Giant
7\ Radio

Neutrino
Detection

Standard methods of shower
reconstruction with radio data and personal
thoughts on how they could be adapted to
GRAND/GRANDproto3o0

| will not give the citations always properly. There is also
no chance to discuss all methods used in all radio arrays
(It's is just a small personal selection — biased!). It is far
from being complete or detailed.

For still recent reviews on radio detection, please see:
F.G. Schroeder, arXiv:1607.08781

T. Huege, arXiv:1601.07426 1



Recap
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* Huge footprint for horizontal showers
* Asymmetric footpint due to emission mechanisms
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X Event information

What to reconstruct:

* Geometry of the air-shower event:
arrival direction and shower core

* Primary's energy

* Mass of primary

- What is needed as input?
— What resolution is achievable?

Most of the methods:

* are developed for ground-based air-shower radio arrays triggered by particle
detectors (besides ANITA in these slides)
- heed input from the PD.

» are developped for the 30-80MHz frequency range

» are developped for vertical/down-going showers




. Arrival direction: physical parameters

Ire Ct| on == arrival direction of particle

Interferometry (similar to detecting FRBS)
* Geometrical delay for a pair of antennas
— delayed combination of waveforms
* For ANITA: elevation and azimuth errors: 0.26° and 0.56°
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target:
n>1
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» coherence is frequency-dependent

air or plastic

particle front;

radio signal:
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— more pronounced at low frequencies

—
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* But n!=1: signal arrives simultaneously at specific

positons — signal becomes becomes short - leads to

coherence up to GHz - Cherenkov ring appears for
frequencies above ~100MHz

* Radius depends on height of emission

electric field strength [mV/m]

X Can we use the Cherenkov ring?

-6

-100

.‘. mmmmmm n=1.0003
........... n=1‘[{2)
6 8 10 12 14 16 18 20

time [ns]



Use amplitude distribution
- Visible Cherenkov cone
additional info on timining needed to get the
right azimuth
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How well can we samplelidentify the
position of the ring with a sparse array?

For neutrino events
* Shower passes by the array
— We will see a conic section in
the amplitude distribution
— will point back to the emission -~
region (cone vertex) o~
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x Shower Core — how to construct

* |ocation where the shower axis hits the ground

 usually input in radio reco from particle detectors

* no publications found on the reconstruction of the shower core

« all properties of the radio signal measured by a detector depend on the distance to the shower
axis — plenty of ways to determine it:

» Wavefront: hyperbolic wavefront points directly to the shower axis,

» Footprint: Cherenkov ring is centered around the shower axis,
- core position is one of the free parameters when fitting a lateral-distribution function
to the measured amplitudes at different positions e.g. in AERA
- simulated radio footprints can be matched with the measured f
one to determine thecore position, e.g. in LOFAR. B . shower Axis

'/C Shower Front

» Frequency spectrum: slope of the frequency spectrum
measured in an individual antenna
depends on the distance to the shower axis.

 Polarization: polarization of Askaryan emission points
(needs high SNR, not dominanted by background)




éﬁ Primary's energy .

Measure radiation energy by integrating over the

footprint Footprint in shower plane
400 . . . . .
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For inclined showers: correct for ,early-late* effect (arxiv:1808.00729)

How many antennas would we need to achieve a similar resolution? 5
Esp. for lower energies —

Input: arrival direction, shower core See 1508.04267, 1606.01641, ...



_ Tunka-Rex

1.0

X Primary's energy

Amplitude at a reference distance

05 r

* Position close to Cherenkov cone: independent

to Xmax 2 et
* Correct amplitude for geomagnetic angle and ' ﬁ
asymmetry > ft

Tunka-133 air-Cherenkov energy (EeV)

aF 1.7 11 4
- Energy resolution acieved: 15-20% ~ JPS Cont. Proc. 9 (2016) 010008
* Can be also preformed with a single antenna 200 0 1000 2000 4000
.. corrected radio field strength at 100 m (pV/m)
position and help of a average LDF (- 20% for _
Trex) — more suitable for hybrid detection Input: Shower core, arrival
arxiv:1611.09614 direction

. ANITAZ singlt_e stat_ion approach — & 1.0k ANITA cosmic-ray event #11
detection of signal in several antennas LY i x2/ndf = 8.5/7
allows reco of shower direction, accurate reco = o.g}- A=094+006
needed! £ I _ 9

: o i =(-2.0 £0.2)x 10

* spectral slope depends on the distance s 0.6 + v=( )
from the Cherenkov angle - enables = | o meas.
an estimation of the amplitude at the & 04 — sim.

