Application of parametric EM shower

$-\gamma / \pi^{0}$ discrimination in ECAL Barrel for unconverted case
－Dead channel correction in ECAL Test Beam

J．Tao（IHEP－Beijing／IPN－Lyon）
 G．M．Chen（I HEP－Beijing）
 S．Gascon（IPN－Lyon）

CMS France Physique，27－28 Mai 2009，Strasbourg

Outline

- Introduction of parametric EM shower study

Validation of the EM shower parameterization formulae in CMS ECAL
$\gamma / \pi{ }^{0}$ discrimination with the parametric EM shower method
Results of dead channel correction in ECAL Test Beam
Summary

Empirical formula to parameterize the EM shower shape

E The longitudinal formula and lateral formula are combined to get the empirical 3dimentional formula to discribe the EM shower .

E The longitudinal profile of EM shower can be described typically by a Gammadistribution:

$$
\frac{d E}{d t}=E_{0} b \frac{(b t)^{a-1} e^{-b t}}{\Gamma(a)}
$$

where t is the shower depth. EO is the total Energy of the shower. a and b are parameters, which are related to the material and the incident energy. And the relation between a, b and $t_{\max }$ (the depth of maximum shower) is

$$
t_{\max }=\frac{a-1}{b}
$$

The following formula was used to describe the lateral profile:

$$
f(r)=\frac{6 R^{2} r}{(r+R)^{4}}
$$

where r is the distance of a crystal to the shower center in some layer. And R is a parameter, which is related to the shower depth,

$$
R=\mathrm{A}\left(\frac{\mathrm{t}}{\mathrm{t}_{\max }}\right)^{2}
$$

where A is independent of the shower depth but related to the energy. For a EM shower, A should be a fixed value for different layer and

$f(r) d r=\frac{3}{\pi} \frac{R^{2}}{(r+R)^{4}} \cdot r d r \int d \theta{ }^{2 \pi}$
$\int_{0}^{\infty} f(r) d r=1$ different crystal.

- The lateral formula was obtained from the ECAL Test Beam study in the AMS (Alpha Magnetic Spectrometer) experiment, in which the ECAL is consisted of 18 layers. So the lateral formula can be studied layer by layer to determine the ${ }_{4}$ parameter \mathbf{R} which changed with shower depth.

EM Showers -- Longitudinal profile

Determine longitudinal profile from CMS Geant4 Simulation
$>$ Along the $R\left(=V_{x} 2+y 2\right)$ direction, from $R=1290 \mathrm{~mm}$, about 26 layers are split in G4 Sim, with each layer about 1X0 .
$>$ Simulation samples of single particles in SW167 with incident point: $\eta=0.05, \varphi=0.22$.
$>$ Using "EcalSimHitsValidProducer" in the CMSSW/Validation package
$>$ ~2000 evts/samole to see the average distribution

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=E_{0} b \frac{(b t)^{a-1} \mathrm{e}^{-b t}}{\Gamma(a)}
$$

Then the parameters \mathbf{a} and b can be determined from the Geant4 study.

20 GeV Gamma longitudinal profile fitted by the Gammadistribution

Validation of the whole empirical formula

E The empirical formula was used to fit the energy deposit in each crystal, in a 5×5 crystal array around the maximum energy crystal.

- During the fitting process
- Along the shower direction (line of COG obtained by the Energy Log-weighted method and the original point I vertex), the ECAL is divided into 26 layers. The energy of each "layer" can be obtained by the longitudinal formula (i.e., calculated from the Gamma-distribution, parameters a and b were fixed from the G4 sim. study).
- The parameter R in lateral profile of each "layer" can be
 written as the function of the fraction of the shower depth t over the maximum shower depth tmax.

$$
R=\mathrm{A}\left(\frac{\mathrm{t}}{\mathrm{t}_{\max }}\right)^{2}
$$

where A is the real fitting parameter.

- In each layer, the lateral formula (isotropy at the same r) and the areas between 2 circles (L3 method, more circles, higher precision, but more time needed) were used for the calculation of energy in each crystal. Then for each crystal, the sum energy of 26 layers was used as the fitting value, to compare with the energy deposit.
- MINUIT package in ROOT was used for the minimization of the $\chi 2$.

$$
\chi^{2}=\sum_{i c y=1}^{25}\left(E_{i c r y}^{\text {fited }}-E_{i c r y}^{\text {original }}\right)^{2}
$$

Fitting result of TB2006 Electron data

- The hodoscope cuts ($\pm 2 \mathrm{~mm}$) were applied to select the calibrated test beam (electron) events which hit almost the same point in a crystal.
- Y axis: Averaged energy in each crystal with the statistic of $\sim 10^{3}$ events.

■ X axis: The crystal numbered from 1 to 25 .

- For the TB2006 data, the EM shower shape can be well fitted by the empirical formula.

