Few nucleons near unitarity

Sebastian König

GDR RESANET GT3 meeting

"Quelles sont les nouvelles frontières dans la description microscopique des noyaux?"
Saclay, France

November 13, 2018

SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, PRL 118202501 (2017)
SK, J Phys. G 44064007 (2017)
P. Klos, SK, J. Lynn, H.-W. Hammer, and A. Schwenk, PRC 98034004 (2018)

TECHNISCHE UNIVERSITAT DARMSTADT

Nuclear paradise

Few nucleons near unitarity - p. 2

Nuclear paradise

Few nucleons near unitarity - p. 2

Nuclear paradise?

- QCD = underlying theory of strong interaction
- EFT = effective description in terms of hadrons separation of scales + symmetries
 \hookrightarrow systematic expansion of observables
- chiral EFT: nucleons + pions, expand in $\left(Q \sim m_{\pi}\right) / M_{\mathrm{QCD}}$

Weinberg (90); Rho (91); Ordoñez+van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem+Machleidt (03);
LO $\left(a^{\circ}\right)$

NaLO (\mathbf{Q}^{4})

Epelbaum et al., EPJA 5153 (2015)

(a)

(c)

(d)

(e)

(f)
$1 / m$
(g)

- LO triton not very good! e.g., $\sim 4 \mathrm{MeV}$ (LO) vs. 8.5 MeV (exp.)

Nuclear paradise?

- QCD $=$ underlying theory of strong interaction
- EFT $=$ effective

separation of

Why so complicated?

- Do we need all those details?
- Can't we have something simpler?
- What's in a nucleus?
- LO triton not very good! e.g., $\sim 4 \mathrm{MeV}(\mathrm{LO})$ vs. 8.5 MeV (exp.)

Nuclear scales

chiral expansion
MeV

Nuclear scales

chiral expansion
MeV

pionless expansion
MeV

Universal trimers and tetramers

- Efimov effect: infinite tower of three-body states in unitarity limit Efimov, PLB 33563 (1970)
- each state comes with two associated tetramers

Hammer+Platter, EPJA 3213 (2007)

- plus higher-body cluster states beyond that
von Stecher, JPB 43101002 (2010); Gattobigio et al., PRA 84052503 (2011)

Braaten+Hammer, Phys. Rept. 428259 (2006)

- at unitarity: $B_{4} / B_{3} \simeq 4.611, B_{4^{*}} / B_{3} \simeq 1.002$

Deltuva, PRA 82040701 (2010)

Universal trimers and tetramers

- Efimov effect: infinite tower of three-body states in unitarity limit Efimov, PLB 33563 (1970)
- each state comes with two associated tetramers

Hammer+Platter, EPJA 3213 (2007)

- plus higher-body cluster states beyond that
von Stecher, JPB 43101002 (2010); Gattobigio et al., PRA 84052503 (2011)

Braaten+Hammer, Phys. Rept. 428259 (2006)

- at unitarity: $B_{4} / B_{3} \simeq 4.611, B_{4^{*}} / B_{3} \simeq 1.002$

Deltuva, PRA 82040701 (2010)

- in ${ }^{4} \mathrm{He}$: ground state at $B_{\alpha} / B_{H} \simeq 3.66$, resonance at $B_{\alpha^{*}} / B_{H} \simeq 1.05\left(\right.$ where $\left.B_{H}=7.72\right)$

TUNL nuclear data

Nuclear scales

chiral expansion
MeV

pionless expansion
MeV

Nuclear scales

chiral expansion
MeV

pionless expansion
MeV

unitarity limit: $1 / a=0$
SK et al. JPG 43055106 (2016)

Nuclear scales

chiral expansion

MeV | ${ }^{1250} \frac{5}{E}$ | $4 \pi f_{\pi}$ |
| :--- | :--- |
| ${ }^{1000}$ | | m_{ρ}

pionless expansion
MeV

unitarity limit: $1 / a=0$

New nuclear paradise

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

- shift focus away from two-body details
- zero-energy deuteron at LO and NLO
- physics in universality regime
- discrete scale invariance as guiding principle (Efimov effect!)
- near equivalence to bosonic clusters
- exact $S U(4)_{W}$ symmetry at LO

Wigner, PR 51106 (1937); Mehen et al., PRL 83931 (1999); Bedaque et al., NPA 676357 (2000)
Vanasse+Phillips, FB Syst. 5826 (2017)
cf. Kievsky+Gattobigio, EPJ Web Conf. 11303001 (2016)

