

Top physics at LHC startup: Prospect march

Jérémy Andrea, Denis Gelé, Joaquim Speck, Pierre Juillot, Pedrame Bargassa IPHC, University of Strasbourg

CMS-France meeting

Introduction

- Top physics at start-up : prospect march.
- What can be the expected precision on ttbar cross section measurement? What's need to be developed to prepare the measurements.
- Start-up conditions :
 - Validate data for physic analysis,
 - MC generator not tuned, simulation do not describe well the data,
 - Need to get selection efficiency from data,
 - Need to estimate background from data.
- Outlook:
 - Di-lepton cross section measurement
 - 3 different strategy,
 - Background estimate from data.
 - Muon+jets cross section, W+jets background estimate

CMS-France meeting

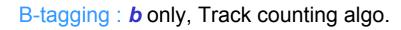
Cross section, di-lepton channel (e-e, e-mu , mu-mu)

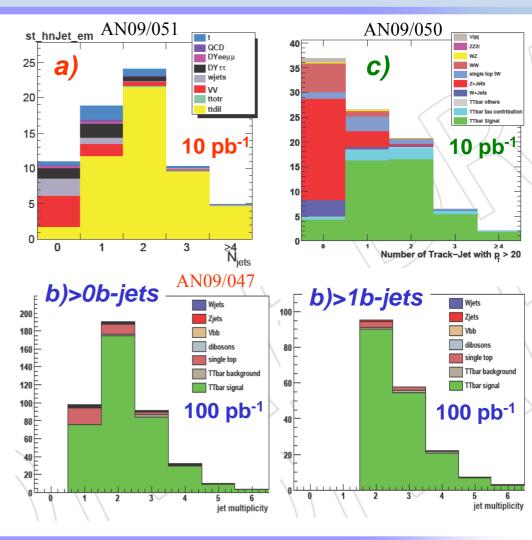
CMS-France meeting

UNIVERSITÉ DE STRASBOURG

3/14

Event selection


- 3 different selections **a**, **b** and **c**.
- Lepton :
 - p_T>20GeV, |η|<2.4, tracker and calorimeter isolation.
 - Electron: loose ID+ $|d0| < 400 \ \mu m$.
 - Muon : norm chi2<10, NHit>10.
 - DY removal (ee, μμ) |M-91|<15 GeV/c²


MET selection :

- a: MET>30(ee, μμ), >20 GeV (e,μ).
- **b** : MET>50(ee, μμ), >30 GeV (e,μ).
- *c*: no MET cut.
- Jet selection :

•

- a, b : SIS cone (0.5), p_T>30GeV, |η|<2.4</p>
- c : tracker jets.

CMS-France meeting


UNIVERSITÉ DE STRASBOURG

28/05/2009

4/14

Background estimate: The fake rate method

- QCD background estimate:
 - Apply a single lepton selection on a QCD (multijets) sample and estimate fake rate ϵ_{f} .
 - Apply $\varepsilon_f \times \varepsilon_f$ on this sample.
- Estimate W+jets background (1 real lepton and 1 fake):
 - Selected W+jets events requiring 2 leptons but 1 isolated (MC or Data).
 - Multiply the event yield by the fake rate estimated in data $\epsilon_{\rm f}.$

Sample	Yield
$W \rightarrow \mu + e$	75
$W \rightarrow \mu + (eFO \times FR)$	66 ± 4

• Uncertainty of about 30%.

