Cosmic Ray Anisotropy and the Galactic-Extragalactic Transition Regime

Ke Fang Einstein Fellow, Stanford University

GRAND Collaboration Meeting, Dunhuang, China Apr 25, 2019

Very-high-energy Gamma-ray Sources could be nearby

HAWC Collaboration, Nature (2018) Main authors: BenZvi, Brenda, KF, Rho, Zhang, Zhou

Very-high-energy Gamma-ray Sources could be nearby

HAWC Collaboration, Nature (2018) Main authors: BenZvi, Brenda, KF, Rho, Zhang, Zhou

Cosmic Ray Anisotropy

Cosmic Ray Anisotropy

Cosmic Ray Anisotropy

Large and Small-Scale Anisotropies

Large and Small-Scale Anisotropies

Large and Small-Scale Anisotropies

Assume that flux in given direction can be written as an isotropic flux times a relative factor

$$\phi(\alpha,\delta) = \phi^{\rm iso}I(\alpha,\delta)$$

Assume that flux in given direction can be written as an isotropic flux times a relative factor

$$\phi(\alpha,\delta) = \phi^{\rm iso}I(\alpha,\delta)$$

Taken into account acceptance, the expected event number in pixel i is

 $\mu_{\tau i} \simeq I_{\tau i} \mathcal{N}_{\tau} \mathcal{A}_i$

Assume that flux in given direction can be written as an isotropic flux times a relative factor

$$\phi(\alpha,\delta) = \phi^{\rm iso}I(\alpha,\delta)$$

Taken into account acceptance, the expected event number in pixel i is

 $\mu_{ au i} \simeq I_{ au i} \mathcal{N}_{ au} \mathcal{A}_i$

The chance of getting n events in that pixel during given time is then

$$\mathscr{L}(n|I,\mathscr{N},\mathscr{A}) = \prod_{\tau i} \frac{(\mu_{\tau i})^{n_{\tau i}} e^{-\mu_{\tau i}}}{n_{\tau i}!}$$

Assume that flux in given direction can be written as an isotropic flux times a relative factor

$$\phi(\alpha,\delta) = \phi^{\rm iso}I(\alpha,\delta)$$

Taken into account acceptance, the expected event number in pixel i is

 $\mu_{\tau i} \simeq I_{\tau i} \mathcal{N}_{\tau} \mathcal{A}_i$

The chance of getting n events in that pixel during given time is then

$$\mathscr{L}(n|I,\mathscr{N},\mathscr{A}) = \prod_{\tau i} \frac{(\mu_{\tau i})^{n_{\tau i}} e^{-\mu_{\tau i}}}{n_{\tau i}!}$$

Maximize this likelihood with respect to the null hypothesis (I = 1) gives the best-fit relative intensity and isotropic flux

$$\lambda = \frac{\mathscr{L}(n|I,\mathscr{N},\mathscr{A})}{\mathscr{L}(n|I^{(0)},\mathscr{N}^{(0)},\mathscr{A}^{(0)})}$$

Cosmic Ray Anisotropy at Tens of TeVs - large scale

Cosmic Ray Anisotropy at Tens of TeVs - large scale

Large-scale anisotropy is at the level of 10^-3 at ~10 TeV

Cosmic Ray Anisotropy at Tens of TeVs

Cosmic Ray Anisotropy at Tens of TeVs

Combined analysis of the HAWC-1yr and IceCube-5yr data finds significant level of anisotropy up to I~10

Cosmic Ray Anisotropy at > EeV

Table 3. Results of the first-harmonic analysis in right ascension in the three bins above 8 EeV.

Energy [EeV]	events	a_1^{lpha}	b_1^{lpha}	r_1^{α}	φ_1^{α} [°]	$P(\geq r_1^{\alpha})$
8 - 16	$24,\!070$	-0.011 ± 0.009	0.044 ± 0.009	0.046	104 ± 11	3.7×10^{-6}
16 - 32	$6,\!604$	0.007 ± 0.017	0.050 ± 0.017	0.051	82 ± 20	0.014
≥ 32	1,513	-0.03 ± 0.04	0.05 ± 0.04	0.06	115 ± 35	0.26

Auger Collaboration, Science (2017), ApJ (2018)

Cosmic Ray Anisotropy at > EeV

Table 3. Results of the first-harmonic analysis in right ascension in the three bins above 8 EeV.

