuelle.

Présentation de l'étude : étapes précédentes II/II CMSSW 1_6_12 : sélection de Caltech (Jan Veverka)

Selection

- Goal: Select FSR events while suppressing backgrounds. FSR "certifies" photon identity.
- Preselection
 - Require two global leptons with opposite charge and a supercluster.
 - p₁(l) > 10 GeV and |η(l)| < 2.4
 - $p_{\tau}(\gamma) > 10 \text{ GeV}$ and $|\eta(\gamma)| < 1.5$
 - $\min_{l=1,2} \Delta R(l\gamma) > 0.05$ (avoid biases on photon)
- · Kinematical cuts. Suppress mainly the Z-related background.
 - Leading Muon p₁ > 15 GeV
 - $\min_{l=1,2} \Delta R(l_{l_{1}}\gamma) < 0.9$
 - 45 GeV < M(l₁l₂) < 85 GeV
- · Jet veto. Suppress mainly ttbar.
 - 2^{nd} leading central (|\eta| < 2.4) jet $p_{_{\rm T}}$ < 15 GeV
 - //γ candidate event multiplicity < 4 (EB), 3 (EE)
- Far lepton isolation. Suppress mainly bbbar w/o biasing photon ID.
 - "Inspired" by Higgs photon ID cuts.
 - Use a solid ΔR < 0.3 cone around the far lepton while excluding *ll*γ tracks/depositions.
 - Tracker. (1) Number of tracks with p₁>1.5 GeV be zero, (2) sum of track p₁<1 GeV
 - ECAL. Sum of island basic cluster deposits < 3 GeV
 - HCAL. Let H = sum of rechits; H/E < 0.3 (EB), 0.35 (EE)

Remarque : l'échantillon $b\overline{b}$ à été crée à Caltech avec les caractéristiques suivantes :

 $b\bar{b}$: 300k evts, $pT(\mu_1, \mu_2) > 8.13 \text{ GeV}$, $|\eta| < 2.5$,

$$\sigma_{b\bar{b}} = 7.52 \text{nb}, L = 93 \text{pb}^{-1}$$

Signal

UT	FSR	Puretée	Détail de la coupure
)	4097	0.45 %	Échantillon complet
1	1276	1.0 %	Préselection
2	873	2.9 %	3 coupures cinématiques
3	836	3.0 %	Jet veto
4	667	69 %	Isolation μ éloigné
5	667	72 %	Nb candidats $\mu\mu\gamma$
5	573	93 %	Masse invariante du $\mu\mu\gamma$

Bruits de fonds

		_	_
CUT	Z	tt	bb
0	79370	84600	752080
1	7443	4100	109609
2	130	455	29007
3	119	157	26473
4	82	73	140
5	77	52	132
6	20	12	14

Notre étude : ses objectifs

Différences avec l'étude de Jan VEVERKA

- Relache du seuil de l' Et_γ (lui : 10 GeV, nous 12 GeV coupures niveau générateur),
- Imposition d'une coupure sur $pt_{\mu_{HIGH}}$.

Mais même but : mise en oeuvre de l'isolation du muon éloigné (far).

But de notre étude

- amélioration de la sélection pour l'isolation du µFAR
- intégrer en plus de l'analyse de Yuri les améliorations de Jan VEVERKA (coupure sur pt d'un muon, relache du seuil en pt des photons)
- But : Augmenter le taux d'évenement signal en maintenant un même rejet du bruits de fond, pour obtenir les résultats avec moins de luminosité intégrée.

Plan de la présentation

Choix du canal

- Canal de recherche
- Études précédentes

2 Notre sélection et résultats

- Coupures
- Résultats obtenus
- Échelle d'énergie : travaux préliminaires

3 Conclusion

- Conclusion
- Perspectives

Sélection

I/III

Description des coupures

- CUT 1 :> 1 Muon, chaque μ as pt > 10 GeV &&| η | < 3.0 && $m_{\mu_1\mu_2} > 20 \text{ GeV}$
- CUT 2 :> 0 γ corrigé et ce photon reconstruit satisfait les coupures de préselections suivantes : (*pt* > 10 GeV, 1 η | < 3.0, Δ_R (γ_1 , closestmu of μ_1, μ_2) > 0.05
- CUT 3 : $pt_{\gamma_1} > 1 GeV$ (toujours le cas)
- CUT 4 : 40 GeV < $m_{\mu_1\mu_2}$ < 80 GeV
- CUT 5 : $\Delta_R (\mu_1, \mu_2 \gamma_1) < 0.8, pt_{\gamma_1} > 12 \text{ GeV}$ (15)

