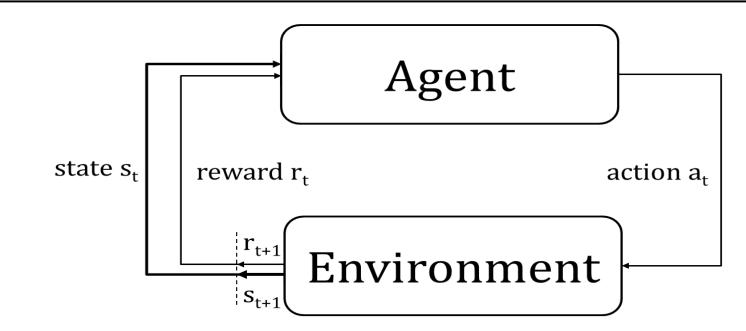
Experiences running Deep Reinforcement Learning on the IN2P3 GPU cluster

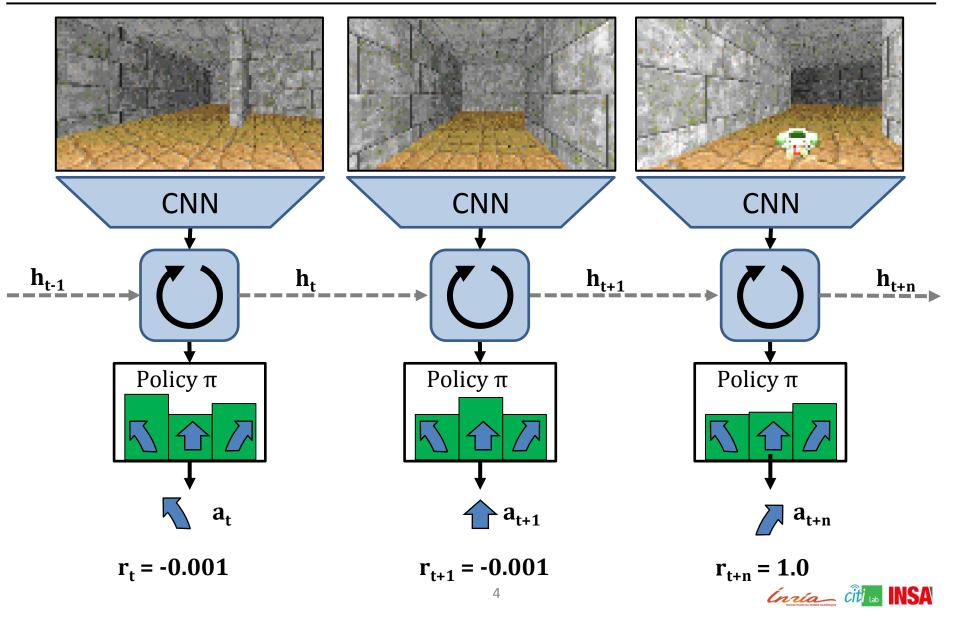
Edward Beeching 04/04/2019

Overview

• Brief intro to RL


• Simulators

• Running Deep RL on the in2p3 cluster


Introduction to RL

- Agent acts in a state based environment.
- **Observable**: Agent receives full state (Board Games, Grid Worlds, Atari Games, Cartpole)
- **Partially observable**: Agent receives a snapshot of the environment. (3D environments, Real time strategy games ...)

Introduction to RL: Concrete example

RL Algorithms

Name	Refactored ^[1]	Recurrent	Box	Discrete	Multi Processing
A2C	Advantage Actor Critic				
ACER	 ✓ 	4	x ^[5]	~	 ✓
ACKTR	v	4	x ^[5]	~	v
DDPG	v	×	v	×	×
DQN	v	×	×	~	×
GAIL ^[2]	v	~	¥	~	✓ [4]
PPO1	v	×	v	~	✓ [4]
PPO2	~	~	v	~	¥
SAC	v	×	v	×	×
TRPO	✓	×	4	~	✓ [4]

