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Deep learning-based material decomposition 
for spectral CT
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Motivation

• Spectral CT, “color CT”, counts every 
photon (energy)  adds a new 
molecular dimension to standard CT

• Improves standard CT and allows for 
material decomposition [1]
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D Cormode et al, Radiology, 2010

• Few challenges (nonlinear and ill-posed problem, energy response) 
 Deep learning for Inverse Problems [2]?

[1] E Roessl and R Proksa. Med Phys, 2007
[2] M T McCann et al, IEEE Signal Processing Magazine, 34, 2017
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Introduction – Spectral CT imaging
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• Imaging in spectral CT involves two steps: 

1st

Material 
decomposition

2nd

Tomographic 
reconstruction

• Nonlinear, ill-posed 
• Projection-by-projection 

• Requires all projections
• Computationally 

expensive

Spectral photon counting data (4 energy bins) 

Projected mass density (soft tissue, bone, Gadolinium) 

Mass density (soft tissue, bone, Gadolinium) 
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Introduction - Goal

• Goal: 
• Solve material decomposition using deep learning approach (U-Net)

• Compare it to a regularized Gauss-Newton (RGN) method [2]

• Methods: 
• Material decomposition using U-Net and RGN 

• Perform tomographic reconstruction using FBP

• Methods assessed on a realistic thorax phantom (soft tissue, bone and portal 
vein marked with Gd) [2]
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[2] N Ducros et al. Med Physics, 2017 
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Methods – Material decomposition with UNet
• Learning approach

• Unet (333k parameters) [3], [4]
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s = PCD data
a =decomposed data
F= Forward operator
R=Regularization

[3] O Ronneberger et al, MICCAI, 2015
[4] K H Jin et al, IEEE Trans Imag Process, 2017
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Methods – Data and training

• Training data: 

• Data augmentation: 11-270 phantoms (generalization)  2k-50k projections

• Projection image = 155 x 40 (downsampled by x4)

• Input I and output M normalization 

• Data divided in files of 1GB

• Training: 

• Batch size = 45, learning rate=10-3, 

• Adaptive gradient descent under Tensorflow

6
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Results

• Training time (GPU):

• 1.6s/epoch (2k data), 3 days for 150k epochs

• > 1 week training (more data)

• Prediction times (155x42x180 images):

• Decomposition U-Net: 4 s for 180 projections (CPU)

• Decomposition GN: 115 s, 43 s with parallelization (4 cores, CPU)

• Tomographic reconstruction (Matlab FBP): 0.8 s

• Prediction times (634x286x720 images):

• Decomposition GN: 10 h (without parallelization)

• Tomographic reconstruction: 20 min (GPU)
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Results – Material decomposition 
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RGN

Soft tissue Bone Gadolinium

Phantom

UNet
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Results – Tomographic reconstruction
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RGN

Phantom

UNet

Soft tissue Bone Gadolinium

• U-Net decreases noise and MSE 
for bone and soft tissue

• Both RGN and U-Net lead to low 
quantification error but RGN 
achieves lower error
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Conclusions and future work

• U-Net 
• Reduces noise and improves image quality 

• U-Net can learn the image prior

• Does not require knowledge of scanner energy response 

• Future work will focus on learning generalization
• Different noise levels, concentration of Gd

• Experimental data

• Use transfer learning to decrease training time

• CC IN2P3 is very important for us 
• 2 months, 1-3 tests per week (more tests in future + PhD student)

• mc_gpu_long, mc_gpu_longlasting (100 % only once)

10
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Extra slides
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Introduction – Spectral CT
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• Spectral CT is nonlinear

• Current methods rely on prior knowledge of scanner 
energy response function:
• X-ray attenuation is material and energy dependent

• X-ray source is polychromatic

• Photon-counting detectors simultaneously count photons 
and resolve their energy [1]

Polychromatic source

Detector response 
(Photon counting detector)

Mass attenuation for three 
materials (soft tissue, bone, Gd)

[1] E Roessl and R Proksa. Med Phys, 2007

[2] N Ducros et al. Med Physics, 2017 
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Methods – Data simulation 
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cGd=0.1gcm-3

N0=107 photons
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Methods – Material decomposition 

• Variational approach (RGN) [1]

• Learning approach
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s = PCD data
a =decomposed data
F= Forward operator
R=Regularization

[1] N Ducros et al. Med Physics, 2017 
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Results - Losses
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2k projections 40k projections