> Crystal (or cell) number

5	10	15	20	25
4	9	14	19	24
3	8	13	18	23
2	7	12	17	22
1	6	11	16	21

Fitting values of parameter A for TB2006 Electron

$$
\begin{aligned}
& \text { Lateral profile } \\
& f(r)=\frac{6 R^{2} r}{(r+R)^{4}} \quad R=\mathrm{A}\left(\frac{\mathrm{t}}{\mathrm{t}_{\max }}\right)^{2} \\
& A=p 0 \cdot \log (E)+p 1
\end{aligned}
$$

TestBeam Sim. \& Full Sim. of electron

- For the TestBeam Simulation
- With the same setup as ECAL test beam, samples of electrons were Sim. \& Rec. with SW_167
- The same hodoscope cuts was used to select events: $-2 \mathrm{~mm}<\mathrm{X}<2 \mathrm{~mm},-2 \mathrm{~mm}<\mathrm{Y}<2 \mathrm{~mm}$
- The formulae (Longitudinal + Lateral) can also well describe the EM shower of TB simulation e data

■ For the Full detector simulation

- Switch off the Magnetic Field.
- Using the same position of incidence as TBSim
- The formulae (Longitudinal + Lateral) can also well describe the EM shower of detector full simulation e data.

■ The results of the Test Beam, the TBSim and the FullSim are consistent.

Lateral profile

$$
f(r)=\frac{6 R^{2} r}{(r+R)^{4}}
$$

$$
\begin{equation*}
R=\mathrm{A}\left(\frac{\mathrm{t}}{\mathrm{t}_{\max }}\right)^{2} \tag{9}
\end{equation*}
$$

Formulae validation for the Photon Full Sim. Samples

- For the Full Detector Simulations of Gamma EM shower with B-on, the energy spreading is, to good approximation, only in the φ direction.
\square For the isotropy at the same r of $\frac{0}{\frac{0}{4}}$ the lateral formula in a layer, the process method needs to be corrected.
- Correction: The original COG obtained by the energy Logweighted method is split into 2 new COG points; 2 interaction points with a layer are obtained; In a layer, the energy in a crystal is obtained from the average effect of the lateral formula originated at the 2 interaction points

\square There are 5 variables during the formula fitting: 3 parameters of the new COGs ($\Delta \eta, \Delta \varphi 1, \Delta \varphi 2$), parameter A in the lateral formula and parameter E0 (total energy).
- The fitting result after correction is satisfactory (see the top plots).

Application of parametric EM shower method (I) :

$\gamma / \pi 0$ discrimination for the UNconverted case in ECAL Barrel

Result of $\gamma / \pi 0$ discrimination from the method directly

E Introduction of the first idea (directly EM shower fitting): For a EM shower (the seed of a reco. photon candidate)
\checkmark First fitted by the parameterized formula of 1 EM shower
\checkmark Then fitted by the parameterized formulae of 2 EM showers
\checkmark Compare the x^{2} of the 2 fitting processes.
\checkmark If the fitting result with 2 EM showers is better, then calculate the invariant mass of the 2 EM showers.
\checkmark If the invariant mass locates close to the π^{0} mass peak, then the shower is a π^{0}.
\checkmark Else it is a γ.

- The result is not so good as expected. And lots of time is needed for the 2 fitting processes. lt's not so convenient for application.

Energy (GeV)	Pi0 rejection eff. for keeping 90\% Gamma efficiency
20	64.1
30	61.1
50	38.3
80	14.6

TMVA_BDT method - combining the results of 1 EM shower fitting \& Artifical NN inputs

$>$ For the fitting results with the parameterized formula of 1 EM shower, 6 variables were considered: $A, ~ \Delta E / E d e p 5 \times 5$ where $\Delta E=E 0-E d e p 5 \times 5, ~ \Delta \eta, ~ \Delta \phi 1, ~ \Delta \phi 2, ~ \chi^{2}$
$>$ For the unconverted case in Barrel, 12 variables were used as ANN inputs in CMS AN-2008/063 (K. Karafasoulis and A. Kyriakis)

$$
\begin{array}{cl}
p_{6}=\frac{S_{4}}{S_{25}}, p_{4}=\frac{S_{1}}{S_{9}}, p_{5}=\frac{S_{9}-S_{1}}{S_{25}-S_{1}} & p_{2}=\frac{\sigma_{\eta \eta}}{0.0004}, p_{3}=\frac{\sigma_{\phi \phi}}{0.001} \\
p_{12}=\frac{M_{2}+S_{1}}{S_{4}}, p_{9}=\frac{S_{6}}{S_{9}}, p_{11}=\frac{M_{2}+S_{1}}{S_{9}}, p_{8}=S_{6-\text { ratio }} & \lambda_{ \pm}=\frac{\sigma_{\eta \eta}+\sigma_{\phi \phi} \pm \sqrt{\left(\sigma_{\eta \eta}-\sigma_{\phi \phi}\right)^{2}+4 \sigma_{\eta \phi}^{2}}}{2} \\
p_{1}=\left|x_{\operatorname{cog}}\right|_{25}=\left|\frac{\sum_{i=1}^{25} E_{i} X_{i}^{r e l}}{S_{25}}\right|, p_{7}=\left|y_{c o g}\right|_{25}=\left|\frac{\sum_{i=1}^{25} E_{i} Y_{i}^{r e l}}{S_{25}}\right| & p_{10}=\frac{\lambda_{-}}{\lambda_{+}}
\end{array}
$$

TMVA_BDT analysis result of combining the results of shower fitting and ANN inputs

>For keeping 90\% Gamma efficiency, the PiO rejection efficiency with TMVA_BDT method is listed in the table as follows.