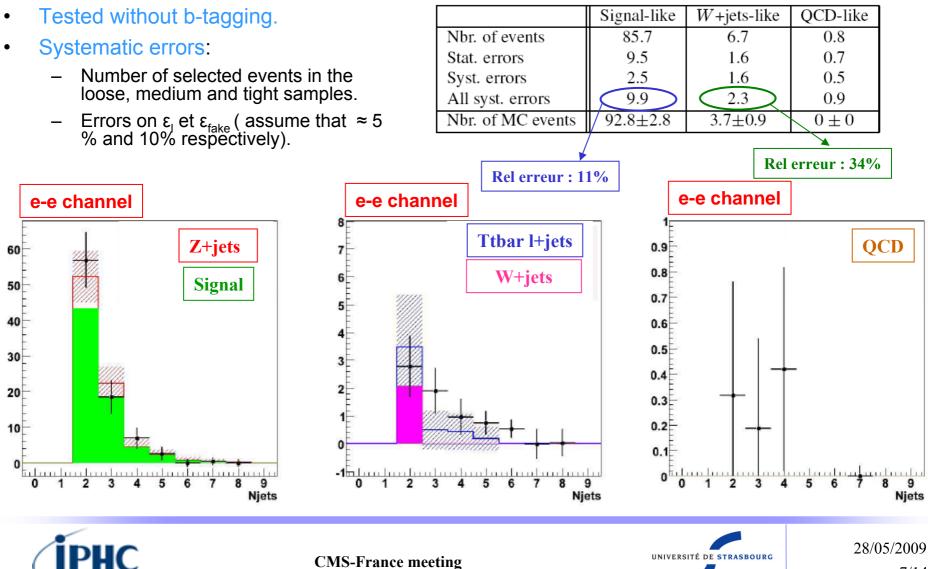
CMS-France meeting

Background estimate: The Matrix Method

- In the di-leptonic channels: estimate instrumental background (due to fake isolated leptons) from data.
- We can define 3 levels of isolation: Loose = looser isolation requirements, Medium = at least 1 isolated leptons per event, Tight = at least 2 isolated leptons per event (standard selection).
- Then we define 3 sub-samples for each selection:
 - N_s = events containing 2 real isolated leptons (signal-like),
 - N_{W+jets} = events containing 1 real isolated leptons (W+jets-like),
 - N_{QCD} = events containing 2 fake isolated leptons (QCD+like).
- If we measure the probability for a "*Loose*" event to pass the "*Medium*" ($\epsilon^{l \to m}$) and "*Tight*" selection ($\epsilon^{l \to t}$), we can define a system of 3 equations and 3 unknowns.
- The solution yields the number of signal-like, W+jets-like and QCD-like events.

$$\begin{split} N^t &= \varepsilon_S^{l \to t} N_S^l + \varepsilon_W^{l \to t} N_W^l + \varepsilon_{QCD}^{l \to t} N_{QCD}^l, \\ N^m &= \varepsilon_S^{l \to m} N_S^l + \varepsilon_W^{l \to m} N_W^l + \varepsilon_{QCD}^{l \to m} N_{QCD}^l, \\ N^l &= N_S^l + N_W^l + N_{QCD}^l. \end{split}$$

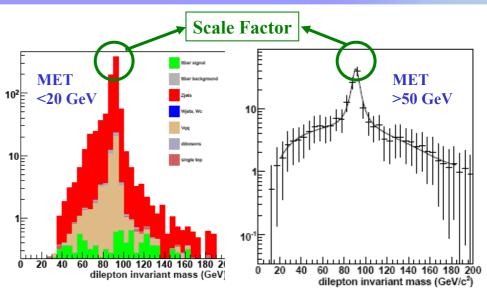
 $N_S^t =$


 ε_{S}

28/05/2009

 $f(\varepsilon_l, \varepsilon_{fake})$

The matrix method (2)


Background estimate: Z+jets

- Select events with a low MET (<20GeV).
- Assumed dominated by Z+jets events.
- Count the number of events outside the Z mass peak N_{tails}.
- Rescale N_{tails}:
 - fit high MET region (>50 GeV) by a polynomial(ttbar signal) + Breit-Wigner (Z peaking background),
 - use the maximum of the BW to calculate the scale factor.
- Total error estimate to be $\approx 30\%$.

no b-tagging	Predicted	MC truth	statistical errors	scale factor	resolution	total
e-e	8.9	8.3	33.6%	13.2%	6.2%	36%
$\mu - \mu$	17.1	14.4	24.1%	4.9%	12.9%	28%

$$N_{estimated}^{out} = \frac{N_{obs}^{in}}{N_{MC}^{in}} \cdot N_{MC}^{out} = N_{obs}^{in} \cdot R_{out/in}$$

Total error conservatively assumed to be 30%.

- Other method: count the number of events inside and outside the Z mass peak cut.
- This ratio is assumed to be the same in data and MC.
- Corrected by the presence of signal event in the Z mass peak region.