CUT 6-7 :

- 6 SIGNAL 87.2 $< m_{\mu\mu\gamma} < 95.2$
- 7 BRUITS DE FOND 70 < $m_{\mu\mu\gamma}$ < 110, $\frac{\#evts}{5}$
- CUT 8 : ISO_{emET} < 1 pour le muon lointain dans un cone de $\Delta_R = 0.3$
- CUT 9 $: PT_{\mu} > 30$ pour le muon le plus éloigné.

Lyon 1 UNIVERSITE DE LYON

Les coupures (1) et (2) impose les préselections ALPGEN imposées au signal sur le signal et les bruits de fonds

Les coupures (4) à (7) sont là pour lutter contre les autres bruits de fonds.

Autres coupures

- Pour les bruits de fonds autre que les Z + jets: Isolation
- Isolation des μ pour supprimer les γ/jbb
- le γ proche du μ caractérise le signal, on cherche donc un autre muon isolé : μ_{FAR}
- Autres possibilitées (activitée des jets ?) ...

Coupures Résultats obtenus Échelle d'énergie

Sélection Choix de la variable de sélection pour le CUT 8

Lyon 1 UNIVERSITE DE LYON

Comparaison

- Des variables d'isolation
-) Des différentes valeur de $\Delta_{
 m extsf{R}}$

3) finale pour emET
$$\Rightarrow emEt_{\Delta_R=0.3}$$

CUT 8 : $emEt_{\Delta_R=0.3} > 1$

||/|||

Sélection Choix de la variable de sélection pour le CUT 9

Choix effectué

- variables pertinentes :
 - ▷ Pt_µ éloigné (far)
 - $\triangleright Pt_{\mu}$ maximum (high)
- comparaison des deux

 \Rightarrow Pt_{μ} éloigné (far)

Extrait du tableau de points étudiés (Pt_{μ} far)

Coupure en Pt	% BB2MUMU	% SIGNAL	
28	8.33333	94.305	
29	8.33333	92.8965	
30	4.16667	91.5493	
31	4.16667	90.3246	

|||/|||

Coupures Résultats obtenus Échelle d'énergie

Résultats obtenus

Resultats pour le signal

CUT	Signal (efficacité absolue & relative)	Pureté	
0	2615.3820 (N/A)	0 %	Observations
1	1964.5710 (75.116 & 75.116 %)	.007 %	
2	1709.6730 (65.369 & 87.025 %)	.018 %	\bigcirc Passage d'une puretée de $\sim 1\%$
3	1709.6730 (65.369 & 100.000 %)	.018 %	à 60%
4	1416.7545 (54.170 & 82.866 %)	.054 %	
5	849.8385 (32.493 & 59.984 %)	.095 %	Suppression de tous les bruits de
6	637.9590 (24.392 & 75.068 %)	.708 %	tonas etudies (a part bb2mumu)
7			
8	582.9810 (22.290 & 91.382 %)	5.810 %	\odot Efficacite $\sim 20\%$.
9	526.5750 (20.133 & 90.324 %)	59.564 %	

Resultats pour les bruits de fonds

CUT	BB2MUMU (abs & rel)	BBNJETS (abs & rel)	PHNJETS-ALL (abs & rel)
0	3227299937.6 (N/A)	37798866.6 (N/A)	13680611.29 (N/A)
1	26452208.8 (.819 & .819 %)	22228.3 (.058 & .058 %)	49.33 (.278 & 0 %)
2	9177844.1 (.284 & 34.695 %)	9807.1 (.025 & 44.119 %)	47.65 (.263 & 96.592 %)
3	9177844.1 (.284 & 100.000 %)	9807.1 (.025 & 100.000 %)	47.65 (.263 & 100.000 %)
4	2534407.6 (.078 & 27.614 %)	3260.9 (.008 & 33.249 %)	14.11 (.093 & 29.619 %)
5	865058.8 (.026 & 34.132 %)	1663.8 (.004 & 51.021 %)	5.77 (.010 & 40.901 %)
6	_	_	_
7	85791.9 (.002 & 9.917 %)	117.9 (0 & 7.088 %)	.036 (0 & .618 %)
8	8579.2 (0 & 10.000 %)	7.41 (0 & 6.276 %)	< 0.036 (0 & — %)
9	357.5 (0 & 4.166 %)	< 7.41 (0 & %)	< 0.036 (0 & — %)

