### A comprehensive approach to New Physics simulations.

### Benjamin Fuks (IPHC Strasbourg)

In collaboration with N. Christensen (MSU), P. de Aquino (UCL), C. Duhr (UCL), M. Herquet (Nikhef), F. Maltoni (UCL) and S. Schumann (U. Heidelberg).

> CMS France Physics Meeting May 27-28, 2009

| Outline |  |  |
|---------|--|--|



#### Introduction - Monte Carlo generators

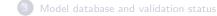






#### Model database and validation status




| Introduction |  |  |
|--------------|--|--|
| <b>O U</b>   |  |  |

### Outline



#### Introduction - Monte Carlo generators

2 FeynRule





| Introduction<br>●00 |  |  |
|---------------------|--|--|
|                     |  |  |

### One simple question.

• One of the first goals of the LHC: rediscover the Standard Model.

- \* We need data [which are hopefully coming this year].
- \* We need theoretical predictions [which is the aim of this talk].

Confront data and theory.

| Introduction<br>●00 |  |  |
|---------------------|--|--|
| <u> </u>            |  |  |

### One simple question.

• One of the first goals of the LHC: rediscover the Standard Model.

- \* We need data [which are hopefully coming this year].
- \* We need theoretical predictions [which is the aim of this talk].

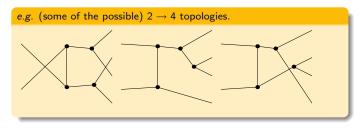
Confront data and theory.

- Theoretical predictions:
  - \* Handmade calculations 🙂
    - $\diamond~$  Easy ... for easy processes!
    - ◊ Factorial growth of the number of diagrams.
    - ♦ Tedious and error prone task.

| Introduction<br>●00 |  |  |
|---------------------|--|--|
| <u> </u>            |  |  |

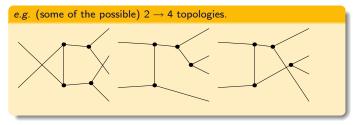
### One simple question.

• One of the first goals of the LHC: rediscover the Standard Model.


- \* We need data [which are hopefully coming this year].
- \* We need theoretical predictions [which is the aim of this talk].

Confront data and theory.

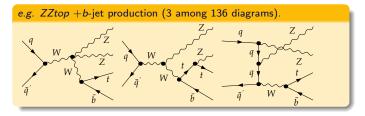
- Theoretical predictions:
  - \* Handmade calculations 🙂
    - $\diamond~$  Easy ... for easy processes!
    - ◊ Factorial growth of the number of diagrams.
    - ♦ Tedious and error prone task.
  - \* Automated tools 🙂:
    - ◊ Easy ... for any process!
    - ◊ Can be used to simulate the full collision environment.
    - ◊ There exists a vast zoology of tools.


| Introduction<br>○●○ |  |  |
|---------------------|--|--|
|                     |  |  |

#### Generation of the topologies.



| Introduction<br>○●○ |  |  |
|---------------------|--|--|
|                     |  |  |


#### Generation of the topologies.



**2** Attach the external and all possible internal particles.

| Introduction<br>○●○ |  |  |
|---------------------|--|--|
|                     |  |  |

- Generation of the topologies.
- **2** Attach the external and all possible internal particles.
- **③** Test the existence of the vertices (accept/reject diagrams).
  - \* Feynman rules table.



| Introduction<br>○●○ |  |  |
|---------------------|--|--|
|                     |  |  |

- Generation of the topologies.
- **2** Attach the external and all possible internal particles.
- **3** Test the existence of the vertices (accept/reject diagrams).
- **Squaring amplitudes, phase space integration** ( $\Rightarrow$  0.01 fb).

$$\sigma = \sum_{ab} \int \mathrm{d} \mathbf{x}_a \, \mathrm{d} \mathbf{x}_b \, \mathrm{d} P S^{(n)} f_{a/h_1}(\mathbf{x}_a; \boldsymbol{\mu}_F) f_{b/h_2}(\mathbf{x}_b; \boldsymbol{\mu}_F) \frac{|M_{ab}|^2}{2\hat{\mathbf{s}}}$$

- \* Integration over the momentum fractions of the partons.
- \* Integration over the *n*-particle phase space (n = 4 here).
- \* Sum over all subprocesses.
- \* Parton densities and incident flux.
- \* Parton-level cuts.

| Introduction<br>0●0 |  |  |
|---------------------|--|--|
|                     |  |  |

- Generation of the topologies.
- **2** Attach the external and all possible internal particles.
- **③** Test the existence of the vertices (accept/reject diagrams).
- **9** Squaring amplitudes, phase space integration.
- **Event generation** (unweighting).