CMS-France meeting

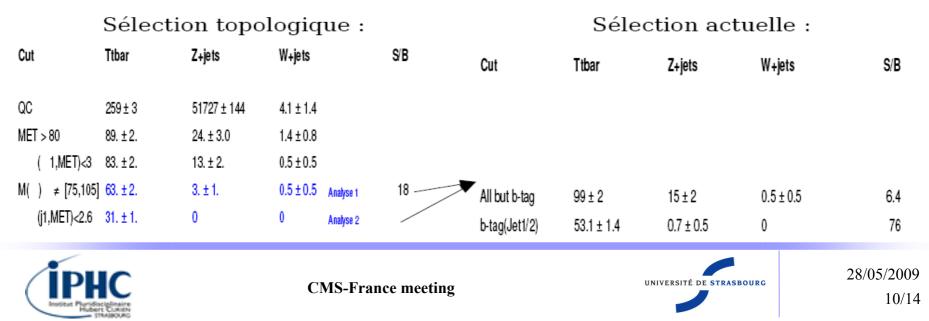
Systematic error on the cross section measurement

- Systematic uncertainty on the cross section measurement, for a luminosity of L=10 pb⁻¹:
 - **a** 10% for e- μ and e-e, μ - μ 16% when combined.
 - $\begin{array}{c} \textbf{c} \ 40\% \\ 37\% \end{array}$ for e-µ, e-e 38% and µ-µ 37%

Source L=10 pb ⁻¹	e^+e^- and $\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
Lepton ID	5%	5%
Lepton isolation	3%	3%
JEŜ	8%	5%
Theory	4%	4%
All without backgrounds	11%	9%
Z/γ^*	10%	N.A.
Fake	4%	4%
MC backgrounds	5%	4%
All w/o $\mathcal L$	16%	10%

$$\sigma \times BR = \frac{N_{sel} - N_{bkg}}{\varepsilon_{t\bar{t}} \times \int \mathcal{L}}$$

- For L=100 pb⁻¹ and with the use of b-tagging, combining the 3 channels in a single measurement b:
 - Asking for at least 1 b-jet :13%.
 - Asking for at least 2 b-jets : 19%.
- B-tagging allow to get a more pure sample (systematic related to background contamination decrease).
- But systematic due to b-tagging efficiency uncertainty appears.

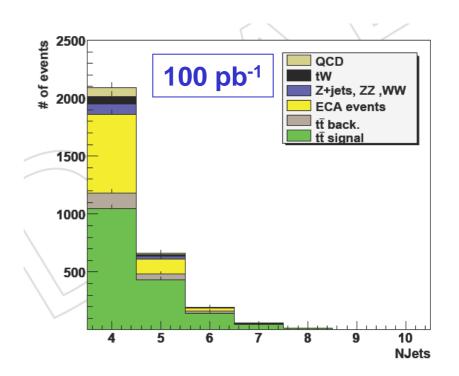


Selection Topologique

- Approche topologique & systématique des sélections Pedrame Bargassa
 - > Ne pas se limiter à p_T , E_T , Met. Utiliser aussi $\Delta \phi$ (lepton/jet,Met), M_τ (lepton,Met)...
 - A chaque étape de sélection : Utiliser {variable,coupure} la plus discriminante
- ➤ …Approche systématique ≠ Sur-optimiser les coupures

Example dans l'état final $\mu\mu$ avec optimisation faite versus W/Z+jets

Muon+jets channel, W+jets background estimate


CMS-France meeting

Muon+jets channel: event selection

- Event selection (not optimized, just to test the method):
 - 1 isolated muon with $p_T > 20$ GeV/c (+ veto on other lepton) $|\eta| < 2.1$,
 - At least 4 jets with $p_T > 30$ GeV/c, $|\eta| < 2.4$,
 - No MET nor b-tagging selection.
- About 1700 signal and 1200 background events, dominated by W+jets (≈800 events).
- A MET cut do not improve the S/B ratio.

W+jet; bckg e;timate: the W charge asymmetry method

- W⁺ and W⁻ cross sections are different at LHC .
- For the single lepton channels, the number of selected events which have a selected lepton (negative charge) is different than the number of selected events which have a selected anti-lepton (positive charge).
- W+jets background can then be estimated using this charge asymmetry.

$$\frac{N_{+}-N_{-}}{N_{+}+N_{-}} = \frac{\varepsilon_{+}A_{+}L\sigma_{+}-\varepsilon_{-}A_{-}L\sigma_{-}}{\varepsilon_{+}A_{+}L\sigma_{+}+\varepsilon_{-}A_{-}L\sigma_{-}} = \frac{A_{+}\sigma_{+}-A_{-}\sigma_{-}}{A_{+}\sigma_{+}+A_{-}\sigma_{-}}$$

