

e/g and pflow merged electrons

David Sabes
LLR-Ecole polytechnique

Introduction

- **➤**GSFelectron collection merging e/g and pflow electrons
 - Motivations
 - Algorithms
 - Datasets
- > Results & investigation
 - Effect of pflow merging on efficiency
 - Efficiency found by each method
 - Fake rate
 - Characteristic of Trackerdriven only electrons
- > Conclusion

Motivations

- **E**/g e⁻ reconstruction developed with the isolated case in mind
 - Large supercluster energy collection area
 - although not assuming isolated electrons

It ensures coherent approach with HLT and calibration from data (Zee) It has been optimized for efficient reconstruction down to pT=5GeV/c

- ■Most demanding channel H->ZZ->4e used a benchmark for efficiency
- > Pflow reconstruction has been developed with non isolated case in mind
 - electron in b-jets, low pT
 - therefore a specific clustering algorithm
- and a tracker driven approach, starting from efficient tracking
 It is also efficient on isolated electrons
- ➤ Aim at providing all reconstructed electrons in a coherent way
 - benefit from the two approached (combined efficiency)
 - single electron collection

Ecaldriven method

➤ This method is initiated by the SC reconstruction

Trackerdriven method

>This method is initiated by the reconstruction of general tracks

Merging

trackerDrivenElectronSeeds:SeedsForGsf EcaldrivenElectronSeeds Loop on Ecalseeds and control if share hits with Trackerseeds: electron **Electronseed Merger** - if not ->fill output Merged - if true->add ckfTrack ref. to Ec seed ->output Seeds - if only Trackerseed -> add Tr. seed->output - Cleaning **CkfTracking** CkfTracksCandidate collection - Build e- trajectory (dedicated parameters) **GSF Fitting**

Integration: GsfElectronAlgo

- loop on ElectronCores
- if ecalDriven, compute all electron quantities from e/g SC
 - add ref. to pflow SC and MVA when available
- if !ecalDriven, compute electron quantities from pflow SC
- if ecalDriven, apply e/g preselection
- if !ecalDriven, currently no preselection
- curently using pflow SC in case electron is trackerDriven only

Final electron list

Integration: GsfElectronAlgo

- loop on ElectronCores
- if ecalDriven, compute all electron quantities from e/g SC
 - add ref. to pflow SC and MVA when available
- if !ecalDriven, compute electron quantities from pflow SC
- if ecalDriven, apply e/g preselection
- if !ecalDriven, currently of preselection

In CMSSW_3_1_pre6

- curently using pflow SC in case electron is trackerDriven only

Final electron list

Software

> SW version : CMSSW_3_1_0_pre4

```
> Tags list:
                                                       ➤ Tags list:

√ V06-02-04 CondFormats/DataRecord

√ V06-02-04 CondFormats/DataRecord

√ V01-00-12 CondFormats/EcalObjects

                                                             ✓ V00-03-01 RecoEgamma/EgammalsolationAlgos

√ V01-13-17-01 Configuration/StandardSequences

√ V00-03-01 RecoEgamma/EgammaTools

√ V02-04-00 DataFormats/CaloRecHit

                                                             ✓ V00-02-03 RecoEgamma/ElectronIdentification

√ V03-02-03 DataFormats/EgammaCandidates

√ V01-04-01 RecoEgamma/Examples

√ V00-10-06 DataFormats/EgammaReco

                                                             ✓ V10-04-02 RecoParticleFlow/Configuration
      ✓ V11-00-00 DataFormats/ParticleFlowCandidate

√ V10-04-00 RecoParticleFlow/PFAlgo

      ✓ V12-00-00 DataFormats/ParticleFlowReco

√ V10-02-02 RecoParticleFlow/PFBlockAlgo

      ✓ V00-01-15 RecoEcal/Configuration

√ V10-03-02 RecoParticleFlow/PFBlockProducer

√ V00-06-04 RecoEcal/EgammaClusterAlgos

√ V11-00-00 RecoParticleFlow/PFClusterAlgo

      ✓ V00-06-33 RecoEcal/EgammaClusterProducers
                                                             ✓ V11-00-00 RecoParticleFlow/PFClusterProducer

√ V00-05-28 RecoEcal/EgammaCoreTools

√ V07-02-00 RecoParticleFlow/PFClusterShapeAlgo

      ✓ V00-04-00 RecoEgamma/Configuration
                                                             ✓ V06-01-03 RecoParticleFlow/PFClusterShapeProducer

√ V01-03-00 RecoEgamma/EgammaElectronAlgos

√ V10-02-03 RecoParticleFlow/PFClusterTools

                                                             ✓ V10-05-03 RecoParticleFlow/PFProducer
      ✓ V01-02-01 RecoEgamma/EgammaElectronProducers

√ V10-03-06 RecoParticleFlow/PFTracking

√ V02-02-02 TrackingTools/GsfTools

√ V02-02-00 TrackingTools/GsfTracking
```

