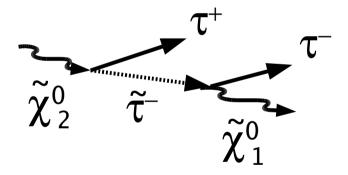
Activities for the stau search at IPHC

28th May 2009 CMS FRANCE at Strasbourg


David Bodin, Ulrich Goerlach, <u>Yoshinari Mikami</u> IPHC Strasbourg

Outline: 1. Motivation and introductions

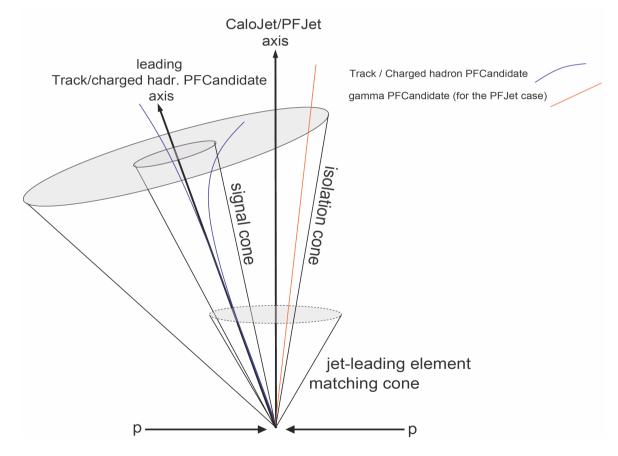
- 2. SUSY group's Reference Analysis
- 3. Current status (very preliminary)
- 4. Future prospect

Motivation

• A search for the **supersymmetric tau** events with an assumption of the decay chain:

Large missing Et events because of neutralinos in the final state.

Test points and mSUGRA parameter values


 Minimal SUper GRAvity model of supersymmetry (mSUGRA) has 5 basic parameters. (m₀, m_{1/2}, tanβ, sign(μ), A₀)

Light Mass test points	mo		m 1/2	tanβ	sign(µ)	Ao
	60 185 85 3000 1450	>> >>	250 350 400 230 175	10 35 10 10 50	+ + + +	0 0 0 0 0

Note1. Masses are given in units of GeV/c² Note2. Br($\tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau$) = 96% in LM2

τ reconstruction

• Standard τ identification is from hadronic jet.

Finding the leading track in the jet matching cone.
Requiring to be isolated from other high Pt tracks and photons.

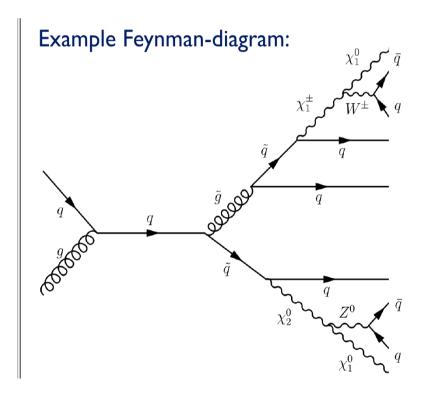
SUSY Reference Analysis

SUSY hadronic reference analyses:

- RA1 : Exclusive n-jets analysis (e.g. Di-jet)
- RA2 : Inclusive >= 3 jets analysis (overlap with RA1)
- (RA3 : Di-photon + jets analysis)

Note1: Studying τ events (which are reconstructed from hadronic τ) is assigned in one of these categories.

Note2: First purpose of reference analysis is synchronization between different analysis group.