Assuming that $\epsilon_{+}=\epsilon_{-}$

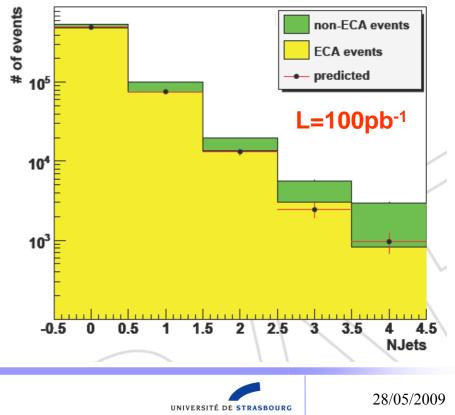
• Where $N_+(N_-)$ is the number of selected W events with a positive (negative) charged lepton, ε_+ (ε_-) are the global reconstruction + selection efficiencies, L is the integrated luminosity and $\sigma_+(\sigma_-)$ the $W_+(W_-)$ cross section and $A_+(A_-)$ acceptance.

$$(N_{+} + N_{-})_{data} = \frac{A_{+}\sigma_{+} + A_{-}\sigma_{-}}{A_{+}\sigma_{+} - A_{-}\sigma_{-}} N_{+} - N_{-})_{data}$$

Where (N₊-N₋) is estimated from data!

R_± from Monte-Carlo gen.+sim.+reco.

CMS-France meeting



Results

- Systematic uncertainties on R_±:
 - PDF uncertainty (weight method + master formula), dominant,
 - Contamination of WZ, Vqq, single top (s and t),
 - Jet Energy Scale (shift of 10%),
 - Jet Energy Resolution (smeared by 10%),
- Closure test: using a number of events equivalent to L=100pb⁻¹.
- Total uncertainty for N_{jets}≥4 of ≈30%, dominated by statistical error and PDFs uncertainty.
- For L=1 fb⁻¹, total uncertainty of about 15%.
- For low jet multiplicities, total uncertainty ≈7% (could be use for a W cross section measurement?)

Jet multiplicity	0	1	2	3	≥ 4
Data stat. L=100pb ⁻¹	0.8	2.2	5.5	15.2	26.0
Monte-Carlo stat. $L_{eff}(W) = 114 \text{pb}^{-1}$	0.7	1.7	4.1	8.3	14.4
Monte-Carlo stat. $L_{eff}(W) = 10 \times 114 \text{pb}^{-1}$	0.2	0.5	1.3	2.6	4.6
Syst. uncertainty	7.1	6.5	8.1	13.7	10.7
Total uncertainty $L_{eff}(W) = 114 \text{pb}^{-1}$	7.1	7.5	10.6	22.1	31.7
Total uncertainty $L_{eff}(W) = 10 \times 114 \text{pb}^{-1}$	7.0	7.3	9.9	20.7	28.6

CMS-France meeting

14/14

- Top di-lepton analyzes with fall08 sample pre-approved on the May the 19th. PAS TOP-09-002.
- First tests of a selection tuning procedure + topological variables.
- W+jets background estimate in a muon+jets selection: is starting the approval process PAS TOP-09-006.

- Top physics and commissioning (Top.Com):
 - Commissioning group for top PAG is being set-up and top representatives to the PVT groups were nominated.
 - Short term goal: validation of the pre-production of CMSSW_3_1_X release.
 - Long term goal: define a set of relevant variables and selections to get enough information to validate data/MC for analyzes.

CMS-France meeting

UNIVERSITÉ DE STRASBOURG

28/05/2009 16/14

Dilepton b) cut flow (1)

