
Status of the simulation software
V. Niess1, on behalf of the GRAND software team

GRAND Workshop

26th April 2019

Dunhuang, Gansu, China

(pdf) (html)

1 Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France

1 / 23

https://grand-mother.github.io/
https://niess.pages.in2p3.fr/slides/grand/260419/260419.pdf
https://niess.pages.in2p3.fr/slides/grand/260419/#1

Innovative developments for the White Paper

Accelerator for radio signal computations from showers: Radio
Morphing, (Astropart. Phys. -under review-, arXiv:1811.01750)

Bottleneck of the simulation chain. Greatly improved with the Radio
Morphing technique.

Source: Python3 + numpy, Interface: Python package

Coupled ντ-τ transport by Backward Monte-Carlo: DANTON
(arXiv:1810.01978)

Recycling of tools developed within TREND and for muography.
Detailed yet fast MC simulations.

Source: C99, Interface: library (C API) and executable (JSON API)

Beta version, validated, but the geometry & API will change

2 / 23

https://github.com/grand-mother/grand-radiomorphing
https://arxiv.org/abs/1811.01750
https://github.com/niess/danton
https://arxiv.org/abs/1810.01978

Dedicated wrappers developed for the WP

Topography utilities: GRAND-TOUR

Wrapper of TURTLE (Submitted to CPC, arXiv:1904.0345) a topography
library dedicated to MC. Extends TURTLE with local frames (ENU) and
ray tracing helpers.

Source: C99, Interface: library (C API) and Python module (C extension)

Will be migrated to TURTLE (C API) and to the new Python3 tools

Generator of decaying τ for GRAND: RETRO

Wrapper of DANTON. Generates decaying τ with a bias towards those
emerging from rocks & pre-select candidate antennas for the Radio
Morphing.

Source: C99, Interface: executable (JSON API)

3 / 23

https://github.com/grand-mother/grand-tour
https://niess.github.io/turtle-pages/
https://arxiv.org/abs/1904.03435
https://niess.github.io/turtle-pages/
https://github.com/grand-mother/retro
https://github.com/niess/danton

Scripts developed for the WP

Monte-Carlo production

Two sites: CC-IN2P3 for the ντ to τ chain (using TREND resources) and
ForHLR1 (KIT) for the Radio Morphing. Data stored as amendable JSON
objects at CC-IN2P3, using iRODS.

Antenna response & digitization

Convolution with pre-computed antenna response (NEC). Done at CC-
IN2P3.

Analysis scripts

Selection of candidate MC events and computation of the GRAND
sensitivity. Done locally from reduced data.

Source: Python2, Interface: Python scripts with CLI

Scripts are shared over GitHub, but the committed version might differ from
the one used for the MC production or analysis.

4 / 23

https://cc.in2p3.fr/
https://www.scc.kit.edu/dienste/forhlr1.php
https://cc.in2p3.fr/
https://irods.org/
https://cc.in2p3.fr/
https://github.com/grand-mother

Some related projects (alpha versions, unstable)

Monte-Carlo event displays

Two successive projects have been developed:

retro-player: 3D with navigation, based on panda3d. Fancy but
ressource heavy and not convenient for quantitative analyses.

retro-display: 2D projections, based on matplotlib.

Source: Python2, Interface: Python scripts with CLI and JSON API

Shell like navigation of iRODS data: ishell

Allows to navigate and manage iRODS data as if using an ssh
connection to a remote host. Available from PyPi.

Source: Python2, Interface: Python package and executable with CLI

5 / 23

https://github.com/grand-mother/retro-player
https://www.panda3d.org/
https://github.com/grand-mother/retro-display
https://matplotlib.org/
https://irods.org/
https://github.com/niess/ishell
https://irods.org/
https://pypi.org/project/irods-shell/

But ...

the code became messy

We had to crush lines for the White
Paper. We had little time to gather
and discuss the organization of the
software.

E.g. grand-mother/simulations
has 55 files (43 Python scripts)
from 7 contributors. They span 9k
lines of code (half of which are
commented out). This repo has 4
out of sync branches as well.

Following the White Paper
submission, we decided to clean
up things before getting farther ...

...

6 / 23

https://github.com/grand-mother/simulations

Young developers (Physicists)
contributing to the GRAND
simulation use Python. This seems
to be a common trend among
nowdays Scientists.

With Python one can easily be
productive. But, the product can
also easily be slow ...

To be efficient, one needs to
defer CPU intensive tasks to a
lower level language and/or a
specialized hardware (e.g. GPU).

Actually FORTRAN, and C are
extensively used under the hood,
e.g. when importing numpy, or
when calling external Monte-
Carlo libraries (e.g. DANTON).

Language Files lines
Python 128 18,803
C 11 1,992
Bourne Shell 12 462
Markdown 15 260
JSON 9 124
make 7 103
CSS 1 73
TeX 1 59
HTML 1 59

Table 1: statistics, excluding the
reconstruction package.

Code statistics (GitHub, pre-White Paper)

7 / 23

https://github.com/niess/danton
https://github.com/grand-mother

Actions for the software upgrade
We discussed by phone, on Skype, slack and by email. Following, a poll
was organised in December 2018.