Résultats obtenus

Détails sur les signaux et bruits de fonds

- seul les bruits de fonds contenant des b (BB2MUMU, BBNJETS) et des photons (PHNJETS-*) ont été étudiés, les autres étant maitrisé par les coupures précédentes (cf étude effectuée en CMSSW 1 3 1)
- 2) l'échantillon appellé BB2MUMU n'est pas de type $bb \rightarrow \mu, \mu$ mais est en réalité de type QCD exigeant 1 seul quark b, et ayant un état final comportant deux muons. Cela explique l'énorme section efficace : $32\mu b$ (à comparer aux 7.5*nb* de l'échantillon de Jan)

	Efficacité bruit de fond	Efficacité signal
Selection CalTech	$1.8E^{-5}$	14 %
Selection IPNL	$1.1E^{-7}$	20 %

La statistique de l'échantillon (2.7 M évenements) ne permet pas d'améliorer plus les résultats.

Vers l'utilisation des photons certifies selectionnés

Lyon 1 UNIVERSITE DE LYON

Photons certifiés

- On part du principe que les évenements sortant de notre analyse sont des événements de signal.
- On essaie d'observer les résultats selon les variables : *Et*, η, et φ

Plan de la présentation

Choix du canal

- Canal de recherche
- Études précédentes
- 2 Notre sélection et résultats
 - Coupures
 - Résultats obtenus
 - Échelle d'énergie : travaux préliminaires

3 Conclusion

- Conclusion
- Perspectives

Conclusion & Perspectives

- Réutilisation et amélioration des analyses précédentes effectuées
- Découverte et maîtrise d'un bruit de fond particulièrement dangereux (BB2MUMU)
- Implémentation de deux nouvelles coupures :
 - 8 une coupure d'isolation : emET > 1
 - 9 une coupre cinétique : $PT_{\mu_H IGH} > 30$
- Amélioration de l'efficacité des coupures : ~ 20%, en augmentant la puretée (par rapport à avant).
- Suppression des bruits de fonds dans la limite imposée par la statistique (insuffisante)

Conclusion & Perspectives Perspectives

- Passer en version 2_2_9 pour analyser des échantillons ayant une statistique plus importante
- Améliorer la sélection et vérifier l'absence d'autres bruits de fonds "dangereux" pour notre signal
- Implémenter la sélection dans le framework CMSSW
- Contribuer à la calibration du calorimètre électromagnétique par le canal $Z \rightarrow \mu \mu \gamma$

Fin de l'exposé

Merci de votre attention

Introduction I

- 0 : 14652 events
- 1 : 1805673 events
- 2:330821 events
- 3 : 210343 events
- BB1JETS: 319263 events
- BB2JETS: 215707 events
- BB4JETS: 109146 events
- BB5JETS: 46169 events
- PH1-20 : 93947 events
- PH1-60 : 86036 events
- PH1-120 : 87518 events
- PH1-180 : 5000 events

Introduction II

- PH1-240 : 0 events
- PH1-300 : 93922 events
 - PH2-20 : 128544 events
- PH2-60:71715 events
- PH2-120 : 151379 events
- PH2-180 : 84041 events
- PH2-240 : 96453 events
- PH2-300 : 67178 events
 - PH3-20 : 91806 events
 - PH3-60 : 0 events
- PH3-120 : 55683 events
- PH3-180 : 80000 events
- PH3-240 : 79216 events

Introduction III

- PH3-300 : 61592 events
 - PH4-20 : 30938 events
 - PH4-60 : 28226 events
- PH4-120 : 70000 events
- PH4-180 : 54782 events
- PH4-240 : 45031 events
- PH4-300 : 46458 events

Lyon 1 UNIVERSITE DE LYON

Reminder

- * Sample 0 = SIGNAL Morgan
- * Sample 1 = BACKGROUND BB2MuMu
- * Sample 2 = BACKGROUND BB3JETS
- * Sample 3 = BACKGROUND STEW
- * Sample BBNJETS = BACKGROUND BBNJETS
- * Sample PHNJETS = BACKGROUND PHNJETS (PHN-20, PHN-60, PHN-120, PHN-180, PHN-240, PHN-300)

