Next Steps of GRANDproto-35

GU Junhua jhgu@nao.cas.cn

2019.04.26

inin militäisi kuun

Current Status of GP35

- 1. Antenna Setup
 - Fiber setup has been finished.
 - Currently 21 GP35 antennas have been installed
 - Still some problems in daily data acquisitions, e.g., too quiet, to noise, no response, abnormal data stream bursts
- 2. Data Acquisition Server
 - Currently only one DAQ server is used (sufficient to handle currently used antennas)
- 3. Data Acquisition Software Development
 - 2016.12 DAQ software development was launched
 - 2017.02 First major version released
 - 2018.08 Reconstructed with RUST language in order to make the software framework more clear enough to understand and scalable in future large scale deployments (e.g., GP300)
 - 2018.09 New DAQ softwares are released and put into use.

- Setup all the rest antennas
- If the data stream rate exceeds current capacity, setup more machines (two more should be enough)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Setup all the rest antennas
- If the data stream rate exceeds current capacity, setup more machines (two more should be enough)
- However, almost all easy positions have been used, the rest antennas are much harder to deploy!

- Setup all the rest antennas
- If the data stream rate exceeds current capacity, setup more machines (two more should be enough)
- However, almost all easy positions have been used, the rest antennas are much harder to deploy!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Timing precision validation

- Setup all the rest antennas
- If the data stream rate exceeds current capacity, setup more machines (two more should be enough)
- However, almost all easy positions have been used, the rest antennas are much harder to deploy!

- Timing precision validation
- Data analyzing

 For "Easy" antennas, time required for one antenna: 1 day (two workers)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- For "Easy" antennas, time required for one antenna: 1 day (two workers)
- For "Hard" antennas, time required for one antenna: 3 days (two workers)

- For "Easy" antennas, time required for one antenna: 1 day (two workers)
- For "Hard" antennas, time required for one antenna: 3 days (two workers)
- In principle, the rest antennas can be all deployed within 1 month

- For "Easy" antennas, time required for one antenna: 1 day (two workers)
- For "Hard" antennas, time required for one antenna: 3 days (two workers)
- In principle, the rest antennas can be all deployed within 1 month
- However, currently available human resource cannot be fully put into GP35 deployment by the end of July.

- For "Easy" antennas, time required for one antenna: 1 day (two workers)
- For "Hard" antennas, time required for one antenna: 3 days (two workers)
- In principle, the rest antennas can be all deployed within 1 month
- However, currently available human resource cannot be fully put into GP35 deployment by the end of July.
- According to above information I estimate that GP35 can be fully deployed (excluding the antennas consumed in e.g., Lenghu site surveying) by the end of August.

One of the "not so hard" positions

Fine tuning of GP35

- Timing precision validation
- Debugging Daq softwares
- Discovering problems in the process of data analyzing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 A full functional GPS module should be used, not just PPS pulse, but also coordinates

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A full functional GPS module should be used, not just PPS pulse, but also coordinates
- More reliable self-diagnostic system no manual power-down and power-up required

- A full functional GPS module should be used, not just PPS pulse, but also coordinates
- More reliable self-diagnostic system no manual power-down and power-up required

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Reliable (interruptible and recoverable) remote firmware upgrading mechanism required

- A full functional GPS module should be used, not just PPS pulse, but also coordinates
- More reliable self-diagnostic system no manual power-down and power-up required
- Reliable (interruptible and recoverable) remote firmware upgrading mechanism required
- Flexible, easy-to-setup mechanical structure for fixing to the ground

- A full functional GPS module should be used, not just PPS pulse, but also coordinates
- More reliable self-diagnostic system no manual power-down and power-up required
- Reliable (interruptible and recoverable) remote firmware upgrading mechanism required
- Flexible, easy-to-setup mechanical structure for fixing to the ground — Ideally "Just put it there"

- A full functional GPS module should be used, not just PPS pulse, but also coordinates
- More reliable self-diagnostic system no manual power-down and power-up required
- Reliable (interruptible and recoverable) remote firmware upgrading mechanism required
- Flexible, easy-to-setup mechanical structure for fixing to the ground — Ideally "Just put it there", more practically modularized, e.g.,
 - Only two (one is better) poles, one for solar panel, one for antenna+DAQ board.

- A full functional GPS module should be used, not just PPS pulse, but also coordinates
- More reliable self-diagnostic system no manual power-down and power-up required
- Reliable (interruptible and recoverable) remote firmware upgrading mechanism required
- Flexible, easy-to-setup mechanical structure for fixing to the ground — Ideally "Just put it there", more practically modularized, e.g.,
 - Only two (one is better) poles, one for solar panel, one for antenna+DAQ board.

Everything is on a common frame

- A full functional GPS module should be used, not just PPS pulse, but also coordinates
- More reliable self-diagnostic system no manual power-down and power-up required
- Reliable (interruptible and recoverable) remote firmware upgrading mechanism required
- Flexible, easy-to-setup mechanical structure for fixing to the ground — Ideally "Just put it there", more practically modularized, e.g.,
 - Only two (one is better) poles, one for solar panel, one for antenna+DAQ board.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Everything is on a common frame
- etc.

My Ideal Mechanical Design of DAQ Units

What can we benefite from easy deploying?

- Saving time
- Better quality control
- Reliability

Thanks

+ □ > + 個 > + 回 > + 回