New nuclear paradise

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

- shift focus away from two-body details
- zero-energy deuteron at LO and NLO
- physics in universality regime
- discrete scale invariance as guiding principle (Efimov effect!)
- near equivalence to bosonic clusters
- exact $S U(4)_{W}$ symmetry at LO

Wigner, PR 51106 (1937); Mehen et al., PRL 83931 (1999); Bedaque et al., NPA 676357 (2000)
Vanasse+Phillips, FB Syst. 5826 (2017)
cf. Kievsky+Gattobigio, EPJ Web Conf. 11303001 (2016)

Conjecture

Nuclear sweet spot
$1 / a_{s, t}<Q_{A}<1 / R \sim m_{\pi}$

A	2	3	4	\cdots	56
$Q_{A} R$	0.3	0.5	0.8	\cdots	0.9

\hookrightarrow iron not much different from ${ }^{4} \mathrm{He}$
(actual exp. parameter maybe smaller) van Kolck (2018)

The unitarity expansion

(1) describe strong force with contact interactions (cutoff $\Lambda \rightsquigarrow$ smearing)

(2) fix $C_{0}^{(0)}$ to get $a=\infty$ for both $N N$ S-wave channels $\left(s={ }^{1} S_{0}, t={ }^{3} S_{1}\right)$

The unitarity expansion

(1) describe strong force with contact interactions (cutoff $\Lambda \rightsquigarrow$ smearing)

(2) fix $C_{0}^{(0)}$ to get $a=\infty$ for both $N N$ S-wave channels $\left(s={ }^{1} S_{0}, t={ }^{3} S_{1}\right)$
(3) fix Efimov spectrum to physical $B\left({ }^{3} \mathrm{H}\right) \leftrightarrow$ LO three-body contact

Bedaque et al., NPA 676357 (2000)
use triton as "anchor" at each order

The unitarity expansion

(1) describe strong force with contact interactions (cutoff $\Lambda \rightsquigarrow$ smearing)

(2) fix $C_{0}^{(0)}$ to get $a=\infty$ for both $N N$ S-wave channels $\left(s={ }^{1} S_{0}, t={ }^{3} S_{1}\right)$
(3) fix Efimov spectrum to physical $B\left({ }^{3} \mathrm{H}\right) \leftrightarrow$ LO three-body contact

Bedaque et al., NPA 676357 (2000)

use triton as "anchor" at each order

(4) include in perturbation theory:

- finite a, Coulomb
- range effects
- higher-order corrections
- amplitudes $T=T^{(0)}+T^{(1)}+\cdots$
- binding energies $B=B^{(0)}+B^{(1)}+\cdots$

The unitarity expansion

(1) describe strong force with contact interactions (cutoff $\Lambda \rightsquigarrow$ smearing)

Leading order has a single parameter, all the rest is a perturbation!

(1) include...r

- finite a, Coulor
- range effects
- higher-order corrections
- binding energies $B=B^{(0)}+B^{(1)}+\cdots$

Trinucleon energy difference

- at LO ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ are degenerate (exact isospin symmetry)
- Coulomb correction enters together with $1 / a_{s, p p}$ at NLO

Range corrections

- unitarity and standard pionless expansions paired
- \rightsquigarrow range corrections enter at NLO
- however, treat $r_{s, n p}=2.73 \mathrm{fm} \neq r_{s, p p}=2.79 \mathrm{fm}$ as higher order

SK et al. JPG 43055106 (2016)
\hookrightarrow range corrections cancel at NLO in ΔE_{3}

Trinucleon energy difference

Various contributions at \mathbf{N}^{2} LO...

(1) quadratic scattering-length corrections
(2) two-photon exchange
(3) quadratic range corrections, isospin-breaking: $r_{s, p p} \neq r_{s, n p}$
(9) mixed Coulomb and range corrections!

Zero-range calculation at $\mathrm{N}^{2} \mathrm{LO}$

- convergence of unitarity expansion
- Coulomb perturbative $\sqrt{ }$
- cutoff stability \rightarrow renormalization $\sqrt{ }$
- note: don't expect convergence towards experiment here

Four nucleons

- unitarity expansion converges well in three-nucleon sector $\sqrt{ }$
- further test: ${ }^{4} \mathrm{He}$, with $Q_{4} \sim 115 \mathrm{MeV}$
- good standard pionless LO description established previously

