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ATLAS and the Large Hadron Collider at CERN
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collisions at the level of quark/gluon 10° Hz =%
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-010

Why ATLAS is interested in HPC/GPUs ?
e Long term activities : High-Luminosity LHC (HL-LHC) Upgrade_ )
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o the HL-LHC represents the ultimate evolution of LHC machine performance
o operation at up to L=7.5x10**Hz/cm? (LHC run-2: 2x10°*) to collect
up to 3000 fb™ of integrated luminosity
> vast increase of statistical reach, but challenging experimental conditions
> up to 200 p-p collisions per bunch crossing
» mitigated by extensive upgrades of experiments during LS3

e Today and middle term activities

o Machine Learning : classification, regression, scan parameters
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Event processing at HL-LHC

e Higher luminosity e Reconstruction
o more interactions per crossing o environment is challenging in terms
e Increased event rate of CPU time for reconstruction
e Bigger and more complex events e Multithreaded running
o ITk with>& 5B channels at the event level
a simulated tt event at average pile-up o exploit parallelism
of 200 collisions per bunch crossing o technology watch

Upgraded Event displ : :
[Upgraded Event displays] e use diverse hardware architectures

ATLAS
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2018-001/
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradeEventDisplays

CPU projection for HL-LHC

ComputingandSoftwarePublicResults
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Using accelerators and HPC

e Supercomputers are evolving away from the « usual » hardware

we have on WLCG resources

o e.g Summit Power9 + Nvidia V100

o other architectures becoming popular — ARM
o challenge of portability

e ATLAS is efficicient at using various resources

o grid

o cloud D. Constanzo, WLCG2019, Mar 2019
o volunteer computing CPU usage 2018
° HPC M Grid

_ All sites

e Use of GPU on WLCG grid 500k}
o Manchester WLCG site has

currently 2 grid queues setup
for GPUs 300k

ATL-SOFT-SLIDE-2019-068

Cloud
Special cloud
HPC
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https://indico.cern.ch/event/759388/contributions/3302195/attachments/1813484/2962970/HOW_20190318_Costanzo.pdf
https://cds.cern.ch/record/2665661

Using accelerators at triggering level

e Conversion of significant part of ATLAS HLT code to GPU
o ported code can run significantly faster than on CPU | .11 . eq Agorithms for GPGPU in the
x5 for single E5-2695 vs Tesla K80 ATLAS High Level Trigger
o overall speed-up limited to x1.4 ATL-DAQ-PROC-2016-045
- data transfer/conversion costs

- acceleration only applied to part of the workload
o NB GPU resource barely used (1 GPU per 60 CPUs)

TriggerSoftwareUpgradePublicResults

Inner Detector Track Seeding on CPU Inner Detector Track Seeding on GPU
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Calorimeter Clustering on CPU Calorimeter Clustering on GPU

ATLAS Simulation Preliminary
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https://cds.cern.ch/record/2239823
https://cds.cern.ch/record/2239823
https://twiki.cern.ch/twiki/pub/AtlasPublic/TriggerSoftwareUpgradePublicResults

Neural Networks for Online Electron Filtering

Studies done at UFRJ Rio / LPNHE (Werner Spolidoro Freund)
— see this talk by Werner at ILP ML workshop in November 2018
— see this poster by Werner at Saas Fee March 2019

e Application for High Level Trigger / Fast Calo (electron selection)
o Neural Ringer applies ML to reduce CPU demand

-~

alorimeter . . W rack+calo .
Reconstrudionz%ﬁaﬂo) t 3 Tracking L, Je monne. O Feplace computation of shower shapes
o concentric rings are build for all calo layers
) o compact cell information used to describe
Method: §\\\ cut-based % neural- ﬁm likelihood P .
— B network the event throughout of the calorimeter

Variables: Egiﬁ Shower-shapes @ Rings N \\\ Track+calo

e MLP training e Results
o with simulated (2017 collision) data o kept HLT signal efficiency unchanged
in 2017 (2018) after the switch in early 2017:
o computing resources from WLCG, o estimated primary chain latency
Techlab (CERN) and from Advanced reduction: ~200 ms to ~100 ms;
High-Performance Computational o higher rejection power (~2-3X);
Center (NACAD) at COPPE/UFRJ o estimated electron + photon slice:

~1/4 latency reduction;

o 20' to train 1 simple model on GTX 1080ti
o 100 (initializations)*10 (cross-validation sorts)*36 (phase spaces)=36k tunings

===> 720k’ ~1.5 year
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https://indico.in2p3.fr/event/17295/contributions/61364/attachments/47568/59833/IN2P3_ML_2018.pdf
https://cds.cern.ch/record/2667393/files/ATL-DAQ-SLIDE-2019-089.pdf

Track reconstruction.

e Tracking in a nutshell o an
o particle trajectory bended in a solenoidal magnetic field i
o curvature is a proxy to momentum
o particle ionizes silicon pixel and strip
o thousands of sparse hits ; lots of hit pollution from low

momentum, secondary particles

Seeding Kalman Filter

3
T
s F},gu._
W

&
-

e Explosion in hit combinatorics in both seeding and stepping pattern recognition
e Highly computing consuming task in extracting physics content from LHC data

e Standard solutions
o track trigger implementation for trigger
upgrades development on-going on going TrackML challenge
o dedicated hardware is the key (D. Rousseau et al.)
to fast computation.
o not applicable for offline processing unless

by adopting heterogeneous hardware.
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e Machine learning


https://www.kaggle.com/c/trackml-particle-identification

Simulation evolution : from full sim to fast chain

e At least 1/4 of CPU to be used for Full simulation
o tuning and improvement of simulation _ Fast Chain (baseline)