Energy [EeV]	events	a_1^{lpha}	b_1^{lpha}	r_1^{α}	φ_1^{α} [°]	$P(\geq r_1^{\alpha})$
8 - 16	$24,\!070$	-0.011 ± 0.009	0.044 ± 0.009	0.046	104 ± 11	3.7×10^{-6}
16 - 32	$6,\!604$	0.007 ± 0.017	0.050 ± 0.017	0.051	82 ± 20	0.014
≥ 32	1,513	-0.03 ± 0.04	0.05 ± 0.04	0.06	115 ± 35	0.26

>5 sigma Dipole found above 8 EeV

Auger Collaboration, Science (2017), ApJ (2018)

Hints to Cosmic Ray Origins

Auger Collaboration ApJ (2018)

Hints to Cosmic Ray Origins

Dipole directions as function of energy, comparing with that from galaxies in the 2MRS catalog

Auger Collaboration ApJ (2018)

Dipole Amplitude Over Energy

Ahlers & Mertsch, PPNP (2017) Auger Collaboration ApJ (2018)

Dipole Amplitude Over Energy

Dipole Amplitude Over Energy

$$\vec{\Delta} = 3D\frac{\vec{\nabla}n}{n}$$

Possible contribution from GP300: origin of intermediate-mass nuclei at sub-ankle Constraint on the properties of local magnetic field (D)

Galactic CRs

Liu et al. 2019

Ex-Galactic CRs

$$D_{\text{diff}}(E < E_*) \sim \left(\frac{c\ell_{\text{coh}}}{H_0}\right)^{1/2} \left(\frac{E}{E_*}\right)^{1/2}$$
$$\simeq 55 \,\ell_0^{1/2} h^{-1/2} \left(\frac{E}{E_*}\right)^{1/2} \,\text{Mpc}$$

Magnetic horizon for E<E* (Crs trapped by intergalactic magnetic field Diffuse slow and cannot reach Earth within the age of the Universe)

 $\ell_0 = \ell_{\rm coh} / (1 \,{\rm Mpc})$ $E_* \equiv ZeB_{\rm r} \, \ell_{\rm coh} \simeq 9.2 \times 10^{17} ZB_{-9} \ell_0 \,\,{\rm eV}$

Achterberg et al. 1999

Hilas 1984

Kotera & Olinto 1101.4256 Alves Batista, Biteau, Bustamante et al, 1903.06714

Alves Batista, Biteau, Bustamante et al, 1903.06714

e.g. Kirk & Lyubarsky (2001) Arons, ApJ 589 (2003)

e.g. Kirk & Lyubarsky (2001) Arons, ApJ 589 (2003)

Particle energy

$$E_{\rm CR} = 10^{18} A \left(\frac{B}{10^{13} \,\rm G}\right) \left(\frac{P_i}{1 \,\rm ms}\right)^{-2} \left(\frac{\eta}{0.3}\right) \left(\frac{\kappa}{10^4}\right)^{-1} \left(1 + \frac{t}{\tau_{\rm sd}}\right)^{-1} \,\rm eV$$

e.g. Kirk & Lyubarsky (2001) Arons, ApJ 589 (2003)

Particle energy

$$E_{\rm CR} = 10^{18} A \left(\frac{B}{10^{13} \,\rm G}\right) \left(\frac{P_i}{1 \,\rm ms}\right)^{-2} \left(\frac{\eta}{0.3}\right) \left(\frac{\kappa}{10^4}\right)^{-1} \left(1 + \frac{t}{\tau_{\rm sd}}\right)^{-1} \,\rm eV$$

e.g. Kirk & Lyubarsky (2001) Arons, ApJ 589 (2003)

e.g. **Cosmic Ray Acceleration** Kirk & Lyubarsky (2001) Arons, ApJ 589 (2003) Magnetosphere 1000 km w m PULSAR main mmm Image credit: MPIK initial spin period Wind efficiency Magnetic Field Particle energy $E_{\rm CR} = 10^{18} A \left(\frac{B}{10^{13} \,\rm G}\right) \left(\frac{P_i}{1 \,\rm ms}\right)^{-2} \left(\frac{\eta}{0.3}\right) \left(\frac{\kappa}{10^4}\right)^{-1} \left(1 + \frac{t}{\tau_{\rm sd}}\right)^{-1} \,\rm eV$