Récaptitlatif des coupures effectuees

Liste des cuts

- CUT 1 : > 1 Muon, each mu have pt > 10 GeV && $|\eta| < 3.0$ and $m_{\mu_1\mu_2} > 20$ GeV
- CUT 2 : > 0 corrected γ and this highest-pt reco photon satisfies following cuts (pt > 10 GeV, $|\eta| < 3.0$, $\Delta_R (\gamma_1, closestmu of <math>\mu_1, \mu_2$) > 0.05

CUT 3 : $pt_{\gamma_1} > 1 GeV$ (always the case)

CUT 4 : 40 GeV <
$$m_{\mu_1\mu_2}$$
 < 80 GeV

CUT 5:
$$\Delta_R (\mu_1, \mu_2 - \gamma_1) < 0.8, pt_{\gamma_1} > 15 GeV$$

CUT 6-7:

6 SIGNAL 87.2 < $m_{\mu\mu\gamma}$ < 95.2

7 BACKGROUND 70 < $m_{\mu\mu\gamma}$ < 110, $\frac{\#evts}{5}$

CUT 8 : $ISO_{emET} < 1$ for muon far in a $\Delta_R = 0.3$ radius CUT 9 : $\mu_{hadT} > 30$ for muon far

Resultats des coupures (resultats bruts)

CUT	Signal	BB2MUMU	BB3JETS	STEW
0	14652	1805673	330821	210343
1	11006	14800	264	68
2	9578	5135	145	26
3	9578	5135	145	26
4	7937	1418	40	12
5	4761	484	18	6
6	3574	484	18	6
7	3574	48.0	1.8	.8
8	3266	4.8	0	.2
9	2950	.2	0	0

CUT	BB1JETS	BB2JETS	BB4JETS	BB5JETS	BBNJETS
0	319263	215707	109146	46169	1021106
1	172	147	144	71	798
2	68	76	101	55	445
3	68	76	101	55	445
4	23	25	36	26	150
5	12	13	13	11	67
6	12	13	13	11	67
7	.6	1.4	1.2	1.8	6.8
8	0	.2	0	.2	.4
9	0	0	0	0	0

CUT	PH1J-20	PH1J-60	PH1J-120	PH1J-180	PH1J-240	PH1.
0	93947	86036	87518	5000	0	939
1	0	0	0	0	0	(
2	0	0	0	0	0	(
3	0	0	0	0	0	(
4	0	0	0	0	0	(
5	0	0	0	0	0	(
6	0	0	0	0	0	(
7	0	0	0	0	0	(
8	0	0	0	0	0	(
9	0	0	0	0	0	(

CUT	PH2J-20	PH2J-60	PH2J-120	PH2J-180	PH2J-240	PH2、
0	128544	71715	151379	84041	96453	67
1	0	2	4	2	6	Ę
2	0	2	3	2	5	Ę
3	0	2	3	2	5	Ę
4	0	1	1	2	1	1
5	0	0	0	0	0	
6	0	0	0	0	0	
7	0	0	0	0	0	(
8	0	0	0	0	0	(
9	0	0	0	0	0	(

IV

CUT	PH3J-20	PH3J-60	PH3J-120	PH3J-180	PH3J-240	PH3.
0	91806	0	55683	80000	79216	615
1	0	0	4	12	5	1
2	0	0	4	11	4	1
3	0	0	4	11	4	1
4	0	0	1	2	1	(
5	0	0	0	1	0	(
6	0	0	0	1	0	(
7	0	0	0	.2	0	(
8	0	0	0	0	0	(
9	0	0	0	0	0	(

CUT	PH4J-20	PH4J-60	PH4J-120	PH4J-180	PH4J-240	PH4、
0	30938	28226	70000	54782	45031	464
1	5	5	17	14	29	3
2	5	4	17	13	27	3
3	5	4	17	13	27	3
4	1	2	7	3	5	1
5	1	0	1	0	0	4
6	1	0	1	0	0	
7	0	0	0	0	0	
8	0	0	0	0	0	(
9	0	0	0	0	0	(