Iaghadit - ot
Cherenkov angle = amplitude at reference 2 i Bk
| 0.2 T |
distance 2 02¢ { {.
* Achieve energy resolution: ~ 30% g L | - T e
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&Q Recap: Xmax

Particle profile dN/dX
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By Felix Riehn

aJaydsowie ul 1ybiaH

mass composition can be derived statistically from
the Xmax position, shower-to-shower fluctuations
and measurement uncertainties too large to
reconstruct the particle type for individual events

Development of a heavy ion induced shower
starts earlier

— reaches the maximum number of particles
earlier (low atmospheric depth)
+ more muons on ground

than is the case for proton induced
showers of the same energy
(high atmospheric depth)

Shower depth X
Typically: (X maxp

.. = max. number of particles
- X ) = 100 g/cm?

max,Fe

Best reconstruction uncertainty by

Fluorescence detection technique: ~ 20 qunz &

10



é@ Top-Down in LOFAR (reas)

X 43
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Based on the well-understood emission mechanisms of the radio signal
— simulations can described accurately the measured radio signal
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Radio footprint in the shower plane: Measured radio signal depend on the distance

Plane described by the direction of the to the shower axis
shower and the Earth's magnetic field

Circles = measurements of LOFAR |
Background = simulations ~
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"\ Top-Down in LOFAR LOFAR

ﬂﬁﬂ(7x48)

Pick the one of many simulations describing data best #:'& e
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X, (g/cm?)
« 2d LDF fit to radio simulations yields mean X to ~17 g/lcm?
More: S. Buitink et al., Nature 531, 70 (2016)

* SKA-Low would even reach below 10g/cm2 - extreme dense array, homogeneously ».

covered footprint, visible Cherenkov ring arxiv:1702.00283 G \\
* Tunka-Rex achieves 35g/cm2 with fitting full pulse shape, not just amplitudes ; .
arxiv:1803.06862 - \
P
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Input from PD: geometry and energy - produce (many!) simulationg./a{écordingly 12
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Fixed parameters

* zenith 83°

* azimuth 40°

* mountain slope 10°
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Needed as input:

Shower geometry and energy to
minimize the parameter space which
has to be covered.

TOp-DOWﬂ |n GRAND (C. Guepin at WP workshop Aug.2018)

* We should profit from the higher frequencies

— more structures to fit

Denser antenna grid should help to lower the
reconstrcution uncertainty for lower energies

* we need enough antennas to perform a
meaningful comparison to simulated footprints (+
impact of additional uncertainties)
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We need to dig deeper into this!
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&Q Slope of frequency s

power per frequency

iron
proton

pectrum

Frequency spectrum measured at an
individual antenna positions depends on

- position relative to shower axis
- position of Xmax

[ 2 L T N

-~ spectrum gets steeper for depper

Xmax

but on 10% level

— 0n average iron softer than proton,

Advantage: applicable on single antenna

distance

For AERA:: single antenna: 163g/cm2,

2/3 antennas: 135g/cm2

Theoretical: 60 g/cm2

S. Jansen. Radio for the Masses. PhD thesis,

University of Nijmegen, 2016.

\\ Input: arrival direction, shower core,
antenna position
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Input: arrival times, the time-integrated signal amplitudes,
and all features extracted from the time traces
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Astroparticle Physics 97 (2018) 46-53

Angular reconstruction

Full info (from time + trace)
Just time
Plane wave fit

6@ Deep learning approaches

Not radio!
Auger water tanks!

Pers. Comment:
BigData Workshop
Aachen 2019: ML
techniques can achieve
same resolution, but
work better for not fully
contained events

Shower max. reconstruction

Full info (from time + trace)

40
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Energy reconstruction - »; ¢ LR B
Full info (from time + trace) =, |
Just 2D ampl. Dist.
gj? 157
104
0: 10 30 100
Energy E [EeV]
Could be a good basis to start and see whether
similar architectures usable for radio 15

— Classification of type feasible!

P



X >ummery -
S Array for

Neutrino

' Study well-understood standard techniques, check whether Detection
they are applicable
 to (highly) inclined/ upgoing showers!
* In our frequency band
— Can we achieve the needed resolution on rado data only (w/o PD input)?

. Goals of reconstruction:
- Lower the energy threshold as much as possible with achieving the best
resolution as possible

. Going from GP300 to GRAND10k:
What happens for upward-going shower?

Regarding the ML hype at the moment:

Quote of a HESS guy doing Classification with DN

,But: Sophisticated ,standard” analysis chains are hard to outperform

— Don't try to beat them on on their home-base, but rather focus on regimes where
standard analysis has no chance at all*

You are interested in join the development of reconstruction techniques for GP300 and GRAND7

Pick the method you like the most and check whether it is applicable to our pupose. )

If you need a start into the topic, | am happy to point you to some useful papers or try to gefyou into
contact with experts! 16
Mail to: zilles@iap.fr
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