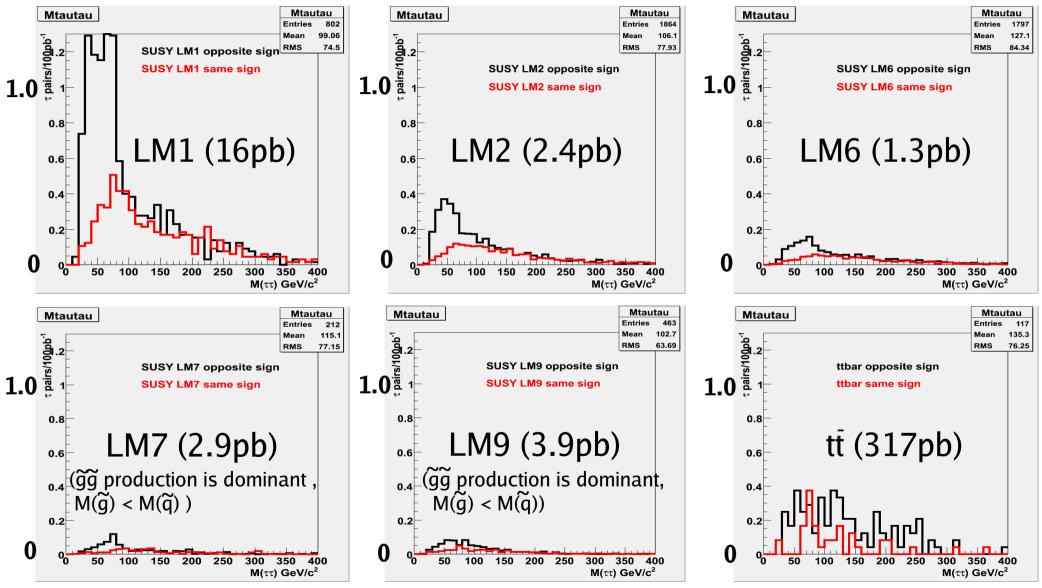

Reference Analysis 1

- RA1 (exclusive di-jet, exclusive 3 jets, and so on)
- Main pre-selection
 - > The first and the second leading jets Pt > 100 GeV/c
 - > $|\eta| < 2$ for the leading jet
 - Electron and muon veto
 - → No PAT-electron or global muon with Pt > 10 GeV/c

Note: This e and μ veto is not proper for our particular stau study.

Reference Analysis 2

- RA2 (inclusive >= 3 jets)
- Main pre-selection
 - > The first leading jet Pt > 180 GeV/c
 - The second leading jet Pt > 150 GeV/c
 - > The third leading jet Pt > 50 GeV/c
 - > The 1st, 2nd and 3rd jets $|\eta| < 2.5$
 - > Veto on muons and electrons
 - Missing Et > 200 GeV



Note: This e and μ veto is not proper for our particular stau study as well.

Current status at IPHC

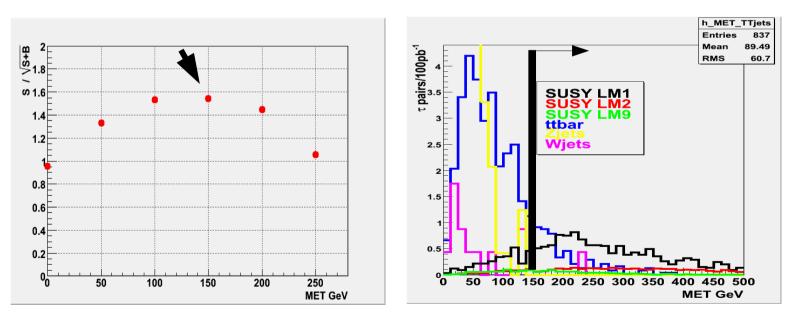
- David Bodin is studying the τ efficiency and the τ fake rate. (Please see Anne-Fleur's talk)
- Testing a basic signal selection criteria with available MCs.
- Studying some missing Et related kinematic variables (e.g. $\alpha_t = E_t(2^{nd}) / M_t(1^{st}2^{nd})$ in di-jet system, α_t in n-jet system etc.)
 - Robustness against energy miss-measurements is under study.