Platter et al., PLB 607254 (2005); cf. also Platter, PhD thesis (2005)

incomplete NLO

(finite- a corr. only) remarkably close to LO with physical \boldsymbol{a}

	LO	NLO	exp.
${ }^{3} \mathrm{H}$	8.48	8.48	8.48
${ }^{4} \mathrm{He}$	$39(12)$	$30(9)$	28.30

Four nucleons

- unitarity expansion converges well in three-nucleon sector $\sqrt{ }$
- further test: ${ }^{4} \mathrm{He}$, with $Q_{4} \sim 115 \mathrm{MeV}$
- good standard pionless LO description established previously

Platter et al., PLB 607254 (2005); cf. also Platter, PhD thesis (2005)

incomplete NLO

(finite- a corr. only) remarkably close to LO with physical \boldsymbol{a}

	LO	NLO	exp.
${ }^{3} \mathrm{H}$	8.48	8.48	8.48
${ }^{4} \mathrm{He}$	$39(12)$	$30(9)$	28.30

${ }^{4}$ He monopole resonance

- ${ }^{4} \mathrm{He}$ resonance state 0.3 MeV above ${ }^{3} \mathrm{H}+p$ threshold
- just below threshold at unitarity LO
- boson calculations with nuclear scales \rightsquigarrow shift by about $0.2-0.5 \mathrm{MeV}$

Four nucleons

- unitarity expansion converges well in three-nucleon sector $\sqrt{ }$
- further test: ${ }^{4} \mathrm{He}$, with $Q_{4} \sim 115 \mathrm{MeV}$
- good standard pionless LO description established previously

Platter et al., PLB 607254 (2005); cf. also Platter, PhD thesis (2005)

incomplete NLO

(finite- a corr. only) remarkably close to LO with physical \boldsymbol{a}

	LO	NLO	exp.
${ }^{3} \mathrm{H}$	8.48	8.48	8.48
${ }^{4} \mathrm{He}$	$39(12)$	$30(9)$	28.30

Tjon line
 $Q=f(O)$

Tjon, PLB 56217 (1975)

Few nucleons near unitarity - p. 11

Four nucleons

- unitarity expansion converges well in three-nucleon sector $\sqrt{ }$
- further test: ${ }^{4} \mathrm{He}$, with $Q_{4} \sim 115 \mathrm{MeV}$
- good standard pionless LO description established previously

Platter et al., PLB 607254 (2005); cf. also Platter, PhD thesis (2005)

incomplete NLO

(finite- a corr. only) remarkably close to LO with physical \boldsymbol{a}

	LO	NLO	exp.
${ }^{3} \mathrm{H}$	8.48	8.48	8.48
${ }^{4} \mathrm{He}$	$39(12)$	$30(9)$	28.30

Tjon line
 $Q=f(O)$

Tjon, PLB 56217 (1975)

Few nucleons near unitarity - p. 11

Four nucleons

- unitarity expansion converges well in three-nucleon sector $\sqrt{ }$
- further test: ${ }^{4} \mathrm{He}$, with $Q_{4} \sim 115 \mathrm{MeV}$
- good standard pionless LO description established previously

Platter et al., PLB 607254 (2005); cf. also Platter, PhD thesis (2005)

incomplete NLO

(finite- a corr. only) remarkably close to LO with physical \boldsymbol{a}

	LO	NLO	exp.
${ }^{3} \mathrm{H}$	8.48	8.48	8.48
${ }^{4} \mathrm{He}$	$39(12)$	$30(9)$	28.30

Tjon line
 $Q=f(O)$

Tjon, PLB 56217 (1975)

Few nucleons near unitarity

Unitarity expansion summary

Novel approach to few-nucleon systems

	LO	NLO *	$\mathrm{~N}^{2} \mathrm{LO}$	exp.
${ }^{2} \mathrm{H}$	0	0	1.41	2.22
${ }^{3} \mathrm{H}$	8.48	8.48	8.48	8.48
${ }^{3} \mathrm{He}$	8.48	7.56		7.72
${ }^{4} \mathrm{He}$	38.86	29.50		28.30

*) four-body: no Coulomb, zero-range
NLO uncertainties: $0.2 \mathrm{MeV}\left({ }^{3} \mathrm{He}\right), 9 \mathrm{MeV}\left({ }^{4} \mathrm{He}\right)$

Unitarity expansion summary

Novel approach to few-nucleon systems

	LO	NLO *	$\mathrm{~N}^{2}$ LO	exp.
${ }^{2} \mathrm{H}$	0	0	1.41	2.22
${ }^{3} \mathrm{H}$	8.48	8.48	8.48	8.48
${ }^{3} \mathrm{He}$	8.48	7.56		7.72
${ }^{4} \mathrm{He}$	38.86	29.50		28.30