Applied cuts	$t\bar{t}$ signal	$t\bar{t}$	$\rightarrow \tau \tau$	$t\bar{t}$	bkg		Z+jets	W+jet	s	Vbb
Triggers+Presel.	237.9 ± 2.5	1.0	± 0.2	8.2	± 0.6	4339	96.4 ± 118.9	37.1 ± 4	.2 173	7.9 ± 7.4
+ tight lepton iso.										
+inv. mass cut	172.2 ± 2.3	0.6	± 0.2		± 0.6	126	59.6 ± 21.5	4.2 ± 1	.4 59	$.4 \pm 1.4$
+number of jets	131.0 ± 2.1		± 0.2		± 0.5	10	03.7 ± 6.2	3.3 ± 1		7 ± 0.4
$+\not\!\!E_T \text{cut}$	87.9 ± 1.8		± 0.1	2.9	± 0.4	8	8.0 ± 1.7	0.9 ± 0		3 ± 0.1
+1 b-tag cut	81.5 ± 1.7		± 0.1	2.6	± 0.4	2	2.9 ± 1.0	0 ± 0	0.	2 ± 0.1
+2 b-tag cut	48.8 ± 1.4	0.2	± 0.1	1.6	± 0.3		0 ± 0	0 ± 0	0.	1 ± 0.1
	Applied cut	5	WZ		WV	V	$ZZ2l2\nu$	ZZ4l	7	
	Triggers+Pres	el	$36.6 \pm$	0.7	30.7 ±	0.5	4.9 ± 0.1	2.4 ± 0.1	1	
	+ tight lepton i	so.								
	+inv. mass cu	ıt	11.7 ± 0.4		$2.0 \pm$	0.2	0.4 ± 0.1	0.5 ± 0.1		
	+number of je	ts	0.9 ± 0.2		1.7 ±	0.2	0.1 ± 0.1	0.2 ± 0.1		
	$+\not\!\!E_T$ cut		0.3 ± 0.1		0.9 ±	0.1	0.1 ± 0.1	0.1 ± 0.1		
	+1 b-tag cut		0.1 ± 0.1				0.1 ± 0.1	0.1 ± 0.1		
	+2 b-tag cut		0 ± 0)	0.1 ±	0.1	0.1 ± 0.1	0.1 ± 0.1		
Applied cuts	tW	t-c	channel	<i>s</i> -c	hannel		QCD	Total back	grounds	S/B
Triggers+Prese	$1 25.2 \pm 0.8$	1.6	5 ± 0.2	0.4	± 0.1	819	$.5 \pm 765.9$	46100.9 =	998.8	0.005
+ tight lepton is	o.									
+inv. mass cut	8.2 ± 0.5	0.4	4 ± 0.1	0	± 0		0 ± 0	1362.8 -	E 20.8	0.13
+number of jet				0	± 0		0 ± 0	126.2 -		1
+₽ _T cut	4.1 ± 0.4	0.4	4 ± 0.1		± 0		0 ± 0	23.3 ±	: 2.5	3.7
+1 b-tag cut	3.5 ± 0.3	0.2	2 ± 0.1		± 0		0 ± 0	10.2 ±		8.0
+2 b-tag cut	1.2 ± 0.2	0.2	2 ± 0.1	0	± 0		0 ± 0	3.2 ±	0.6	14.4

Table 9: Expected number of signal and background events passing the different cumulated selection criteria for the *ee*-channel for an integrated luminosity of 100 pb⁻¹, for which around 700 *ee* events are expected. The $t\bar{t}$ signal numbers include $\tau \rightarrow e$ decay. The contribution of $t\bar{t} \rightarrow \tau\tau \rightarrow ee$ is also given here. The important yield for QCD events is due to the high scale factor; there are only three events passing the preselection.

CMS-France meeting

Dilepton b) cut flow (2)

