

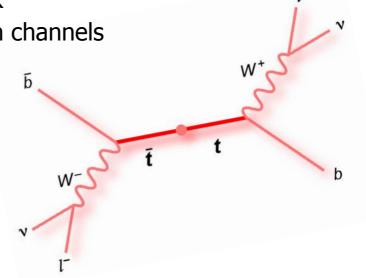
An example of PAT analysis

Joaquim Speck

Journées CMS France, Strasbourg 27, 28 mai 2009

- A presentation of how one can organize an analysis around PAT
 starting from scratch up to the final plots
- Very brief description of the top dilepton cross section measurement
- I will show how we proceeded during our analysis
 concentrating on the computational point of view
- Different stages and crosschecks with other contributors
- Conclusion

Top dilepton analysis

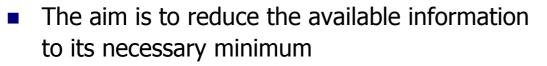


Extract the ttbar cross section in the dilepton channels

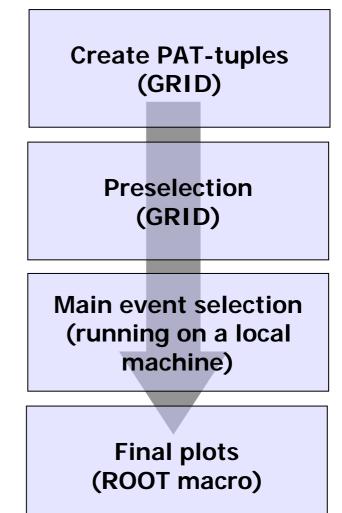
- \Box 2 isolated, high p_T leptons
- MET from the 2 neutrinos
- □ 2 jets from b quarks (b-tagging)

Backgrounds with a similar signature

Process	Number of events	Cross-sections (pb)	$\mathcal{L}_e(\text{pb-1})$
MADGRAPH $t\bar{t}$	1028K	414	2483
PYTHIA $t\bar{t}$	147K	414	355
MADGRAPH Z+jets	1163K	3700×1.14	276
MADGRAPH W+jets	9854K	40000×1.14	216
MADGRAPH $(Z/W \rightarrow l^+l^-)bb$	1005K	289×1.14	3050
PYTHIA WZ	249K	17.3×1.7	8466
PYTHIA $WW \rightarrow l^+l^-$	106K	4.8×1.5	14722
PYTHIA $ZZ \rightarrow 4l^{\pm}$	267K	0.1039×1.3	1976
PYTHIA $ZZ \rightarrow 2l^{\pm}2\nu$	113K	0.318×1.3	273
MADGRAPH Single-top tW	169K	29	5827
MADGRAPH Single-top t-channel	282K	130	2169
MADGRAPH Single-top s-channel	12K	5	2400
QCD EMenriched $p_T = 20-30 \text{ GeV}$	5166K	4·10 ⁸	0.0129
QCD EMenriched $p_T = 30-80 \text{ GeV}$	13090K	1.10^{8}	0.131
QCD EMenriched $p_T = 80-170 \text{ GeV}$	3412K	1.9·10°	1.796
Inclusive µP115	5232K	1.21·10 ⁶	4.324
QCD $b, c \rightarrow e p_T = 20-30 \text{ GeV}$	2218K	192000	11.5
QCD $b, c \rightarrow e p_T = 30-80 \text{ GeV}$	1933K	240000	8.1
QCD $b, c \rightarrow e p_T = 80-170 \text{ GeV}$	798K	22800	35



More than 40 million events!


We need a unique and coherent code that can run on all these samples.

It needs to be **fast** as well.

Main code architecture

- by keeping only the quantities we are interested in
 - to reduce disc space
 - to reduce processing times
 - to avoid having to re-run on everything from scratch
 - whenever we want to implement a new feature
 - whenever we need to correct a bug!