| Introduction<br>0●0 |  |  |
|---------------------|--|--|
|                     |  |  |

- Generation of the topologies.
- **2** Attach the external and all possible internal particles.
- **③** Test the existence of the vertices (accept/reject diagrams).
- **④** Squaring amplitudes, phase space integration.
- **Event generation** (unweighting).
- **6** Parton showers, hadronization, detector simulation.

| Introduction<br>00● |  |  |
|---------------------|--|--|
|                     |  |  |

#### • Tools zoology

- \* CalcHEP/CompHEP [Pukhov et al. (1999); Boss et al. (2004)].
- \* FeynArts/FormCalc [Hahn (1999,2001)].
- \* Herwig [Corcella et al. (2001); Bahr et al. (2008)].
- \* MadGraph/MadEvent [Alwall et al. (2007); Maltoni, Stelzer (2003)].
- \* Sherpa [Gleisberg et al. (2004)].
- \* Whizard/Omega [Moretti et al. (2001); Kilian et al. (2007)].

| Introduction<br>00● |  |  |
|---------------------|--|--|
|                     |  |  |

#### • Tools zoology

- \* CalcHEP/CompHEP [Pukhov et al. (1999); Boss et al. (2004)].
- \* FeynArts/FormCalc [Hahn (1999,2001)].
- \* Herwig [Corcella et al. (2001); Bahr et al. (2008)].
- \* MadGraph/MadEvent [Alwall et al. (2007); Maltoni, Stelzer (2003)].
- \* Sherpa [Gleisberg et al. (2004)].
- \* Whizard/Omega [Moretti et al. (2001); Kilian et al. (2007)].

#### • New Physics theories:

- \* Which is the correct one [if any]?
- \* LHC  $\equiv$  one ring to rule them all out!
- \* We need theoretical predictions for all models.

| Introduction<br>00● |  |  |
|---------------------|--|--|
|                     |  |  |

#### • Tools zoology

- \* CalcHEP/CompHEP [Pukhov et al. (1999); Boss et al. (2004)].
- \* FeynArts/FormCalc [Hahn (1999,2001)].
- \* Herwig [Corcella et al. (2001); Bahr et al. (2008)].
- \* MadGraph/MadEvent [Alwall et al. (2007); Maltoni, Stelzer (2003)].
- \* Sherpa [Gleisberg et al. (2004)].
- \* Whizard/Omega [Moretti et al. (2001); Kilian et al. (2007)].

#### • New Physics theories:

- \* Which is the correct one [if any]?
- \* LHC  $\equiv$  one ring to rule them all out!
- \* We need theoretical predictions for all models.

#### • For a validated tool:

- \* All the model information is embedded in a list of Feynman rules.
- \* Have to be written coupling by coupling, model by model.
- \* Tedious and error prone task.

| Introduction<br>00● |  |  |
|---------------------|--|--|
|                     |  |  |

#### • Tools zoology

- \* CalcHEP/CompHEP [Pukhov et al. (1999); Boss et al. (2004)].
- \* FeynArts/FormCalc [Hahn (1999,2001)].
- \* Herwig [Corcella et al. (2001); Bahr et al. (2008)].
- \* MadGraph/MadEvent [Alwall et al. (2007); Maltoni, Stelzer (2003)].
- \* Sherpa [Gleisberg et al. (2004)].
- \* Whizard/Omega [Moretti et al. (2001); Kilian et al. (2007)].

#### • New Physics theories:

- \* Which is the correct one [if any]?
- \* LHC  $\equiv$  one ring to rule them all out!
- \* We need theoretical predictions for all models.

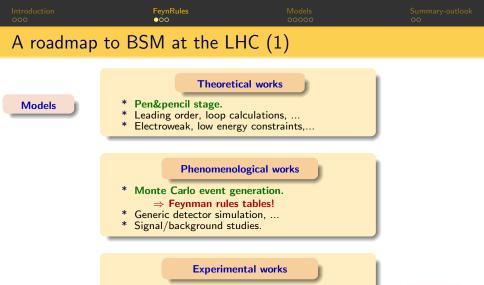
#### • For a validated tool:

- \* All the model information is embedded in a list of Feynman rules.
- \* Have to be written coupling by coupling, model by model.
- \* Tedious and error prone task.

**FeynRules** 

More than just automization.