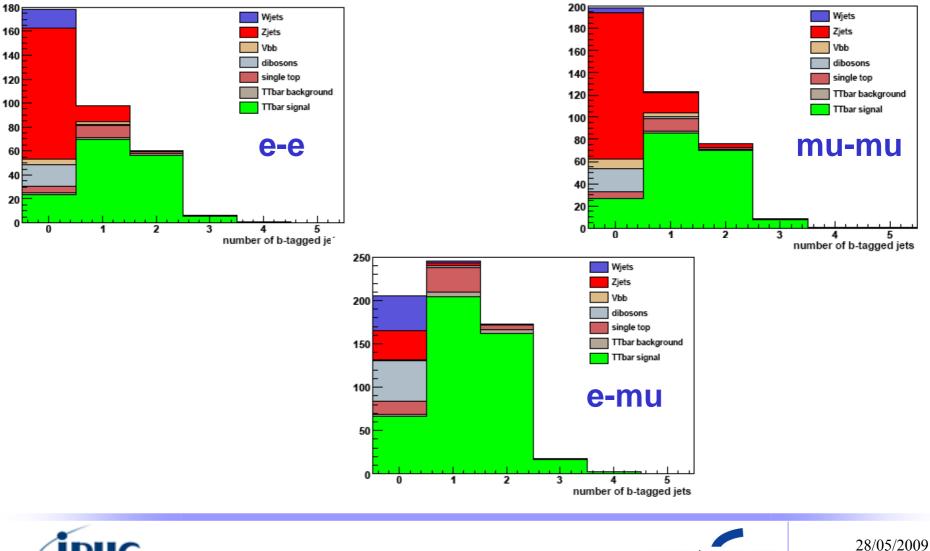
Applied cuts	$t\bar{t}$	signal	$t\bar{t}$	$\rightarrow \tau \tau$	t	\bar{t} bkg		Z+jets	5	W+jets	Vbb	
Triggers+Presel	276	$.7 \pm 2.6$	1.4	1 ± 0.3	1.9	9 ± 0.3	505	501.7 ± 100	127.7	4.2 ± 1.4	$2035.2 \pm$	8.0
+ tight lepton isc).											
+invariant mass c		$.3 \pm 2.4$		0 ± 0.2		7 ± 0.3		781.9 ± 1		0.5 ± 0.5	97.8 ± 1	
+number of jets		$.3 \pm 2.2$		3 ± 0.2	1.3	3 ± 0.3	1	$187.5 \pm$	8.3	0.5 ± 0.5	11.9 ± 0	
+₽ _T cut		$.5 \pm 1.9$		5 ± 0.2		1 ± 0.3		13.8 ± 2		0.5 ± 0.5	0.6 ± 0).2
+1b-tag cut		7 ± 1.9		5 ± 0.2		9 ± 0.2		6.2 ± 1.00		0 ± 0	0.4 ± 0	
+2b-tag cut	57.	6 ± 1.5	0.3	3 ± 0.1	0.5	5 ± 0.1		0.8 ± 0.1	.6	0 ± 0	0.1 ± 0).1
Γ	Appl	lied cuts		WZ		WИ	V	ZZ2l	2ν	ZZ4l		
ſ	Trigge	ers+Presel		$43.1 \pm$	0.8	36.2 ±	0.5	$5.8 \pm$	0.1	2.8 ± 0.1		
	+ tight	lepton iso										
[+invaria	int mass c	ut	$14.3 \pm$		3.1 ±		0.5 ±		0.6 ± 0.1		
[ber of jets		1.4 ± 0		2.4 ±		$0.1 \pm$		0.2 ± 0.1		
[\mathbb{Z}_T cut		0.3 ± 0).1	1.5 ±	0.1	$0.1 \pm$		0.1 ± 0.1		
[+1b	-tag cut		0.1 ± 0		0.5 ±		$0.1 \pm$		0.1 ± 0.1		
	+2b	-tag cut		0 ± 0)	0.1 ±	0.1	$0.1 \pm$	0.1	0.1 ± 0.1		
Applied	cuts	tW		t-chan	nel	s-cham	nel	QCD	Total	backgrounds	S/B	
Triggers+	Presel	26.5 ± 0).8	0.6 ± 0.6	0.1	0 ± 0)	0 ± 0	5265	58.2 ± 127.8	0.005	
+ tight lept	on iso.											
+invariant n	nass cut	11.1 ± 0).7	0.4 ± 0	0.1	0 ± 0)	0 ± 0	191	11.9 ± 25.5	0.11	
+number of	0	8.8 ± 0		0.2 ± 0		0 ± 0		0 ± 0		14.1 ± 8.4	0.74	
+₽ _T c	ut	5.9 ± 0		0.2 ± 0		0 ± 0		0 ± 0		4.1 ± 2.5	4.4	
+1b-tag	cut	5.1 ± 0	.4	0.2 ± 0	0.1	0 ± 0)	0 ± 0	1	4.1 ± 1.8	7.0	
+2b-tag	cut	1.7 ± 0	.2	0 ± 0)	0 ± 0)	0 ± 0	() () () () () () () () () ()	3.4 ± 0.7	16.5	

Table 10: The tables give the expected number of signal and background events passing the different cumulated selection criteria for the $\mu\mu$ -channel for an integrated luminosity 100 pb⁻¹, for which around 700 $\mu\mu$ events are expected. The $t\bar{t}$ signal numbers include $\tau \rightarrow \mu$ decay. The contribution of $t\bar{t} \rightarrow \tau\tau \rightarrow \mu\mu$ is also given here.