https://stable-baselines.readthedocs.io

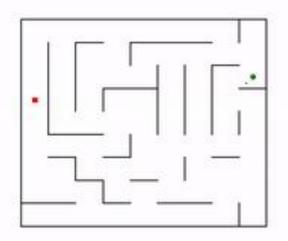
Simulators and training RL agents

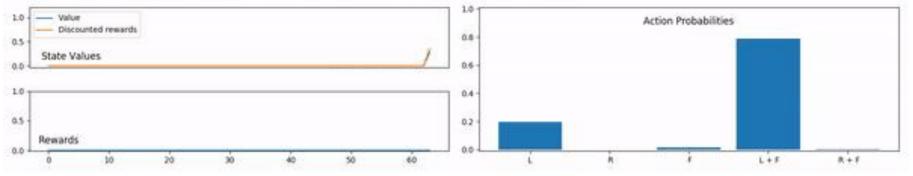
Scenarios for Deep RL: Simulators

ViZDoom, Kempka et al. 2016

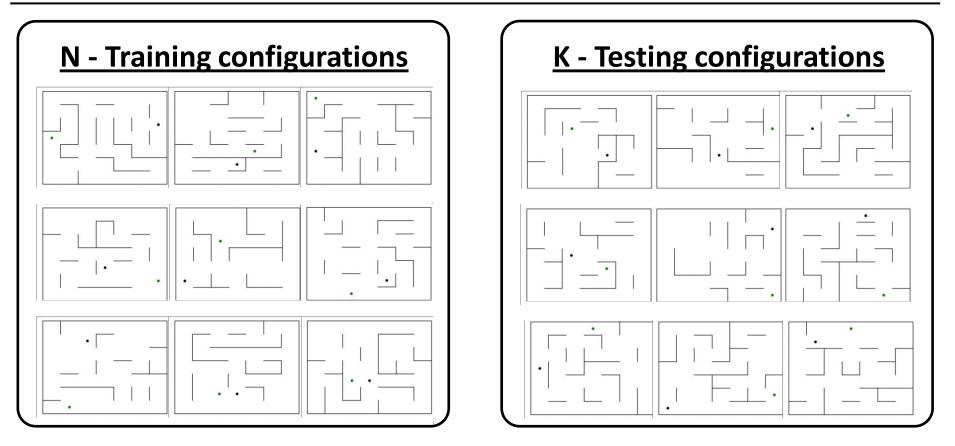
House3D, Wu et al. 2018

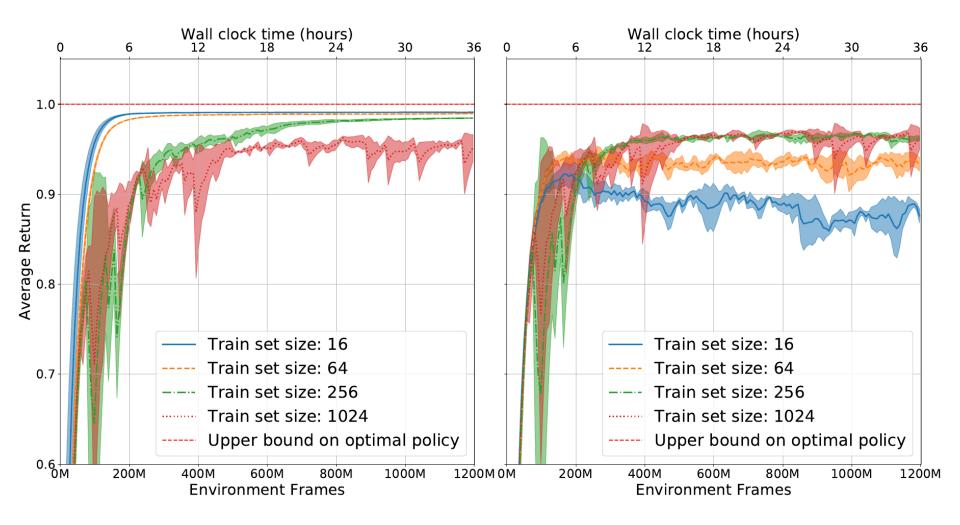
DeepMind lab Beattie et al. 2016




Habitat, Savva et al. 2018

Find and Return scenario



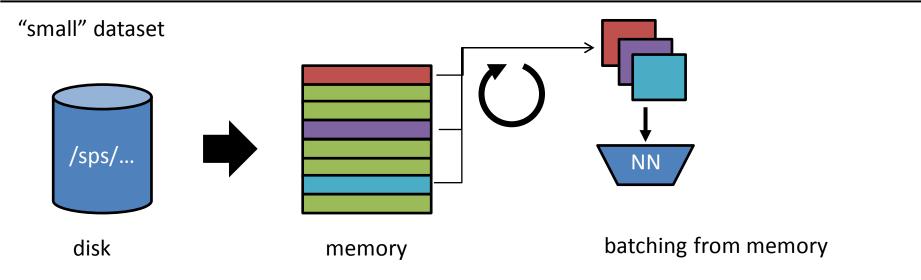

Generalization

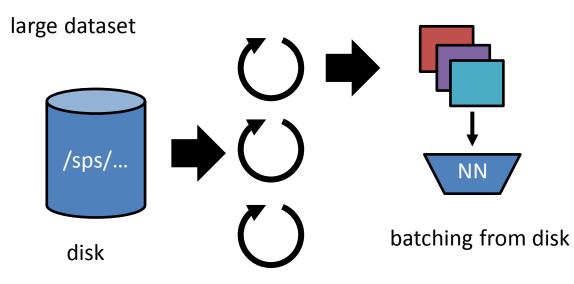
How many training configurations are required to generalize to unseen test configurations?