Physics Analysis Tools

- The Physics Analysis Toolkit (PAT) is a high-level analysis layer providing the PAGs with easy access to the algorithms developed by the POG in the CMSSW framework
- It aims at fulfilling the needs of most CMS physics analyses
- Easier file content than RECO, but is hence not suited for hardware/software performance and efficiency studies
- We only use PAT in the early stage of our analysis
- PAT-tuples are created using standard configuration files
 - official PAT-tuples should be provided by the different production Tiers (at some point)
 - □ we have produced our own **official** ones
 - □ PATLayer0 & 1 ran using the Grid
- No personal code is used yet
- PAT is the way to keep people official as long as possible

Preselection

- Dedicated event preselection: We fill up a ROOT Tree with rewritten C++ classes containing
 - □ MC and event information
 - □ collection of muons, electrons
 - loose cuts:

 \square p_T>10GeV, $|\eta|$ <2.4, quality cuts

- □ tracks, jets and MET
- still keeping some relevant inheritances from CMSSW classes
- PAT-tuples and Trees are created using the Grid and are copied back to our local SE in Strasbourg

GEN-SIM-RECO	ROOT Tree				
513GB	10GB				

/TTJets-madgraph/Fall08_IDEAL_V9_v2/GEN-SIM-RECO

Created 24 Nov 2008 08:38:26 CET, contains 1028322 events, 533 files, 15 block(s), 513.30 Release info., Block info., Run info., Conf. files., Parents., Children., Description., PhEDEx., C

	Location	Events	Files	size	LFNs
	T2_US_UCSD : srm-3.t2.ucsd.edu	1028322	533	513.3GB	<u>cff plain</u>
	T2_ES_IFCA : storm.ifca.es	1028322	533	513.3GB	<u>cff plain</u>
	T2_BE_IIHE : maite.iihe.ac.be	1028322	533	513.3GB	<u>cff plain</u>
	No SiteDB name : srm.ucr.edu	1028322	533	513.3GB	<u>cff plain</u>
	${\sf T2_DE_RWTH:grid-srm.physik.rwth-aachen.de}$	1028322	533	513.3GB	<u>cff plain</u>
	T2_FR_IPHC : sbgse1.in2p3.fr	1028322	533	513.3GB	<u>cff plain</u>
	T3_US_FNALLPC : cmsdca2.fnal.gov	1028322	533	513.3GB	<u>cff plain</u>
	T2_US_Wisconsin : cmssrm.hep.wisc.edu	1028322	533	513.3GB	<u>cff plain</u>
	T2_US_Nebraska : srm.unl.edu	1028322	533	513.3GB	<u>cff plain</u>
	T2_DE_DESY:dcache-se-cms.desy.de	1028322	533	513.3GB	<u>cff plain</u>
5	T3_US_TTU : sigmorgh.hpcc.ttu.edu	1028322	533	513.3GB	<u>cff plain</u>
	T1_DE_FZK : gridka-dCache.fzk.de	1028322	533	513.3GB	<u>cff plain</u>

- Reaching this stage is the computationally most difficult task
 - □ because of the data quantity, we need to do this using the Grid
 - If the Grid is performing OK, processing all the signal and background samples can be done within 2 days
- The main advantage is that we can process the data up to this stage once and for all
 - Each contributor (UCSB, Louvain-la-Neuve, Oviedo) has developed his own dedicated preselection code
 - □ At this stage, we froze a specific sample and **crosschecked** our results
 - to be sure, we got the PATLayer0 & 1 set up correctly
 - all using the same patches
 - and albeit we use different codes, to verify that we got the same endresults (since we are applying the same cuts)
- Once this has been checked, we can just continue to work with the reduced ROOT Trees [©]

Main event selection

- The main selection is then run on the Trees coming from the preselection
- Here, we apply the relevant cuts to extract a dileptonic ttbar signal
 □ Lepton p_T > 20 GeV, isolation, Z veto, Njets ≥2, MET > 50GeV, b-tagging
- This can be done locally on any machine running CMSSW (2_2_3)
- Output:
 - □ a ROOT file containing all the quantities needed to produce plots
 - \Box a T_EX file containing the selection numbers
- Processing ~1 million ttbar events corresponds to ~20 minutes/channel
 - If we want to implement an additional feature/cut or correct for some bug, we can reprocess the signal data within the hour
- This is a crucial point when it comes to **systematic studies**
 - the JER systematics study required to redo the analysis at least 500 times!
 This has been possible within a week and would have been unconceivable without the reformatted Trees

- Finally, simple ROOT macros produce the different plots and selection tables from the files produced during the last step
- Processing time is not a factor anymore (negligible)

- We have a dedicated workflow that splits up the different efforts needed in successive stages
- From its architecture, this workflow can be used directly on real life operations once the data arrives ⁽ⁱ⁾
- Bonus: the code is flexible enough to plugin a different analysis
 - J. Andrea derived another study on the W charge asymmetry by turning the main selection code into a muon+track selection algorithm in only 2 days