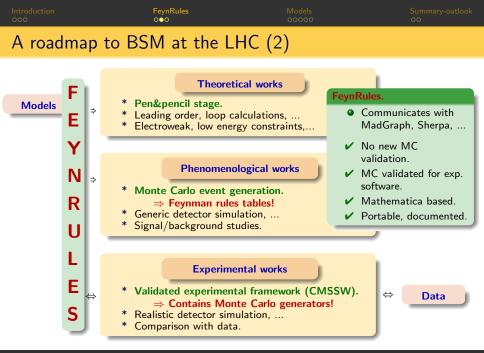
| Introduction | FeynRules | Models | Summary-outlook |
|--------------|-----------|--------|-----------------|
| 000          | 000       | 00000  | 00              |
| 0.11         |           |        |                 |

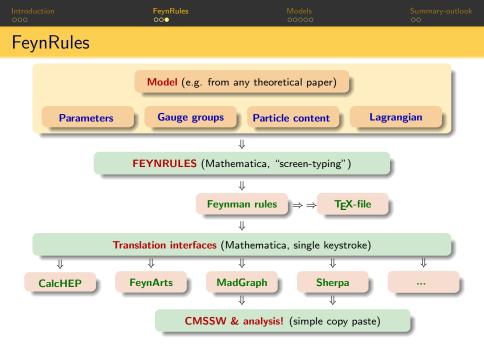

### Outline










- \* Validated experimental framework (CMSSW). ⇒ Contains Monte Carlo generators!
- \* Realistic detector simulation, ...
- \* Comparison with data.

 $\Leftrightarrow$ 

Data





A comprehensive approach to New Physics simulations


Benjamin Fuks - CMS-France meeting - 28.05.09 - 9

| Introduction | FeynRules | Models | Summary-outlook |
|--------------|-----------|--------|-----------------|
| 000          | 000       | 00000  | 00              |
|              |           |        |                 |











|  | Models<br>●oooo |  |
|--|-----------------|--|
|  |                 |  |

### Model database

- Publicly available (FeynRules v1.2.5):
  - \* The Standard Model [N. Christensen, C. Duhr].
  - \* Higgs effective theory (large m<sub>top</sub> approximation) [C. Duhr].
  - \* The Three-Site Model [N. Christensen].
    - 5D  $SU(2) \times SU(2) \times U(1)$  theory in a slice of Anti-deSitter space.
    - Gauge invariant higgsless model.
    - Heavy extra gauge bosons and new fermionic states.
  - \* The Hill Model [P. Aquino, C. Duhr].
    - SM plus an additional scalar sector coupling only to the Higgs.
    - Two Higgs fields after mass matrix diagonalization.
- Soon available (within 2-3 weeks):
  - \* The most general two-Higgs-doublet model [M. Herquet].
  - \* The most general MSSM [BenjF].
  - \* Extra dimensional models [P. Aquino].
- Soon available (within 2-3 weeks, but not interfaced to Monte Carlo codes):
  - \* Chiral pertubation theory [C. Degrande].
  - \* Strongly interacting Light Higgs models [C. Degrande].

|  | Models<br>o●ooo |  |
|--|-----------------|--|
|  |                 |  |

### Validation sheet

#### • FeynArts/FormCalc:

- \* Use of the FeynRules version of the FeynArts model files.
- \* Check of the FormCalc-produced formulas with litterature.
- \* Used versions: FormCalc-5.4 and FormCalc-6.0.

#### • MadGraph/MadEvent:

- \* Comparison between (existing) stock and FeynRules model files.
- \* Test of various  $2 \rightarrow 2$  and  $2 \rightarrow 3$  processes.
- \* Used version: MadGraph-4.4.21.

#### • CalcHEP/CompHEP:

- \* Comparison between (existing) stock and FeynRules model files.
- \* Test of both Feynman and unitary gauges.
- \* Test of various 2  $\rightarrow$  2 and 2  $\rightarrow$  3 processes.
- \* Used version: CalcHEP-2.5.
- Sherpa: on the to-do list...
- Comparison: different generators, gauges, ...

| Introduction | FeynRules | <mark>Models</mark> | Summary-outlook |
|--------------|-----------|---------------------|-----------------|
| 000          | 000       | oo●oo               | 00              |
|              |           |                     |                 |

• Handmade vs. automated implementation.