Generalization results

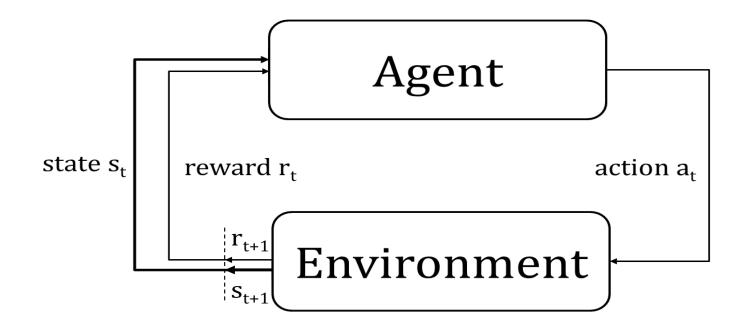
Running Deep RL on in2p3

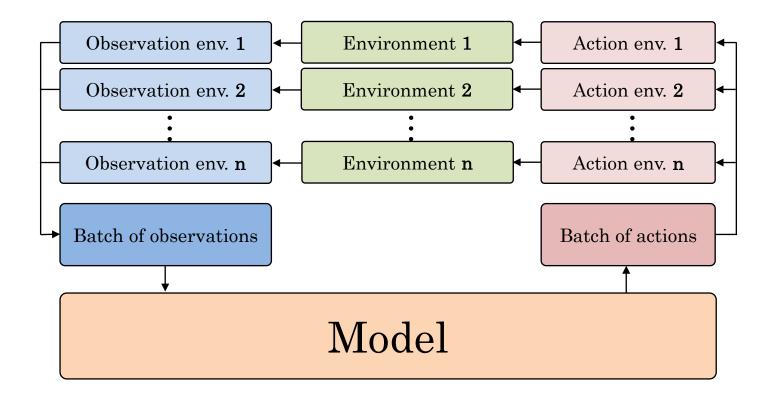
Running Deep RL on in2p3


- Singularity images
- PyTorch 1.0
- Tested simulators:
 - ViZDoom (Kempka et al. 2016)
 - House3D (Wu et al. 2018)
 - Habitat (Savva et al. 2019)
- Algorithms
 - Advantage Actor Critic (A2C) (Mnih et al. 2016)
 - Proximal Policy Optimization (PPO) (Schulman et al. 2017)
 - Deep Q-Learning (DQN) (Mnih et al. 2015)



- Supervised learning
 - A set of pairs (x, y) input/output
 - Strong supervision in the form of labels
- Reinforcement learning
 - Learning to optimize cumulative reward through interaction in a (black box) environment.
 - Extremely noisy gradient signal


Supervised learning



Reinforcement Learning

Batching of simulations

Job submission

1	#!/bin/bash			
	echo "Running on \$HOSTNAME" echo "job id : \$JOB_ID" echo "starting"			
7 8 9	<pre>if ! echo \${LD_LIBRARY_PATH} /bin/grep -q /opt/cuda-9.2/lib64 ; then LD_LIBRARY_PATH=/opt/cuda-9.2/lib64:\${LD_LIBRARY_PATH} fi</pre>			
11	TESTNAME="habi_ppo_026_\$JOB_ID"			
12	<pre>mkdir -p data/checkpoints/\$TESTNAME PARAMS="use-gaesim-gpu-id 0pth-gpu-id 0lr 2.5e-4clip-param 0.1value-loss-coef 0.5num-processes 32 num-steps 128num-mini-batch 4num-updates 400000entropy-coef 0.01log-file logs/\$TESTNAME-train.loglog- interval 1checkpoint-folder data/checkpoints/\$TESTNAMEcheckpoint-interval 1000task-config tasks/ pointnav_gibson_64.yamlnum_gpu 4hidden-size 512"</pre>			
15 16 17 18 19	-'bind /pbs/home/b/beeching/work/:/home/edward/work/bind /sps/liris/beeching/storage/:/home/edward/storage/ /sps/liris/beeching/sing/sing_habi_no_docker/habi_no_docker.img' -home /pbs/home/b/beeching/work/habitat_comp'			
21	export SINGULARITYENV_MAGNUM_LOG="quiet" export SINGULARITYENV_GLOG_minloglevel=2			
24 25 26	<mark>echo</mark> \$PARAMS singularity <mark>exec</mark> nvwritable \$HH \$BINDS \$IMG python baselines/train_ppo.py \$PARAMS			
27	echo "finishing"			

Conclusions

• 917 GPU jobs run on the cluster since October.

• Singularity images provide an easy and flexible way to manage dependencies.

• Thanks to the in2p3 cluster team for their working maintaining and running the cluster.