CMS-France meeting

Dilepton b) cut flow (3)

Applied cuts		$t\bar{t}$ signal	$t\bar{t} \to \tau \tau$	$tar{t}$ bkg	Z+jet		W+jets	Vbb	
Triggers + Prese	1. 51	6.2 ± 3.6	1.5 ± 0.3	11.6 ± 0.7	$295.5 \pm$	10.4	54.2 ± 5.1	$13.6 \pm 0.$	7
+ tight lepton iso).								
+number of jets	37	8.7 ± 3.3	0.9 ± 0.2	9.5 ± 0.6	$13.5 \pm$	2.3	7.0 ± 1.8	0.8 ± 0.2	2
+₽ _T cut	32	6.9 ± 3.2	0.9 ± 0.2	8.1 ± 0.5	8.8 ± 1	1.8	6.1 ± 1.7	0.3 ± 0.1	1
+1b-tag cut	30	2.3 ± 3.1	0.9 ± 0.2	7.1 ± 0.5	1.9 ± 0).9	1.2 ± 0.7	0.3 ± 0.1	1
+2b-tag cut	17	6.5 ± 2.5	0.7 ± 0.2	3.9 ± 0.4	0.8 ± 0	0.6	0 ± 0	0.1 ± 0.1	1
Г	App	olied cuts	WZ	WW	ZZ2l2	2ν	ZZ4l		
F		ers + Presel.	5.2 ± 0.3	67.5 ± 0.7	0.1 ± 0.1).1 (0.9 ± 0.1		
		t lepton iso.							
F	0	nber of jets	0.8 ± 0.1	4.8 ± 0.2	0.1 ± 0.1).1 (0.2 ± 0.1		
F	+	-Æ _T cut	0.6 ± 0.1	3.8 ± 0.2	0.1 ± 0.1).1 (0.1 ± 0.1		
	+1	b-tag cut	0.2 ± 0.1	1.1 ± 0.1	0.1 ± 0.1).1 (0.1 ± 0.1		
	+2	b-tag cut	0.1 ± 0.1	0.3 ± 0.1	0 ± 0) (0.1 ± 0.1		
Applied c	uts	tW	t-channel	s-channel	QCD	Tota	l backgrounds	S/B	
Triggers+Pr		53.4 ± 1.3	2.8 ± 0.3	0.2 ± 0.2	0 ± 0	50	05.0 ± 11.7	1.0	
+ tight lepto									
+number of	jets	19.5 ± 0.8	1.0 ± 0.2	0.2 ± 0.2	0 ± 0		57.4 ± 2.9	6.7	
$+\not\!\!E_T$ cut		16.5 ± 0.7	0.8 ± 0.2	0.2 ± 0.2	0 ± 0	4	45.4 ± 2.6	7.2	
+1b-tag c	ut	14.3 ± 0.6	0.8 ± 0.2	0.2 ± 0.2	0 ± 0	1	27.3 ± 1.3	11.1	
+2b-tag c	ut	5.4 ± 0.4	0.4 ± 0.1	0.2 ± 0.2	0 ± 0	1	11.2 ± 0.5	15.7	


Table 11: The tables give the expected number of signal and background events passing the different cumulated selection criteria for the $e\mu$ -channel. The $t\bar{t}$ signal numbers already include $\tau \rightarrow e/\mu$ decay for an integrated luminosity of 100 pb⁻¹, for which around 1400 events are expected. The contribution of $t\bar{t} \rightarrow \tau\tau \rightarrow e\mu$ is also given here.