- \* 2522 vertices, without the four-scalar interactions.
- \* More that 10000 vertices, with the four-scalar interactions !!!
- \* *R*-parity violation: add  $\approx$  100 free parameters...

|  | Models<br>oo●oo |  |
|--|-----------------|--|
|  |                 |  |

- Handmade vs. automated implementation.
  - \* 2522 vertices, without the four-scalar interactions.
  - \* More that 10000 vertices, with the four-scalar interactions !!!
  - \* *R*-parity violation: add  $\approx$  100 free parameters...
- FeynArts/FormCalc: most general *R*-parity-conserving MSSM.
  - ✓ All 2 → 2 SUSY hadroproduction processes checked with litterature. [Bozzi, BenjF, Herrmann, Klasen (2007); BenjF, Herrmann, Klasen (2009; in preparation)].

| Introduction         FeynRules         Models         Summary-outlook           000         000         00         00         00 | Introduction | FeynRules | Models | Summary-outlook |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|--------|-----------------|
|                                                                                                                                  | 000          | 000       | oo●oo  | OO              |

- Handmade vs. automated implementation.
  - \* 2522 vertices, without the four-scalar interactions.
  - \* More that 10000 vertices, with the four-scalar interactions !!!
  - \* *R*-parity violation: add  $\approx$  100 free parameters...
- FeynArts/FormCalc: most general *R*-parity-conserving MSSM.
  - ✓ All 2 → 2 SUSY hadroproduction processes checked with litterature. [Bozzi, BenjF, Herrmann, Klasen (2007); BenjF, Herrmann, Klasen (2009; in preparation)].
- MadGraph/MadEvent (in the cMSSM limit):
  - \* MG-Stock was validated by the CATPISS collaboration [Hagiwara et al. (2006)].
  - ✓ 320 decay widths.
  - ✓ 626 2 → 2 SUSY processes.
  - ✓ 2708 2 → 3 SUSY processes.

The signs and absolute values of all the vertices have been checked.

| Introduction         FeynRules         Models         Summary-outlook           000         000         00         00         00 | Introduction | FeynRules | Models | Summary-outlook |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|--------|-----------------|
|                                                                                                                                  | 000          | 000       | oo●oo  | OO              |

- Handmade vs. automated implementation.
  - \* 2522 vertices, without the four-scalar interactions.
  - \* More that 10000 vertices, with the four-scalar interactions !!!
  - \* *R*-parity violation: add  $\approx$  100 free parameters...
- FeynArts/FormCalc: most general *R*-parity-conserving MSSM.
  - ✓ All 2 → 2 SUSY hadroproduction processes checked with litterature. [Bozzi, BenjF, Herrmann, Klasen (2007); BenjF, Herrmann, Klasen (2009; in preparation)].
- MadGraph/MadEvent (in the cMSSM limit):
  - \* MG-Stock was validated by the CATPISS collaboration [Hagiwara et al. (2006)].
  - ✓ 320 decay widths.
  - ✓ 626 2 → 2 SUSY processes.
  - ✓ 2708 2 → 3 SUSY processes.

The signs and absolute values of all the vertices have been checked.

- CalcHEP/CompHEP (in the cMSSM):
  - ✓ 626 2 → 2 SUSY processes.
  - **X** Some bugs found in the stock version!

|  |                 | <b>`</b> |
|--|-----------------|----------|
|  | Models<br>ooo●o |          |