Very preliminary M($\tau^+\tau^-$) tests plots at 100 pb⁻¹

Note1. Not yet final optimization : HT (jets Et sum) > 600 GeV, MET > 150 GeV, #Jets(Et >50GeV) > 2,

Leading jet Et > 150 GeV, $|\eta(\tau)| < 2.5$, Pt(τ hard) > 40 GeV/c, Pt(τ soft) > 15 GeV/c

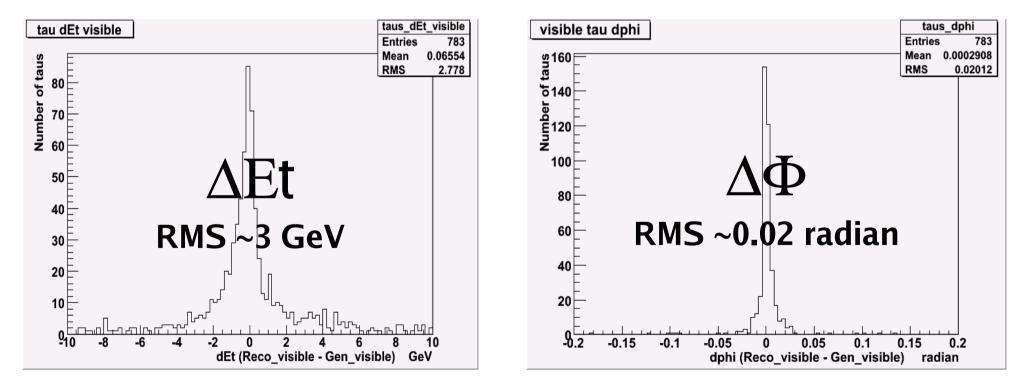
Note2. Summer08 10TeV MC samples (PYTHIA6 for LM points, MadGraph for ttbar MC)


Future prospect

- Synchronization efforts
 - Recently released MC version (SUSY-PAT Layer1 is partially available at this moment. e.g. Only for signal LMX etc.)
 - Testing the same basic criteria with reference analysis, afterward making it relax for our particular stau study.
 - > Particle Flow will improve the τ energy resolution.
 - SUSY-PAT's 'cross-cleaning' (It removes double counts in jet.)
 - The 'cross-cleaning' will improve the resolution of MHT (missing Et from jets).
- Data-driven systematic study
- Reference Analysis is for SUSY discovery in early data set.
 - > Stau observation at 10TeV 100 pb^{-1} is very challenging.
 - However, we are trying to do our best.

Backup: Selection optimization test [under study]

$$\begin{split} &\mathsf{S}=\#(\mathsf{LM1}\ opposite\ sign\ \tau\ pairs)-\ \#(\mathsf{LM1}\ same\ sign\ \tau\ pairs)\\ &\mathsf{B}=\#(\mathsf{ttbar})+\#(\mathsf{Wjets}\)+\#(\mathsf{Zjets})+\#(\mathsf{LM1}\ same\ sign\ \tau\ pairs)\ [normalized\ with\ 100pb^{-1}]\\ &\text{with\ basic\ test\ cuts:}\ \ |\eta(\tau)|<2.5,\ \mathsf{Pt}(\tau 1)>40\ \mathsf{GeV/c},\ \mathsf{Pt}(\tau 2)>10\ \mathsf{GeV/c},\\ &\ \mathsf{Leading\ jet\ Et}>150\ \mathsf{GeV},\ \#\mathsf{Jets}(\mathsf{Et}>50\mathsf{GeV})>=2, \end{split}$$


HT(jets Et sum) > 600 GeV, $M(\tau\tau) < 100 \text{ GeV/}c^2$

(Note: QCD sample is still missing in this study.)

Backup: Particle Flow τ test

(single τ events with Pt(τ) = 50 GeV/c)

Good agreement with the CMS note (CMS PAS PFT-08-001)

MC samples

Sample	Cross section	Events used	Luminosity correspond (fb-1)
LM1	16 pb	104k	6.5
LM2	2.4 pb	130k	54
LM6	1.3 pb	131k	103
LM7	2.9 pb	82k	28
LM9	3.9 pb	213k	55
Wjets	40 nb	9.1M	0.23
Z jets	3.7 nb	0.9M	0.24
ttbar	317 pb	0.7M	2.4

Note.1: Summer08 10TeV MC samples Note.2: SUSY LMX MC are PYTHIA6, BG MC are MadGraph