Backup: Selection tables

Applied cuts	$tar{t}$ signal	$t\bar{t}$	$\rightarrow \tau \tau$	$t\bar{t}$	bkg		Z+jets	W+jets		Vbb	
Presel.+triggers	237.1 ± 2.5	1.0	1.0 ± 0.2		7.8 ± 0.6		92.2 ± 118.0	$5 34.4 \pm 4.0$	0 173	1731.1 ± 7.4	
+inv. mass cut	171.9 ± 2.3	0.6	0.6 ± 0.2		6.1 ± 0.5		51.7 ± 21.4	4.1 ± 1.4	. 59	59.1 ± 1.4	
+number of jets	131.0 ± 2.1	0.4	1 ± 0.2	4.6	± 0.5	10	03.4 ± 6.2	3.2 ± 1.2	2 4.	$.6 \pm 0.4$	
+₽/rcut	71.1 ± 1.6	0.2	2 ± 0.1	2.3 ± 0.4		14.2 ± 2.3		1.4 ± 0.8	1.4 ± 0.8 0.		
+1 b-tag cut	66.1 ± 1.6	0.1	1 ± 0.1	2.0	± 0.3	4	5.9 ± 1.5	0 ± 0	0.	$.3 \pm 0.1$	
+2 b-tag cut	39.0 ± 1.3	0.1	1 ± 0.1	1.2	± 0.3	0.4 ± 0.4		0 ± 0	0 ± 0 0.		
	Applied cuts Presel.+triggers		WZ	7	W	V	$ZZ2l2\nu$	ZZ4l			
			$36.9 \pm$	0.7	30.2 ±	= 0.5	4.9 ± 0.1	2.4 ± 0.1			
	+inv. mass cut		11.8 ± 0.4		$2 \pm$	$0.2 0.4 \pm 0.1$		0.5 ± 0.1			
	+number of jets		0.9 ± 0.2		1.7 ±	$= 0.2 0.1 \pm 0.1$		0.2 ± 0.1			
	+₽/cut	$+\not\!\!E_T \mathrm{cut}$		0.3 ± 0.1		$= 0.1 0.1 \pm 0.1$		0.1 ± 0.1			
	+1 b-tag cut		0.2 ± 0.1		0.3 ±	$\begin{array}{c c} 0.3 \pm 0.1 & 0.1 \pm 0.1 \\ \hline 0.1 \pm 0.1 & 0.1 \pm 0.1 \\ \end{array}$		0.1 ± 0.1			
	+2 b-tag cu	+2 b-tag cut		0 ± 0				0.1 ± 0.1			
Applied cuts	tW t-c		hannel	s-cl	nannel		QCD	Total backgr	ounds	S/B	
Presel.+trigger	rs 24.8 ± 1	0.9	9 ± 0.2	0.1 ± 0.1		967.2 ± 895.9		46049.5 ± 9	991.7	0.005	
+inv. mass cut	inv. mass cut 8.2 ± 0.6		0.3 ± 0.2		0 ± 0		0 ± 0	1354.2 ± 20.8		0.13	
+number of jet	ets 6.4 ± 0.5		0.3 ± 0.2 0		± 0	0 ± 0		125.4 ± 6	6.4	1	
+Æ _T cut	$+E_T cut$ 3.4 ± 0.4		0.3 ± 0.1		0 ± 0		0 ± 0	23.3 ± 2	2.5	3.1	
+1 b-tag cut	2.9 ± 0.4	0.2	2 ± 0.1	0	± 0	0 ± 0		12.0 ± 1	.6	5.5	
+2 b-tag cut	1.2 ± 0.2	1.2 ± 0.2 $0.1 \pm 0.$		0 ± 0		0 ± 0		3.3 ± 0.6		11.8	

Table 10: The tables give the expected number of signal and background events passing the different cumulated selection criteria for the *ee*-channel for 100 pb⁻¹ of integrated luminosity, for which we expect around 700 *ee* events. The $t\bar{t}$ signal numbers include $\tau \rightarrow e$ decay. The contribution of $t\bar{t} \rightarrow \tau\tau \rightarrow ee$ is also given here. The important yield for QCD events is due to the high scale factor; there are only three events passing the preselection.