VI

CUT	PH1J-all	PH2J-all	PH3J-all	PH4J-all	PHNJ-all
0	366423	599310	368297	275435	1609465
1	0	19	33	101	153
2	0	17	31	97	145
3	0	17	31	97	145
4	0	7	10	36	53
5	0	1	1	4	6
6	0	1	1	4	6
7	0	0	.2	.2	.4
8	0	0	0	0	0
9	0	0	0	0	0

Resultats des coupures (pour 100 pb^{-1})

Signal avec efficacite relative :

CUT	Signal (abs & rel)	Pureté
0	2615.3820 (N/A)	0%
1	1964.5710 (75.116 & 75.116 %)	.007 %
2	1709.6730 (65.369 & 87.025 %)	.018 %
3	1709.6730 (65.369 & 100.000 %)	.018 %
4	1416.7545 (54.170 & 82.866 %)	.054 %
5	849.8385 (32.493 & 59.984 %)	.095 %
6	637.9590 (24.392 & 75.068 %)	.708 %
7	— (N/A %)	_
8	582.9810 (22.290 & 91.382 %)	5.810 %
9	526.5750 (20.133 & 90.324 %)	59.564 %

Bruits de fonds avec efficacite absolue & relative :

CUT	BB2MUMU (rel)	BB3JETS (rel)	STEW (rel)
0	3227299937.5722 (N/A)	1699989.8727 (N/A)	497038806.1935 (N/A)
1	26452208.7200 (.819 & .819 %)	1356.6168 (.079 & .079 %)	293862.8772 (.059 & .059 %)
2	9177844.0390 (.284 & 34.695 %)	745.1115 (.043 & 54.924 %)	112359.3354 (.022 & 38.235 %)
3	9177844.0390 (.284 & 100.000 %)	745.1115 (.043 & 100.000 %)	112359.3354 (.022 & 100.000 %)
4	2534407.5652 (.078 & 27.614 %)	205.5480 (.012 & 27.586 %)	51858.1548 (.010 & 46.153 %)
5	865058.7176 (.026 & 34.132 %)	92.4966 (.005 & 45.000 %)	25929.0774 (.005 & 50.000 %)
6	_	_	_
7	85790.94720 (.002 & 9.917 %)	9.24966 (0 & 10.000 %)	3457.21032 (0 & 13.333 %)
8	8579.09472 (0 & 10.000 %)	0 (0 & 0 %)	864.30258 (0 & 25.000 %)
9	357.46228 (0 & 4.166 %)	0 (0 & NaN %)	0 (0 & 0 %)

CUT	BB1JETS (abs & rel)	BB2JETS (abs & rel)	BB3JETS (abs & rel)
0	27999971.6997 (N/A)	7699984.9255 (N/A)	1699989.8727 (N/A)
1	15084.7268 (.053 & .053 %)	5247.3855 (.068 & .068 %)	1356.6168 (.079 & .079 %)
2	5963.7292 (.021 & 39.534 %)	2712.9340 (.035 & 51.700 %)	745.1115 (.043 & 54.924 %)
3	5963.7292 (.021 & 100.000 %)	2712.9340 (.035 & 100.000 %)	745.1115 (.043 & 100.000 %
4	2017.1437 (.007 & 33.823 %)	892.4125 (.011 & 32.894 %)	205.5480 (.012 & 27.586 %)
5	1052.4228 (.003 & 52.173 %)	464.0545 (.006 & 52.000 %)	92.4966 (.005 & 45.000 %)
6	—	—	—
7	52.62114 (0 & 5.000 %)	49.97510 (0 & 10.769 %)	46.2483 (0 & 10.000 %)
8	0 (0 & 0 %)	7.13930 (0 & 14.285 %)	0 (0 & 0 %)
9	0 (0 & NaN %)	0 (0 & 0 %)	0 (0 & NaN %)
CUT	BB4JETS (abs & rel)	BB5, JETS (abs & rel)	BBNJETS (abs & rel)
0	338221.6248 (N/A)	60698.3843	37798866.5070
1	446.2272 (.131 & .131 %)	93.3437 (.153 & .153 %)	22228.3000 (.058 & .058 %)
2	312.9788 (.092 & 70.138 %)	72.3085 (.119 & 77.464 %)	9807.0620 (.025 & 44.119 %)
3	312.9788 (.092 & 100.000 %)	72.3085 (.119 & 100.000 %)	9807.0620 (.025 & 100.000 %)
4	111.5568 (.032 & 35.643 %)	34.1822 (.056 & 47.272 %)	3260.8432 (.008 & 33.249 %)
5	40.2844 (.011 & 36.111 %)	14.4617 (.023 & 42.307 %)	1663.7200 (.004 & 51.021 %)
6		_	
7	3.71856 (.001 & 9.230 %)	2.36646 (.003 & 16.363 %)	117.93092 (0 & 7.088 %)
8	0 (0 & 0 %)	.26294 (0 & 11.111 %)	7.40224 (0 & 6.276 %)
9	0 (0 & NaN %)	0 (0 & NaN %)	0(0&0%)