Very important Standard "-""“"""“--“..I:

u . . lEVNT] AFI/ECSV2 {HiTS) Reconstruction .

e Fast chain as a key ingredient =
o e.g Fast Calorimeter Simulation

o validation as « good for physics »
is a major challenge
CPU time to simulate photons of 8 GeV, 65 GeV

and 256 GeV in the range 0.20<|n|<0.25 using
Geant4 (black) FCSV2 (red) and AF2 (blue open C|rcle)

ATL-SOFT-PUB-2018-002
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Energy [GeV] Reta = E(3x7)/E(7x7)

e new ideas are needed, e.g GAN
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https://cds.cern.ch/record/2630434

Deep generative models for fast shower simulation

Studies done at LAL (A. Ghosh, D. Rousseau)
— see this talk by Aishik at IN2P3 ML workshop in March 2018
+ poster at Saas Fee March 2019 BACK
+ details in this note ATL-SOFT-PUB-2018-001

i i MIDDLE
e Showers computationnally expensive

o cascade quantum showers are expensive for Geant4

o only final image is recorded

STRIP
4x11
o Variational Auto-Encoder combining deep PRE-SAMPLER /X

e Compare two methods
o Generative Adversarial Networks (GAN)
learning with variational Bayesian methods ﬁ
: : : obx2,
e Simulation of images (7x2)

o Train on Geant4 Monte-Carlo simulated single photon shower data

o Run on 3 GPU platforms (PRP-USA, Texas-Arlington, LLR-Palaiseau, CC-Lyon)
for Lyon : 1 GPU per job with >50% GPU utilisation

o GAN training time: 2 days per training for 15k epochs

o GPU speed: 2x over CPU for Calo

o GAN generation time: 0.7ms/shower - as FastCalo

images on CPU with Keras+TF 700 jobs * 2 days per job = 16800 hours ~1 year
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https://indico.in2p3.fr/event/17295
https://cds.cern.ch/record/2665782
https://cds.cern.ch/record/2630433

Deep generative models for fast shower simulation

Look at single photon showers at {1,2,4,8,16, 32, 65, 131, 262} GeV in barrel
Assume Geant4 is ideal. Compare VAE, GAN to Geant4
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GAN reproduces the detector resolution mean and 6(E) ~ 10% VE
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Flavour tagging of jets

e Flavour tagging
o method to tag the origin of a jet of particles from quark hadronization :
b-, c-, light quark
o use specific properties : reconstruction of secondary vertices, soft-muons ...
o can combine information through BDT, neural network, deep learning etc ...

e Hyper Parameter (HP) scan

o embarrassingly parallel workload and can be split in several independent
jobs each running on a GPU

o optimisation is setup to scan 800
combinations spanning 6 HP dimensions
(3 layers, learning rate, batch size
and activation functions)

o the workload has been split in 10 jobs
each with 80 combinations. Each job run
on the same training and validation data.

The input files, small json files containing = g

FTAG-2019-001
e Results ATL-PHYS-PUB-2017-013

T i | T | T T T T | T | T T | T T T T | T T
* MV2c10rnn performance

—— HP optimisation, best result

...... HP optimisation, medium result

- HP optimisation, worst result

~
L
.

.......
'''''''
~,,
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light flavour jet rejection
=
o

ATLAS Simulation Preliminary ~ *°
Vs= 13 TeV, tt

_lIII|III|III|III|III|III|III|III|II
'lIII|III|III|III|III|III|III|III|II

the configuration for each combination, 60
. . 77% b-tagging efficiency ;
were replicated to the sites 40~ p-20 Gov and <2 ;
with GPUs using rucio. 7| S B T S S
4 4.5 5 5.5 6 6.5 7

C-jet rejection
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http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-001/
https://cds.cern.ch/record/2273281

Other studies in ATLAS French groups

e Increasing TileCal with ML, LPNHE/UFJR Rio, W. Freund [/ink]
o increase granularity without changing the mechanical structure of the detector
o process of acquiring data is very cpu demanding
o use a multianode 8x8 signals
o evaluation of of CNN x NMF MLP on original dataset : similar performance;
o increase stats with GAN
o results (evaluated CNN only) suggest that a 2x granularity is feasible
4x in the barrel? To be investigated

e Discrimination of pile-up jets, LAPP, P. Zamolodtchikov, N. Berger, E. Sauvan)
summer internship 2018
o use of Recursive Neural Network (RNN)
o using CC-IN2P3 GPU platform for training

e Analysis ttH(bb) with single lepton, CPPM (Ziyu Guo, Y. Coadou)
o BDT used to reconstruct top and Higgs + discriminate signal/background (itbb)
o aim to replace BDT by different neural networks
o use GPU farm at computing department of Uiversity of Aix-Marseille
— analysis time: 50890717 secondes
(1 year 224 days 18 minutes 37 seconds)
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https://indico.in2p3.fr/event/17295/contributions/61364/attachments/47568/59833/IN2P3_ML_2018.pdf

Conclusion

e General ATLAS usage of HPC and GPU
o usage of HPC resources is already a reality
some site(s) even provide GPU farm on WLCG
o will become crucial for HL-LHC
o various usages already exist for GPU : trigger, simulation, ML

e ATLAS usage by French groups
o many different use cases linked to Machine Learning
o studies are done on different platforms available
— all groups have expressed (future) interest
in using the GPU farm at CC-IN2P3
— need to collect all use cases and turn
it into an official time request
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