The detailed list and results are available on the software wiki.

A preliminary design was proposed and discussed at the December
GRAND call.

Building upon existing tools rather than developing brand new ones
was approved.

We met in Paris in January 2019.

A mini workshop was organized for the software upgrade. We
designed a tentative new layout for the code, and exercised with a
preliminary wrapper for GRAND packages.

Below are the conclusions of this process

8 / 23

https://github.com/grand-mother/grand-mother.github.io/wiki/Code-refactoring#propositions-for-the-code-refactoring
https://github.com/grand-mother/tools/blob/master/docs/toolsPackage.pdf

Decisions for the software update
Python is adopted as high level interface, i.e. a glue for the low level
simulation components.

Wrappers need to be developed for abstracting generic objects, E.g.
coordinates, geo-magnetic field, particle showers, antenna arrays, ...

The interface will be built on astropy (and so numpy). It provides validated
utilities:

data structures, e.g. coordinates systems, tables, ...
files I/O, e.g. HDF5, YAML, ...
algorithms, e.g. convolution and filtering.

It has weak dependencies and a reasonable memory footprint (35 MB +
70 MB for numpy).

Standard utilities will be used in order to control and improve the code
quality, as it develops.

There are new tools to learn. Those are however not specific to GRAND.
These skills will be useful for any (Python) project.

9 / 23

Decisions for the software update
Python 3.7 will be used (the current head).

Python 2 will be deprecated in 2020.

The GRAND software should run on Linux (batch systems) and OSX, i.e. it
must be UNIX / POSIX compliant.

Half of us work on a Mac. Nobody seems to develop on Windows,
according to the poll.

The software is distributed under GNU LGPL-3.0 license, by default, using
The GRAND collaboration as copyright owner. Individual authorship can
however be recognised in a separate AUTHORS file.

Note that GNU GPL are contaminant licences. Note also that in principle
some of us (French contracts) do not own the copyright on code
developed at work. The employer does.

The source code will continue to be hosted on GitHub. New versions and
binary releases will be distributed on PyPi.

10 / 23

https://pypi.org/

Status of the upgrade
Package manager: grand-pkg statusstatus betabeta

Allows to create, update & configure GRAND packages. Provides stats
on your code and utilities for unit testing, documenting and
distributing.

New wrappers :

grand_libs statusstatus WIPWIP

Install and manage libraries. Implemented: GULL (geomagnetic
field) & TURTLE (topography). Missing: DANTON.

grand_tools statusstatus WIPWIP

Implemented: utilities for coordinates transform, geomagnetic field
and preliminary topography. Missing: antenna arrays and particle
showers.

grand_store statusstatus WIPWIP

Manage & distribute large data sets, e.g. topography tiles.

11 / 23

https://niess.github.io/gull/
https://niess.github.io/turtle-pages/
https://github.com/niess/danton

Status of the upgrade
Code refactoring:

Radio Morphing statusstatus donedone

Preliminary package version and tools. Could benefit from using
grand_tools once stable.

radio_simus statusstatus betabeta

Digitization, background injection & signal filtering.

τ generator (retro) statusstatus to doto do

Rewrite (or wrap) in Python using grand_tools and generalize, e.g.
for cosmic rays.

Website & docs statusstatus betabeta (here)

Summary statistics for GRAND packages and unified documentation.

12 / 23

https://grand-mother.github.io/site/packages.html

grand-pkg : a package manager for GRAND
More on this in the hands-on session on Saturday.

Based on git (via hooks), web services (via GitHub) and pip. Requires
Python 3. Install via pip3 as:

pip3 install --user grand-pkg

Provides 3 utilities, mirroring git commands:

grand-pkg-init

Create or initilialise a GRAND package.

grand-pkg-update

Update the package manager and the related GRAND package data.

grand-pkg-configure

List or modify the meta-data of a GRAND package.

13 / 23

grand-pkg : a package manager for GRAND
More on this in the hands-on session on Saturday.

Provides a pre-configured test environments via vanilla Python modules:
unittest and doctest. Run the test suite as:

python3 -m tests

Provides helpers for setuptools and distutils for building and distributing
the package.

Note that because of this, installing a GRAND package from the source
currently requires grand_pkg to be already installed. Binary
distributions, e.g. available on PyPi, do not.

Extra utilities are foreseen: grand-pkg-clone and grand-pkg-upload for easier
management and distribution of GRAND packages.

14 / 23

https://pypi.org/

grand_libs : wrapping of C libraries
Problematic: distribute and wrap versioned C librairies for the end user.

GRAND specific libraries are built and installed as package data.

This is done automatically the first time that a library wrapper is
imported or if the C library version is updated.

The Python wrapping is done with numpy.ctypes.

vectorization is provided by simple C wrappers appended to the library
source at compile time.

Pros: requires little extra development, e.g. compared to writing a C
extension module for Python. In addition, the distributed binary is portable
since it is pure Python byte-code.

Cons: generates a slow-down the first time the wrapper is imported (library
built). The compiled library might differ from its tested version depending on
the host environment.

Note that this approach is opposite to what is usually done, e.g. by conda.