ET (GeV)	6 new variables	12 ANN inputs	Combined 18 inputs
20	54.2	73.7	75.1
30	55.0	59.5	65.5
40	47.0	52.9	59.4
50	38.0	41.0	48.2
60	32.0	34.8	39.1
70	25.6	28.7	33.9

$>$ For the ET range we are interest in , 40-70GeV, for Higgs to GammaGamma analysis, the π^{0} rejection improved by $\sim 6 \%$, using all the 18 variables for inputs than the only 12 inputs.

Application of parametric EM shower method (II) :

Dead channel correction in ECAL Test Beam

Artificial dead channel

- The hodoscope cuts ($\pm 2 \mathrm{~mm}$) were applied to select the calibrated test beam 2006 ECAL (electron) events.
- The energy of crystal no. 8 was set to be 0 .

Crystal (or cell) number

Iterative Fitting Process of dead channel correction

NLOOP of Iterative Fitting Process

For most events (showers), 2 loops are needed for the dead channel correcton

Results of dead channel correction

Red line: Total energy after dead channel correction

Results of the dead channel

For the dead channel (crystal 8), the correction tend to overestimate, $\sim 3 \%$ higher than the original depisot energy.

Reconstructed the center of gravity

The COG can be also obtained.

Results with Gamma MC sample in EB with EcalOnly

1. 50 GeV Single Gamma MC samples with ParticleGun in ECAL Barrel and EcalOnly with Magnetic off.
2. 5×5 crystal array around the maximum energy deposit crystal was used. The energy of crystal 8 was set to be 0 .
3. Same method, but different parameters, a,b in logitudinal and A in lateral. (For different type of particles, el γ)

Summary

- An empirical formula wer used to describe the EM shower shape. With the data of CMS Geant4 and ECAL TB2006, we validate this formula. The result is satisfactory.
- The formulae can also well describe the EM shower of TBSim \& detector FullSim data. The results of the Test Beam, the TBSim and the FullSim of electron samples are consistent.
- Considering the effect of magnetic field, the formulae can also well describe the EM shower of Gamma FullSim samples after the correction.
- Combining the results of the EM shower fitting and ANN inputs, the π^{0} rejection can be improved by $\sim 6 \%$, for the ET range we are interest in , 40-70GeV, during the analysis of $\mathbf{H} \rightarrow \gamma \gamma$.
- The energy of dead channel can be compensated with the shower shape method.

Plan for the dead channel correction

$>$ To understand the difference of the result between TB2006 electron data and Gamma Ecalonly MC sample. Firstly try to run with the Electron MC sample to see the results.
$>$ Try to find a common sample to run on to compare with the NN method Stepyanie used.
$>$ Try to get results for side and corner crystals in addition to center.

Backup

Result of $\gamma / \pi 0$ discrimination from the method directly

- Review of the Method: for a EM shower (the seed of a photon candidate)
\checkmark First fitted by the parameterized formula of 1 EM shower
\checkmark Then fitted by the parameterized formulae of 2 EM showers
\checkmark Compare the x^{2} of the 2 fitting processes.
\checkmark If the fitting result with 2 EM showers is better, then calculate the invariant mass of the 2 EM showers.
\checkmark If the invariant mass locates close to the $\pi 0$ mass peak, then the shower is a $\pi 0$.

\checkmark Else it is a γ.
- Must consider the probability of successful fitting. If the 2 fitting processes failed for the same EM shower, then the invariant mass is 0 .
- The probability of the 2 fitting processes succeed for the same shower: $\sim 60 \%$ (for 50 GeV samples).
- Lots of time is needed for the 2 fitting processes included. It's not so convenient for application.

Energy (GeV)	Pi0 rejection eff. for keeping 90\% Gamma efficiency
20	64.1
30	61.1
50	38.3
80	14.6

Parameter A in TB dead channel corection

Be consistent with the result of the case when no dead channel, see slide 8.

TB2006 Calibration for SM6:
lafs/cern.ch/cms/ECAL/testbeam/pedestal/2006/CALIBRATIONS/ CMSSWcalibCoeff_SM6_TBH4_S1_V00-01-00.txt

Looking at single channels

Percentage of Correction when Initial Energy > 5GeV

But long tails....

Correction of Bad PMTs' readout at AMS

- Assume that there are some man-made bad PMTs in the ECAL 2002 test beam.
- The bad PMTs' readout can be obtained after fitting using the empirical formula.