CMS-France meeting

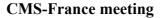
B-tagged jets multiplicity

CMS-France meeting

UNIVERSITÉ DE STRASBOURG

20/14

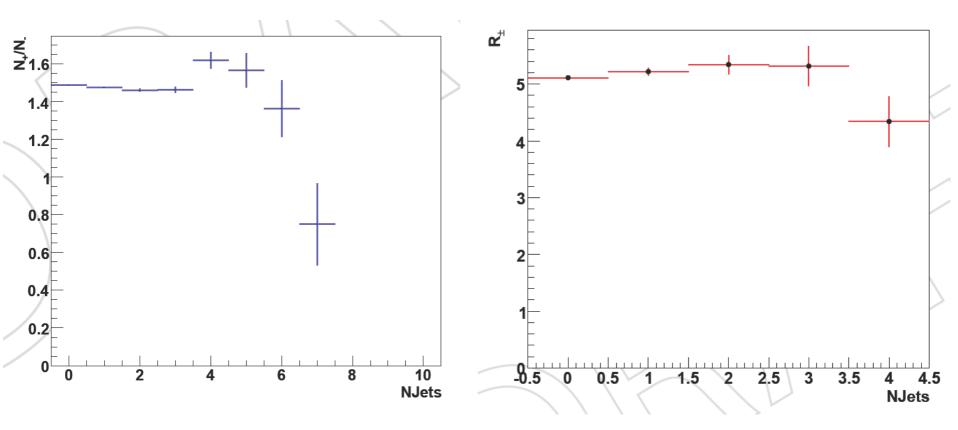
Muon+jets cut flow

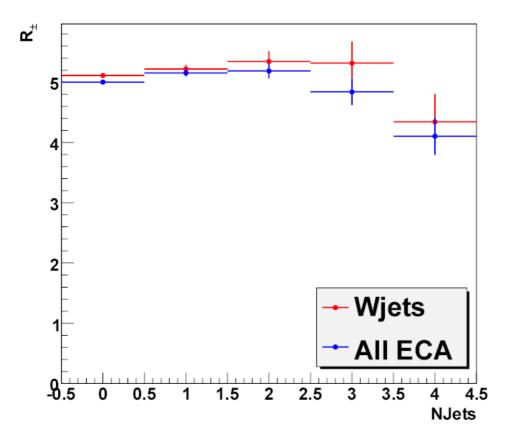

- signal events
- O events with charge asymmetry (ECA), dominated by W+jets events.

Applied cuts	<i>tī</i> signal	<i>tī</i> bkg	Z+jets	W+jets	Vqq
muon p_T , $ \eta $ + trig.	4559.6 ± 5.5	3570.9 ± 10	95777.0 ± 163.9	654985.0 ± 506.3	6791.0 ± 13.3
muon isolation	3538.6 ± 7.2	1657.5 ± 7.7	88880.5 ± 159.5	572978 ± 478.5	6114.9 ± 12.8
electron rej.	3536.0 ± 7.2	1279.8 ± 6.9	88678.6 ± 159.4	572931 ± 478.5	6105.5 ± 12.8
only 1 muon	3535.6 ± 7.2	1068.3 ± 6.4	51436.3 ± 128	572929 ± 478.5	4559.8 ± 11.4
\geq 4 jets	1696.6 ± 7	200 ± 2.9	120 ± 6.6	795.7 ± 19.1	5.2 ± 0.5

Applied cuts	WZ	WW	$ZZ2l2\nu$	ZZ4l				
muon p_T , $ \eta $ + trig.	262.7 ± 1.8	237.9 ± 1.1	10.8 ± 0.1	5.6 ± 0.1				
muon isolation	223.0 ± 1.7	212.3 ± 1	10.1 ± 0.1	5.3 ± 0.1				
electron rej.	214.3 ± 1.7	166.5 ± 1	10.1 ± 0.1	3.7 ± 0.1				
only 1 muon	181.7 ± 1.6	140.7 ± 0.9	5.6 ± 0.1	1.8 ± 0.1				
\geq 4 jets	5.7 ± 0.3	1.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.1				

	$\langle \langle \rangle$			>
Applied cuts	tW	<i>t</i> -channel	s-channel	ppMuX
muon p_T , η + trig.	516.0 ± 3.2	954.7 ± 4.2	44.7 ± 0.7	$3.15757e+06 \pm 1529.1$
muon isolation	377.3 ± 2.8	763.5 ± 3.8	32.1 ± 0.7	44728.1 ± 211.2
electron rej.	345.2 ± 2.8	763.1 ± 3.8	32.1 ± 0.7	44718.4 ± 211.1
only 1 muon	328.7 ± 2.7	763.0 ± 3.8	32.1 ± 0.7	44718.4 ± 211.1
≥ 4 jets	59.9 ± 1.2	28.5 ± 0.8	1.4 ± 0.3	97.6 ± 9.9




CMS-France meeting

UNIVERSITÉ DE STRASBOURG

28/05/2009 22/14

CMS-France meeting

UNIVERSITÉ DE STRASBOURG

28/05/2009 23/14