#### Some MadGraph and CalcHEP results

| Process         | MG-FR                   | MG-Stock                | CH-FR                   | CH-Stock                | Result        |
|-----------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------|
| e+,e->e+,e-     | $7.5203 \times 10^{2}$  | $7.5216 \times 10^{2}$  | $7.5137 \times 10^{2}$  | $7.5137 \times 10^{2}$  | OK: 0.105086% |
| e+,e->vm,vm~    | $1.5268 \times 10^{-3}$ | $1.5285 \times 10^{-3}$ | $1.5261 \times 10^{-3}$ | $1.5262 \times 10^{-3}$ | OK: 0.15714%  |
| e+,e->t,t~      | $1.1098 \times 10^{-2}$ | $1.1101 \times 10^{-2}$ | $1.1108 \times 10^{-2}$ | $1.1114 \times 10^{-2}$ | OK: 0.144066% |
| e+,e->d,d~      | $5.6391 \times 10^{-3}$ | $5.6597 \times 10^{-3}$ | $5.6465 \times 10^{-3}$ | $5.6465 	imes 10^{-3}$  | OK: 0.36464%  |
| e+,e->W+,W-     | $2.8014 \times 10^{-1}$ | $2.801 \times 10^{-1}$  | $2.8008 \times 10^{-1}$ | $2.8009 	imes 10^{-1}$  | OK: 0.0214202 |
| e+,e->Z,Z       | $1.535 \times 10^{-2}$  | $1.5347 \times 10^{-2}$ | $1.5347 \times 10^{-2}$ | $1.5347 \times 10^{-2}$ | OK: 0.0195459 |
| e+,e->Z,a       | $6.2902 \times 10^{-2}$ | $6.2901 \times 10^{-2}$ | $6.292 \times 10^{-2}$  | $6.292 \times 10^{-2}$  | OK: 0.0302016 |
| e+,e->s15-,s15+ | $3.2044 \times 10^{-2}$ | $3.2002 \times 10^{-2}$ | $3.2039 \times 10^{-2}$ | $3.2039 \times 10^{-2}$ | OK: 0.131156% |
| e+,e->sl2-,sl2+ | $3.6401 \times 10^{-2}$ | $3.641 \times 10^{-2}$  | $3.64 	imes 10^{-2}$    | $3.64 	imes 10^{-2}$    | OK: 0.0274688 |
| e+,e->s15-,s12+ | $2.0292 \times 10^{-3}$ | $2.0269 \times 10^{-3}$ | $2.0291 \times 10^{-3}$ | $2.0291 \times 10^{-3}$ | OK: 0.113409% |
| e+,e->sl1-,sl1+ | $1.6061 \times 10^{-3}$ | $1.6061 \times 10^{-3}$ | $1.6054 \times 10^{-3}$ | $1.6054 \times 10^{-3}$ | OK: 0.0435933 |
| e+,e->sv3,sv3~  | $9.5578 \times 10^{-2}$ | $9.5567 \times 10^{-2}$ | $9.554 \times 10^{-2}$  | $9.5542 \times 10^{-2}$ | OK: 0.039766% |
| e+,e->su4,su4~  | $2.9679 \times 10^{-3}$ | $2.9676 \times 10^{-3}$ | $2.9692 \times 10^{-3}$ | $2.9692 \times 10^{-3}$ | OK: 0.0539011 |
| e+,e->sul,sul~  | $1.9518 \times 10^{-3}$ | $1.9486 \times 10^{-3}$ | $1.9517 \times 10^{-3}$ | $1.9517 \times 10^{-3}$ | OK: 0.164086% |
| e+,e->su6,su6~  | $2.2021 \times 10^{-3}$ | $2.2041 \times 10^{-3}$ | $2.202 \times 10^{-3}$  | $2.202 \times 10^{-3}$  | OK: 0.0953224 |
| e+,e->su1,su6~  | $4.4196 \times 10^{-4}$ | $4.4134 	imes 10^{-4}$  | $4.4155 \times 10^{-4}$ | $4.4155 	imes 10^{-4}$  | OK: 0.140383% |
| e+,e->sd4,sd4~  | $4.9197 \times 10^{-4}$ | $4.926 \times 10^{-4}$  | $4.9192 \times 10^{-4}$ | $4.9192 \times 10^{-4}$ | OK: 0.138138% |
| e+,e->sd6,sd6~  | $2.0014 \times 10^{-3}$ | $2.0012 \times 10^{-3}$ | $2.0016 \times 10^{-3}$ | $2.0016 \times 10^{-3}$ | OK: 0.019986% |
| e+,e->sd1,sd2~  | $2.1502 \times 10^{-4}$ | $2.149 \times 10^{-4}$  | $2.1494 \times 10^{-4}$ | $2.1494 \times 10^{-4}$ | OK: 0.0558243 |
| e+,e->n1,n1     | $7.6112 \times 10^{-3}$ | $7.6075 \times 10^{-3}$ | $7.6077 \times 10^{-3}$ | $7.6076 \times 10^{-3}$ | OK: 0.0486244 |
| e+,e->n1,n2     | $2.7949 \times 10^{-3}$ | $2.792 \times 10^{-3}$  | $2.7942 \times 10^{-3}$ | $2.7943 \times 10^{-3}$ | OK: 0.103814% |
| e+,e->n2,n3     | $4.1779 \times 10^{-4}$ | $4.1709 \times 10^{-4}$ | $4.17 \times 10^{-4}$   | $4.1701 \times 10^{-4}$ | OK: 0.189269% |
| e+,e->n2,n4     | $7.5931 \times 10^{-4}$ | $7.5959 \times 10^{-4}$ | $7.5912 \times 10^{-4}$ | $7.5914 \times 10^{-4}$ | OK: 0.0618946 |
| e+,e->n4,n4     | $3.5319 \times 10^{-5}$ | $3.531 \times 10^{-5}$  | $3.5317 \times 10^{-5}$ | $3.5317 \times 10^{-5}$ | OK: 0.0254853 |
| e+,e->x1+,x1-   | $1.204 \times 10^{-2}$  | $1.2038 \times 10^{-2}$ | $1.2039 \times 10^{-2}$ | $1.2039 \times 10^{-2}$ | OK: 0.0166127 |
| e+,e->x2+,x2-   | $7.0411 \times 10^{-3}$ | $7.0479 \times 10^{-3}$ | $7.0494 \times 10^{-3}$ | $7.0494 \times 10^{-3}$ | OK: 0.11781%  |
| e+,e->Z,h1      | $7.6379 \times 10^{-4}$ | $7.6496 \times 10^{-4}$ | $7.6477 \times 10^{-4}$ | $7.6478 \times 10^{-4}$ | OK: 0.153066% |
| e+,e->z,h2      | $1.0024 \times 10^{-7}$ | $1.0007 \times 10^{-7}$ | $1.0017 \times 10^{-7}$ | $1.0017 \times 10^{-7}$ | OK: 0.169737% |
| e+,e->h3,h1     | $9.9472 \times 10^{-8}$ | $9.9485 \times 10^{-8}$ | $9.9461 \times 10^{-8}$ | $9.9466 \times 10^{-8}$ | OK: 0.0241272 |
| e+,e->h3,h2     | $7.172 \times 10^{-4}$  | $7.1771 \times 10^{-4}$ | $7.177 \times 10^{-4}$  | $7.1771 \times 10^{-4}$ | OK: 0.0710846 |
| e+,e->H+,H-     | $1.7338 \times 10^{-3}$ | $1.7338 \times 10^{-3}$ | $1.7355 \times 10^{-3}$ | $1.7355 \times 10^{-3}$ | OK: 0.0980025 |