> From slide 17 --- SW version : CMSSW_3_1_0_pre6

Datasets

Single Electron pt10 & 35 GeV/c:

- relval/CMSSW_3_1_0_pre4/RelValSingleElectronPt10/GEN-SIM-DIGI-RAW-HLTDEBUG/IDEAL_30X_v1
- relval/CMSSW_3_1_0_pre4/RelValSingleElectronPt35/GEN-SIM-DIGI-RAW-HLTDEBUG/IDEAL_30X_v1

Flat Pt 5 to 100 GeV/c:

• relval/CMSSW_3_1_0_pre4/RelValSingleElectronFlatPt5To100/GEN-SIM-DIGI-RAW-HLTDEBUG/IDEAL 30X v1

QCD Pt 80 to 120 GeV/c:

relval/CMSSW_3_1_0_pre4/RelValQCD_Pt_80-120/GEN-SIM-DIGI-RAW-HLTDEBUG/IDEAL_30X_v1

Flat Pt 5 to 150 GeV/c : (**CMSSW_3_1_pre6**)

• /SingleElectronFlatPt5to150/sabes-SingleElectronFlatPt5to150-ba4f98800c9984cf40d6ddf4137b010/USER

Two ways to determine provenance

- **♣ First method**: considers ElectronSeed references which are
 - Either a Calocluster reference >> ecaldriven (called *Ecaldriven configuration* on graphs)
 - Or a CkfTrack reference >> trackerdriven
 - Or both (called Standard configuration on graphs)
- Second method: do not apply merging. Act on CkftrackcandidateMaker input seeds collection
 - ecalDrivenElectronSeeds (called *Ecaldriven seed* on graphs)
 OR
 - trackerDrivenElectronSeeds:SeedsForGsf (called Trackerdriven seed on graphs)

Checking provenance (Pt10GeV)

➤ These two graphs should be identical

Checking provenance(Pt10GeV)

These two graphs should be identical Due to:

- ➤ Merging of seeds → solved now
- ➤ Trajectory cleaning → under way...

Efficiency result (Pt10GeV)

- ➤ Trackerdriven significantly less efficient (on isolated electron)
- ➤ Adding these electrons gives +2.3% increase in efficiency

Fake rate

Fake rate en η	
Standard config., no cut	16.2%
Standard config., mvaCut=-0.4	9%
Ecaldriven seeds, no merging.	4.5%

> mva cut on candidates Trackerdriven only

> -64% of fake electron with mvaCut=-0.4 200

➤ with cut: Fakerate of 9% instead of 16,2%

Efficiency:Pt=5-100GeV

+4% (5<pT<10) without cut +3.6% (5<pT<10) with cut

Global increase: +0.9% without cut

+0.7% with

More gain at low pT

Efficiency Trackerdriven only

Where are the electrons not found by ecaldriven algorithm?

- ➤ Main increase in the crack regions (eta=0 and eta=1.5)
- ➤ Increase in the region where the materiel budget is high

- ➤ Main increase at low pT
- \rightarrow +9% at pT= 5 GeV/c
- ➤ Ecaldriven approach is at its limit at 5 GeV/c
- ➤ Trackerdriven more suited for lower pT

Energy Trackerdriven only

Conclusion

- ➤ We have now in CMSSW 31X a merged collection of GSFElectrons
 - Benefit from the two approaches
 - Efficiency: + 0.7%(FlatPt5to100GeV)
- ➤ The Ecaldriven approach becomes increasingly more difficult going down to very low pT
 - 5 GeV nearly the limit of ecaldriven approach
 - +9% by merging with trackerdriven at this pT
- ➤ Apart from low pT, the merging with trackerdriven electrons provide increase in efficiency in the crack region
- > The fake rate is under control
 - although larger by nearly a factor 2
 - includes real electrons (e.g. from conversion)

Backup

Fake rate en pT	
Config.standard, sans coupure	44%
Config.standard, mvaCut=-0.4	25%
Germes Ecaldriven, sans mél.	11.4%

Fake rate pour 5 <pt<10 c<="" gev="" th=""></pt<10>		
Config.standard, sans coupure	12.7%	
Config.standard, mvaCut=-0.4	7.5%	
Germes Ecaldriven, sans mél.	4.6%	