Cosmic Ray Acceleration

e.g. Kirk & Lyubarsky (2001) Arons, ApJ 589 (2003)

Particle energy

$$E_{\rm CR} = 10^{18} A \left(\frac{B}{10^{13} \,\rm G}\right) \left(\frac{P_i}{1 \,\rm ms}\right)^{-2} \left(\frac{\eta}{0.3}\right) \left(\frac{\kappa}{10^4}\right)^{-1} \left(1 + \frac{t}{\tau_{\rm sd}}\right)^{-1} \,\rm eV$$

Cosmic ray injection spectrum

$$\frac{dN_{\rm CR}}{dE} \propto E^{-1}$$

Cosmic Ray Acceleration

e.g. Kirk & Lyubarsky (2001) Arons, ApJ 589 (2003)

Philippov & Spitkovsky 1707.04323

Particle energy

$$E_{\rm CR} = 10^{18} A \left(\frac{B}{10^{13} \,\rm G}\right) \left(\frac{P_i}{1 \,\rm ms}\right)^{-2} \left(\frac{\eta}{0.3}\right) \left(\frac{\kappa}{10^4}\right)^{-1} \left(1 + \frac{t}{\tau_{\rm sd}}\right)^{-1} \,\rm eV$$

Cosmic ray injection spectrum

$$\frac{dN_{\rm CR}}{dE} \propto E^{-1}$$

Cosmic ray particles interacting with hadronic supernova ejecta

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}}\right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s}\right)^{-2} \left(\frac{t}{1\rm yr}\right)^{-2}$$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10 M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$

$$t \uparrow$$

$N + p \rightarrow N' + \pi + others$

Interaction with Ejecta

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10 M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow$$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B = 10^{13} \,\mathrm{G}, \mathrm{P_i} = 0.6 \,\mathrm{ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B = 10^{13} \,\mathrm{G}, \mathrm{P_i} = 0.6 \,\mathrm{ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B=10^{13}\,{\rm G}, {\rm P_i}=0.6\,{\rm ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B=10^{13}\,{\rm G}, {\rm P_i}=0.6\,{\rm ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B=10^{13}\,{\rm G}, {\rm P_i}=0.6\,{\rm ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B=10^{13}\,{\rm G}, {\rm P_i}=0.6\,{\rm ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B=10^{13}\,{\rm G}, {\rm P_i}=0.6\,{\rm ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B=10^{13}\,{\rm G}, {\rm P_i}=0.6\,{\rm ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B=10^{13}\,{\rm G}, {\rm P_i}=0.6\,{\rm ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

 $B=10^{13}\,{\rm G}, {\rm P_i}=0.6\,{\rm ms}$

$$\tau_{pp} = 0.2 \left(\frac{M_{\rm ej}}{10M_{\odot}} \right) \left(\frac{v_{\rm ej}}{10^4 \rm km/s} \right)^{-2} \left(\frac{t}{1 \rm yr} \right)^{-2}$$
$$t \uparrow E_{\rm CR} \downarrow \tau \downarrow$$

Monte Carlo simulation tracking particle propagation

UHE-allowed Pulsars

KF, Kotera & Olinto (2012)

UHE-allowed Pulsars

Integrated Extragalactic Pulsars

KF, Kotera & Olinto (2012, 2013)

Integrated Extragalactic Pulsars

KF, Kotera & Olinto (2012, 2013)

Integrated Extragalactic Pulsars

Newborn pulsars can be successful UHECR accelerators

KF, Kotera & Olinto (2012, 2013)

What about their Galactic Counterparts?

What about their Galactic Counterparts?

Galactic -Extragalactic Transition

Contribution from Galactic pulsars - Spectrum

KF, Kotera & Olinto JCAP (2013)

Contribution from Galactic pulsars - Spectrum

KF, Kotera & Olinto JCAP (2013)
Contribution from Galactic pulsars - Composition

KF, Kotera & Olinto JCAP (2013)

Contribution from Galactic pulsars - Composition

Galactic pulsars can contribute between the knee and the ankle.

GRAND can diagnose the Galacticextragalactic transition by accurately measuring features in cosmic rays spectrum and composition.

KF, Kotera & Olinto JCAP (2013)