A comprehensive approach to New Physics simulations

Benjamin Fuks - CMS-France meeting - 28.05.09 - 14

|  | Models<br>oooo● |  |
|--|-----------------|--|
|  |                 |  |

#### Some MadGraph and CalcHEP results

| Process        | MG-FR                    | MG-ST                    | CH-FR                   | CH-ST                   | Comparison            |
|----------------|--------------------------|--------------------------|-------------------------|-------------------------|-----------------------|
| b,b~>mu+,mu-   | $7.01173 \times 10^{-3}$ | $7.00622 \times 10^{-3}$ | $7.0113 \times 10^{-3}$ | $7.0114 \times 10^{-3}$ | $\delta = 0.0786383$  |
| b,b~>e+,e-     | $7.01047 \times 10^{-3}$ | $7.00913 \times 10^{-3}$ | $7.0113 \times 10^{-3}$ | $7.0114 \times 10^{-3}$ | $\delta = 0.0323792$  |
| b,b~>tau+,tau- | $7.23656 \times 10^{-3}$ | $7.2231 \times 10^{-3}$  | $7.2351 \times 10^{-3}$ | $7.2352 \times 10^{-3}$ | δ = 0.186166 %        |
| b,b~>ve,ve~    | $8.38141 \times 10^{-3}$ | $8.38607 \times 10^{-3}$ | $8.3842 \times 10^{-3}$ | $8.3843 \times 10^{-3}$ | $\delta = 0.0556675$  |
| b,b~>vm,vm~    | $8.3868 \times 10^{-3}$  | $8.38046 \times 10^{-3}$ | $8.3842 \times 10^{-3}$ | $8.3843 \times 10^{-3}$ | $\delta = 0.0756488$  |
| b,b~>vt,vt~    | $8.38227 \times 10^{-3}$ | $8.38318 \times 10^{-3}$ | $8.3842 \times 10^{-3}$ | $8.3843 \times 10^{-3}$ | $\delta = 0.0242298$  |
| b,b~>u,u~      | 2.19296                  | 2.19098                  | 2.1931                  | 2.1931                  | $\delta = 0.0966848$  |
| b,b~>t,t~      | $4.74685 \times 10^{1}$  | $4.74541 \times 10^{1}$  | $4.7307 \times 10^{1}$  | $4.7308 \times 10^{1}$  | $\delta = 0.340907$ % |
| b,b~>d,d~      | 2.19374                  | 2.19428                  | 2.1944                  | 2.1944                  | $\delta = 0.0301166$  |
| b,b~>b,b~      | $2.34515 \times 10^{4}$  | $2.34471 \times 10^{4}$  | $2.3448 \times 10^{4}$  | $2.3448 \times 10^{4}$  | $\delta = 0.0188769$  |
| b,b~>W+,W-     | 1.33248                  | 1.33234                  | 1.3331                  | 1.3331                  | $\delta = 0.0573475$  |
| b,b~>Z,Z       | $1.39592 \times 10^{-1}$ | $1.39525 \times 10^{-1}$ | $1.3982 \times 10^{-1}$ | $1.3982 \times 10^{-1}$ | $\delta = 0.210885$ % |
| b,b~>z,a       | $2.8492 \times 10^{-2}$  | $2.85038 \times 10^{-2}$ | $2.8503 \times 10^{-2}$ | $2.8504 \times 10^{-2}$ | δ = 0.0420335         |
| b,b~>g,g       | $5.55219 \times 10^{1}$  | $5.54535 \times 10^{1}$  | $5.5504 \times 10^{1}$  | $5.5504 \times 10^{1}$  | $\delta = 0.12333$ %  |
| b,b~>sd1,sd1~  | $3.40163 	imes 10^{-1}$  | $3.40348 \times 10^{-1}$ | $3.401 \times 10^{-1}$  | $3.4009 	imes 10^{-1}$  | $\delta = 0.0759557$  |
| b,b~>sd2,sd2~  | $2.58964 \times 10^{-1}$ | $2.59026 \times 10^{-1}$ | $2.5914 \times 10^{-1}$ | $2.5915 \times 10^{-1}$ | $\delta = 0.0716753$  |
