GRAND angular reconstruction status

Valentin Decoene (IAP) & Olivier Martineau (LPNHE)

Determine direction form antennas trigger times

Antennas array:

- Voltages traces
- Antennas positions
- Times

Reconstruction

Extensive Air Shower:

 \dot{k}

- Direction

$$= f(\theta, \phi)$$

- Energy
- Xmax

Simulation set up: Toy Model set up

Simulations done for the study of the impact of topographies on v detection rates "Effect of topography on the detection of neutrino-induced air showers" VD et al. arXiv 1903.10466

Full simulation chain :

- Neutrino induced tau decay (DANTON)
- Shower propagation + electric field computation (ZHAires)
- Antenna response computation : voltage response (NEC) / filtering (50-200MHz) / noise adding (gaussian) / sampling (1ns)

Why using these simulation ?

- Already done
- Good statistics (≈10 000)
- Few parameters to play with

GRAND CHINA workshop 04/19

Symmetries -> mirror effects

reconstruction errors

Plane wave reconstruction: first approach

see IAP workshop august 2018

- Wave front model : plane
- Pure timing comparison

Plane wave reconstruction: summary

Set of 3 550 simulations of 10¹⁰GeV primary neutrinos

1606 showers detected with aggressive trigger conditions (5 antennas > 2 x noise level) 1370 with more than 10 antennas

Peaktime from Hilbert envelope + GPS jitter (gaussian, $\sigma = 5$ ns)

Mean angular error \thickapprox 0.5° reachable $<\chi^2/{\rm ndf}>>1000$

Wave front is not plane

Mean slope between triggered antennas

- Strong effect of topography on resolution : antennas height -> handle on zenith reconstruction
- Resolution sufficient for UHECR reconstruction (direction)
- Better resolution needed for neutrino astronomy !

GRAND White Paper, GRAND coll. (VD) arXiv:1810.09994v1

Valentin Decoene

The emission source determines the wave front shape

- Wave front model : hyperbolic
- Pure timing comparison

Valentin Decoene

Set of 10 000 simulations of 10¹⁰ GeV and 10⁹ GeV primary neutrinos

Hyperbolic parameters fixed from LOFAR measurements

 $(a, b) = (4.49 \, m, 0.026)$

Mean angular error ≈ 0.2° reachable

GPS precision = 5ns

No noise

Aggressive trigger conditions (2x noise level)

Overall similar results for both energies (slightly better for 10⁹ GeV)

Valentin Decoene

Hyperbolic wave front shape: LOFAR type

Testing effect of GPS precision on resolution

10⁹ GeV

10¹⁰ GeV

Aggressive trigger conditions

• GPS precision and noise are not a limiting factor on resolution in this wave front model

Valentin Decoene

Hyperbolic wave front shape: free parameters

No noise

Aggressive trigger conditions

- Free: $<\chi^2/{\rm ndf}>\approx 5\,$ But no significant improvement in the reconstruction

Valentin Decoene

Better result with hyperbolic reconstruction than plane reconstruction

From $\approx 0.5^{\circ}$ to 0.2°

The normalised chisq is not as good as expected if the wave front model was correct

In addition GPS precision and noise don't impact the reconstruction

This suggests that other systematic effects are not taken into account.

Need for a detailed wave front study.

Valentin Decoene

Wave front shape study

data can't be fitted with one single analytical function because the wave front evolves with time (ageing)

Valentin Decoene

To fit different wave front parameters for each propagation distances -> slicing

- Each slice correspond to a propagation distance -> shower age
- For each slice an independent fit is perform (using the correct direction)

The best parameters (a, b) for each shower age (and each wave front model) are computed

Valentin Decoene

Wave front shape study: parameters ageing

Hyperbolic model

simulations stacking

Parameters fitted are compatible with a spherical model

Valentin Decoene

Wave front shape study: parameters ageing

Slicing can be also applied to spherical model

Valentin Decoene

GRAND CHINA workshop 04/19

200

Wave front shape :

- **Hyperbolic**
- **Evolve with propagation (ageing)**
- **Spherical curvature**

But 2 problems :

- Many parameters to fit and big parameters space (a, b)
- Need to compute shower axis distance (r)

We need spherical reconstruction to have a first estimate of shower axis position

Valentin Decoene

Wave front shape study: spherical reconstruction

Wave front shape is not point source like -> spherical reconstruction using a point source model lead to great error along the axis.

But the curvature and the large array allows a good handle on the lateral position of the shower axis.

Error on the lateral position from the shower axis Error on the position along the shower axis

Position of the shower axis can be reasonably reconstructed with a point source model

Valentin Decoene

Iterative reconstruction:

- Plane wave reconstruction -> direction estimate
- Spherical reconstruction -> position anchor for the direction

Shower axis distances for antennas

<u>Hyperbolic reconstruction</u> using direction estimate and shower axis distances

Slicing reconstruction

Parametrising reconstruction parameters -> emission physic

Hybrid reconstruction:

Mixing timing information with amplitude information

- Amplitude -> shower core
- Polarisation -> axis distance

Loop

Standard hyperbolic reconstruction allows to reach 0.2° of angular resolution Errors are above GPS precision and Noise effects

Wave front study shows the models are not adapted for the reconstruction

Ageing effects

Iterative reconstruction and slicing reconstruction should increase the angular resolution and allows to reach below 0.1° where GPS precision and noise effect would start to lead.

Hyperbolic wave front shape: LOFAR type

GPS delay = 5ns No noise / noise (Gaussian, mean = 15 μ V) + sampling (1ns)

Threshold value = $100 \mu V$

Noise reduce resolution but can be limited by increasing the threshold level (events cost)

Valentin Decoene

Distance -> no effect

Slope -> important effect

Valentin Decoene

GRAND CHINA workshop 04/19

Backup

Wave front shape study: ageing model

Valentin Decoene

Symmetries effects -> main limiting factor Toy Model configurations issue