15 / 23

grand_tools.coordinates: extension of
astropy.coordinates

Problematic: correctly handle coordinates between simulation components that
use different systems.

astropy provides a model for handling coordinates systems. The base objects
are:

BaseRepresentation, coordinates parameterisation within a frame, e.g.
Cartesian or spherical.

BaseCoordinateFrame, a container with frame attributes (e.g. origin, basis)
and optionally coordinates data as numpy.array in a default representation.

astropy.coordinates does not have a vector algebra. Coordinates transform
as points, even when using a UnitVectorRepresentation.

Low level frames, e.g. ITRS, do not forward the observation time, but use a
default one instead. This is error prone, see e.g. #8390.

16 / 23

https://github.com/astropy/astropy/issues/8390

grand_tools.coordinates: extension of
astropy.coordinates

Implemented solution: wrap TURTLE functions as extra Representations and
frames for astropy.coordinates.

GeodeticRepresentation for to geodetic (latitude, longitude, height)
transforms.

In astropy this is done with a specific EarthLocation object that can be
converted to an ITRS frame.

HorizontalRepresentation for angular coordinates.

In astropy this is done with an AltAzFrame.

ENU frame for local coordinates.

Origin and basis are configurable, e.g. x-axis along the magnetic North,
or the geographic East.

ECEF analog to ITRS but with extra attributes.

17 / 23

https://niess.github.io/turtle-pages/

grand_tools.coordinates: extension of
astropy.coordinates

ENU and ECEF frames forward the observation time, if undefined. This
allows simple transform as:

>>> ecef = enu.transform_to(ECEF)

instead of:

>>> itrs = enu.transform_to(ITRS(obstime=enu.obstime))

In addition, the type of the coordinates (vector or point) is automatically
inferred from the data units.

If equivalent to meters then it is assumed that the data transform as a
point. Otherwise as a vector.

An explicit is_vector flag will be added for overriding this behaviour,
e.g. for the antenna equivalent length vector.

18 / 23

Example of usage of grand_tools
>>> import astropy.units as u
>>> from grand_tools.coordinates import ECEF
>>> from grand_tools import geomagnet

>>> coordinates = ECEF(representation_type="geodetic", latitude=45 * u.deg,
... longitude=3 * u.deg, obstime="2019-01-01")
>>> field = geomagnet.field(coordinates)

The TURTLE and GULL library are used transparently for the end user. The IGRF12
geomagnetic model is used by default, packaged with grand_tools.

>>> from grand_tools.coordinates import ENU
>>> from astropy.coordinates import EarthLocation

>>> x = np.array([0, 1, 2, 3]) * u.m
>>> y = np.array([1, 2, 3, 0]) * u.m
>>> z = np.array([2, 3, 0, 1]) * u.m

>>> coordinates = ENU(x, y, z, location=EarthLocation(latitude = 45 * u.deg,
... longitude = 3 * u.deg),
... obstime="2019-01-01"))
>>> field = geomagnet.field(coordinates)

Local coordinates and vectorized data can be used as well.
19 / 23

https://niess.github.io/turtle-pages/
https://niess.github.io/gull/

Outlooks
ν simulation chain functional. Upgrade & packaging of the developped
software tools ongoing.

Adapt the simulation chain for cosmic rays, ongoing.

Adapt / integrate the tools developed for the simulation chain for the
reconstruction: to be done.

ARA-GRAND meeting, collaborative software tools, Berlin, June 18-20th.

Get a deeper insight on the various components of the software in the hands-
on sessions

20 / 23

Hands-on sessions - Morning

Introduction to (GRAND) Python

Setup a proper work environment and 1st steps with Python 3. For
more expert people, be a beta tester: experiment with the upgraded
GRAND software, and submit issues when you find bugs.

09h00-10h30

Simulation of air showers for GRAND

1. ZHAires

Introduction to AIRES and it radio extension: ZHAires. Installation,
run your first simulation and plot the results.

2. Radio Morphing

Brief overview and discussion of the code. Then, produce a radio-
signal distribution of an air-shower with Radio Morphing.

11h00-12h30

21 / 23

Hands-on sessions - Afternoon (1)

GRAND scripts : playing with the generated radio signals

1. Signal processing

Detailed computation of the antenna response to an
electromagnetic transient signal, and/or get accounted with
measured signals, e.g. how the filtering frequency band may affect
time traces and amplitude pattern at ground on the
GRANDProto300 detector.

2. Angular reconstruction

Reconstruct the arrival direction of the shower with two methods :
plane wave front and hyperbolic wave front. Play with the
reconstruction parameters.

14h00-15h30

22 / 23

Hands-on sessions - Afternoon (2)

C tools for the GRAND simulation and their interfaces

1. Handling topography data with TURTLE.

Brief introduction to TURTLE. Experiment with its interface and/or
with the grand-tour wrapper.

2. Play with the ν simulation: DANTON and RETRO.

Basics of the backward ντ-τ coupled transport. Experiment with the
C and/or JSON API.

16h00-17h30

23 / 23

https://niess.github.io/turtle-pages/
https://github.com/niess/danton