| b,b~>sd1,sd2~  | $6.07283 \times 10^{-1}$ | $6.07465 \times 10^{-1}$ | $6.0701 \times 10^{-1}$ | $6.0701 \times 10^{-1}$ | $\delta = 0.0749837$  |
| b,b~>su1,su1~  | $2.88616 \times 10^{-1}$ | $2.89041 \times 10^{-1}$ | $2.8884 \times 10^{-1}$ | $2.8625 \times 10^{-1}$ | $\delta = 0.97026$ %  |
| b,b~>su6,su6~  | $5.91346 \times 10^{-3}$ | $5.91497 \times 10^{-3}$ | $5.9124 \times 10^{-3}$ | $5.2701 \times 10^{-3}$ | δ = 11.5309 %         |
| b,b~>su1,su6~  | $1.15552 \times 10^{-2}$ | $1.15752 \times 10^{-2}$ | $1.1567 \times 10^{-2}$ | $8.7247 \times 10^{-3}$ | δ = 28.0835 %         |
| b,b~>n1,n1     | $1.73348 \times 10^{-4}$ | $1.73503 \times 10^{-4}$ | $1.7329 \times 10^{-4}$ | $1.7329 \times 10^{-4}$ | $\delta = 0.12272$ %  |
| b,b~>n1,n2     | $7.25698 \times 10^{-4}$ | $7.25803 \times 10^{-4}$ | $7.2617 \times 10^{-4}$ | $7.2618 \times 10^{-4}$ | $\delta = 0.0664021$  |
| b,b~>n1,n3     | $4.87872 \times 10^{-4}$ | $4.89162 \times 10^{-4}$ | $4.8893 \times 10^{-4}$ | $4.8893 \times 10^{-4}$ | δ = 0.26393 %         |
| b,b~>n1,n4     | $2.90254 \times 10^{-4}$ | $2.89831 \times 10^{-4}$ | $2.8994 \times 10^{-4}$ | $2.8994 \times 10^{-4}$ | $\delta = 0.146048$ % |
| b,b~>n2,n2     | $5.74033 \times 10^{-3}$ | $5.74407 \times 10^{-3}$ | $5.7423 \times 10^{-3}$ | $5.7424 \times 10^{-3}$ | $\delta = 0.0651865$  |
| b,b~>n2,n3     | $2.73662 \times 10^{-3}$ | $2.73514 \times 10^{-3}$ | $2.7398 \times 10^{-3}$ | $2.7399 \times 10^{-3}$ | $\delta = 0.173711$ % |
| b,b~>n2,n4     | $2.0141 \times 10^{-3}$  | $2.01493 \times 10^{-3}$ | $2.0149 \times 10^{-3}$ | $2.015 \times 10^{-3}$  | $\delta = 0.0448974$  |
| b,b~>n3,n3     | $4.54157 \times 10^{-5}$ | $4.54171 \times 10^{-5}$ | $4.5409 \times 10^{-5}$ | $4.5409 \times 10^{-5}$ | $\delta = 0.0178662$  |
| b,b~>n3,n4     | $1.08667 \times 10^{-2}$ | $1.08477 \times 10^{-2}$ | $1.0845 \times 10^{-2}$ | $1.0845 \times 10^{-2}$ | $\delta = 0.199685$ % |
| b,b~>n4,n4     | $2.16226 \times 10^{-4}$ | $2.15906 \times 10^{-4}$ | 2.1573×10-4             | $2.1574 \times 10^{-4}$ | $\delta = 0.229686$ % |

A comprehensive approach to New Physics simulations

Benjamin Fuks - CMS-France meeting - 28.05.09 - 15

|         |  | Summary-outlook |
|---------|--|-----------------|
| Outline |  |                 |



#### Introduction - Monte Carlo generators







# Summary: the philosophy of FeynRules

- \* Theorist-friendly environment to develop new models. Mathematica-based.
- \* Filling the gap between model building and collider phenomenology.
   1) Lagrangian → FeynRules → model files for your favourite Monte Carlo codes.
   2) Monte Carlo code → phenomenology (e.g. cf. CMSSW).
- \* Avoid separate implementations of a model on different programs. FeynRules does it for you! Exploit the strengths of the different programs!
- \* **Portability and documentation**. Test of a model against data: all model information in the FeynRules files.
- \* The validation of the existing models is ongoing. Different generators, gauges, etc...