	Bruits de fonds avec efficacite absolue & relative :						
UT	PH1JETS-AL	L (abs & rel)	PH2JETS-ALL	(abs & rel)	PH3JETS-ALL (abs & r	el)	
C	9717375.	7889 (N/A)	2706396.33	373 (N/A)	1044061.0325 (N/A)	
1	0.0	8.0%)	8 8308 (01	19 & 0 %)	4 4280 (047 & 0 %)		
2	0 /0 &	NaN %)	8 6082 (017	& 97 479 %)	4 2300 (044 & 95 528	%)	
2	0 (0 &	NaN %)	8 6082 (.017 8		4 2300 (044 & 100 000	1%)	
4	0 (0 &		4 0502 (.017 0	0. 40 275 9/1	4.2000 (.044 & 100.000	0/2	
-	0(0 &	NGN %)	4.2003 (.000)	x 49.373 %)	1.0209 (.013 & 24.134	76)	
) ,	0 (0 &	INDIN %)	.0022 (.001	& .USI %)	. 1088 (.001 & 10.534	%)	
5		<u> </u>					
7	8 0) 0	NaN %)	0 (0 & N	aN %)	.03376 (0 & NaN %)	,	
3	0 (0 &	NaN %)	0 (0 & N	aN %)	0 (0 & NaN %)		
9	0 (0 & NaN %)		0 (0 & NaN %)		0 (0 & NaN %)		
	CUT	PH4JETS-AL	L (abs & rel)	PHNJETS-A	LL (abs & rel)		
	0	212778.1	245 (N/A)	1368061	I.2832 (N/A)		
	1	36.0690 (.2	12 & .016 %)	49.3278	(.278 & 0 %)		
	2	34,8088 (.20)	2 & 96.506 %)	47.6470 (.2)	63 & 96.592 %)		
	3	34,8088 (.202	8 100.000 %)	47.6470 (.26	3 & 100.000 %)		
	4	8 8414 (074	1 & 25,399 %)	14 1126 (0	23 & 29 619 %)		
	5	5 6012 (008	8 & 63 351 %)	5 7722 (01	0 & 10 001 %)		
	6	0.0012 (.000	00.001 /0)	0.7722 (.01	0 0 40.701 /07		
	0	-	-	005/0/	 0.8(10.9%)		
	/	.00192 (0	0X.U34%)	.03508 (
	8	0(0&	INCIN %)	0(08	(INGIN %)		
	9	0(0&	NaN %)	0(08	(NaN %)		

С

16 / 17

Samples

▷ Signal : $Z \rightarrow \mu \mu \gamma$ with $M_{\mu \mu} < M_Z$, small Δ_R (FSR)

Backgrounds : Considered for PTDR I (CMS-AN 2005/040)

- Z + jets $\mu\mu$ + fake γ from jets, mostly real Z; no $\mu\mu$ correlation
- Z (+ jets) $\mu\mu$ + fake γ from μ passage through ECAL, mostly real Z; μ extrapolation to ECAL will coincide with photon position

Not considered for PTDR I (CMS-AN 2005/040) assumed to be eliminate by asking > 1 isolated μ .

 γ + n jets few muons and non-Z but enormous cross-sections $\approx 1e8evts@0 - 15GeV$

bĐ

 $\gamma bb \gamma \& \mu \mu$ from b, non-isolated muons, $\mu \gamma$ anti-correlate (g-splitting) jbb fake $\gamma + \mu \mu$ from b, non-isolated muons, no $\mu \gamma$ correlation

W + jets