- \* Contact us to add your favourite model.
- \* Contact us to add your favourite Monte Carlo tool.
- \* Website: http://feynrules.phys.ucl.ac.be .

#### Backup slides - one short example: QCD.

# Example: QCD - Parameters

| Parameters of the mod                                  | el                                                                               |     |
|--------------------------------------------------------|----------------------------------------------------------------------------------|-----|
| Tex<br>ParameterType                                   | -> "Strong coupling constant at MZ"<br>-> Subscript[\[Alpha],s],<br>-> External, |     |
| BlockName<br>OrderBlock<br>InteractionOrder<br>gs == { | -> 3,<br>-> {QCD, 2}},                                                           |     |
| TeX<br>ComplexParameter<br>ParameterType<br>Value      | -> Internal,<br>-> Sqrt[4 Pi aS],                                                |     |
| InteractionOrder<br>ParameterName                      |                                                                                  | e). |

\* External/internal parameters.

# Example: QCD - Gauge group and gauge boson

| The $SU(3)_C$ gauge gro | oup |                         |
|-------------------------|-----|-------------------------|
| SU3C == {               |     |                         |
| Abelian                 | ->  | False,                  |
| GaugeBoson              |     | G,                      |
| StructureConstant       |     | f,                      |
| DTerm                   | ->  | dSUN,                   |
| Representations         | ->  | <pre>{T, Colour},</pre> |
| CouplingConstant        | ->  | gs}                     |

#### **Gluon field definition**

| V[1] == {       |                  |
|-----------------|------------------|
| ClassName       | -> G,            |
| SelfConjugate   | -> True,         |
| Indices         | -> Index[Gluon], |
| Mass            | -> 0,            |
| Width           | -> 0,            |
| ParticleName    | -> "g",          |
| PDG             | -> 21,           |
| PropagatorLabel | -> "G",          |
| PropagatorType  | -> C,            |
| PropagatorArrow | -> None}         |
|                 |                  |

- \* Gauge boson definition.
- \* Gauge group definition.
- \* Association of a coupling constant.
- \* Definition of the structure functions.
- \* Definition of the representations.

# Example: QCD - Quark fields

| The quark fields |                                                        |
|------------------|--------------------------------------------------------|
| F[1] == {        |                                                        |
| ClassName        | -> q,                                                  |
| ClassMembers     | -> {d, u, s, c, b, t},                                 |
| FlavorIndex      | -> Flavour,                                            |
| SelfConjugate    | -> False,                                              |
| Indices          | -> {Index[Flavour], Index[Colour]},                    |
| Mass             | -> {MQ, MD, MU, MS, MC, MB, MT},                       |
| Width            | -> {WQ, 0, 0, 0, 0, WT},                               |
| ParticleName     | -> {"d", "u", "s", "c", "b", "t"},                     |
| AntiParticleName | -> {"d~", "u~", "s~", "c~", "b~", "t~"},               |
| PDG              | -> {1, 2, 3, 4, 5, 6},                                 |
| PropagatorLabel  | -> {"q", "d", "u", "s", "c", "b", "t"},                |
| PropagatorType   |                                                        |
| PropagatorArrow  | -> Forward} * Classes: implicit sums in the Lagrangian |

\* All the information needed by the MC codes.

# Example: QCD - Lagrangian

#### **QCD** Lagrangian:

$$\mathcal{L}_{\rm QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_f \left[ \bar{q}_f \left( i\partial \!\!\!/ - m_f + g_s G^a T^a \right) q_f \right].$$

\* Implicit summations  $\Rightarrow$  easy debugging.

# Example: QCD - Results

```
Results - let us do (some) phenomenology!
FeynmanRules[LQCD, FlavorExpand->False]
    Vertex 1
    Particle 1 : Vector , G
    Particle 2 : Dirac , qt
    Particle 3 : Dirac , q
    Vertex:
        ig_{s} \gamma_{s_{2},s_{3}}^{\mu_{1}} \delta_{f_{2},f_{3}} T^{a}_{m_{2},m_{2}}
    WriteFeynArtsOutput[LQCD]
    WriteCHOutput[LQCD]
    WriteMGOutput[LQCD]
    WriteSHOutput[LQCD]
```