*) four-body: no Coulomb, zero-range NLO uncertainties: $0.2 \mathrm{MeV}\left({ }^{3} \mathrm{He}\right), 9 \mathrm{MeV}\left({ }^{4} \mathrm{He}\right)$

- emphasize three-body sector over two-body precision
- enhanced symmetry and only one parameter at leading order
- conjecture: unitarity expansion useful beyond four nucleons
- supported by bosonic cluster results

Bazak + van Kolck, PRA 94052502 (2016), Carlson et al., PRL 119223002 (2017)

- Coester line from discrete scale invariance

Unitarity expansion summary

Novel approach to few-nucleon systems

	LO	NLO *	$\mathrm{~N}^{2}$ LO	exp.
${ }^{2} \mathrm{H}$	0	0	1.41	2.22
${ }^{3} \mathrm{H}$	8.48	8.48	8.48	8.48
${ }^{3} \mathrm{He}$	8.48	7.56		7.72
${ }^{4} \mathrm{He}$	38.86	29.50		28.30

*) four-body: no Coulomb, zero-range NLO uncertainties: $0.2 \mathrm{MeV}\left({ }^{3} \mathrm{He}\right), 9 \mathrm{MeV}\left({ }^{4} \mathrm{He}\right)$

The great nuclear simplification

- EDFs constrained by unitarity

Denis's talk earlier this morning

- saturation point from pionless-like model

Kievsky et al., PRL 121072701 (2018)

- one-parameter description of He isotopes

Fossez et al., arXiv:1806.02936

- $d-\alpha$ universality (${ }^{6}$ Li Phillips line)

Few-neutron systems

terra incognita at the doorstep...

${ }^{3} \mathrm{Li}$	${ }^{4} \mathrm{Li}$	${ }^{5} \mathrm{Li}$	${ }^{6} \mathrm{Li}$	${ }^{7} \mathrm{Li}$
	${ }^{3} \mathrm{He}$	${ }^{4} \mathrm{He}$	${ }^{5} \mathrm{He}$	${ }^{6} \mathrm{He}$
${ }^{1} \mathrm{H}$	${ }^{2} \mathrm{H}$	${ }^{3} \mathrm{H}$	${ }^{4} \mathrm{H}$	${ }^{5} \mathrm{H}$
	n			
		$?$	$?$	

Few-neutron systems

terra incognita at the doorstep...

${ }^{3} \mathrm{Li}$	${ }^{4} \mathrm{Li}$	${ }^{5} \mathrm{Li}$	${ }^{6} \mathrm{Li}$	${ }^{7} \mathrm{Li}$
	${ }^{3} \mathrm{He}$	${ }^{4} \mathrm{He}$	${ }^{5} \mathrm{He}$	${ }^{6} \mathrm{He}$
${ }^{1} \mathrm{H}$	${ }^{2} \mathrm{H}$	${ }^{3} \mathrm{H}$	${ }^{4} \mathrm{H}$	${ }^{5} \mathrm{H}$
	n			
		$?$	$?$	

- neutron-neutron scattering length is large but not known very well!

$$
\begin{gathered}
a_{n n, \exp }=-16.1 \pm 0.4 \mathrm{fm},-18.7 \pm 0.7 \mathrm{fm}, a_{n n, \text { th }}=-22.9 \pm 4.1 \mathrm{fm} \\
\text { Huhn et al., PRL } 851190(2000) \text {, González et al., PRC } 73034001(2006) \text {; Phillips }+ \text { Kirscher, PRC } 84054004 \text { (2011) }
\end{gathered}
$$

- dineutron bound at large pion masses

Orginos et al. (NPLQCD) PRD 92 (2015); Yamazaki et al. (PACS) PoS LATTICE2015 081 (2016)

- at phyiscal pion mass: not excluded by pionless EFT

Hammer + SK, PLB 736208 (2014)

- however, discouraged by deuteron muon capture data

Few-neutron systems

terra incognita at the doorstep...

${ }^{3} \mathrm{Li}$	${ }^{4} \mathrm{Li}$	${ }^{5} \mathrm{Li}$	${ }^{6} \mathrm{Li}$	${ }^{7} \mathrm{Li}$
	${ }^{3} \mathrm{He}$	${ }^{4} \mathrm{He}$	${ }^{5} \mathrm{He}$	${ }^{6} \mathrm{He}$
${ }^{1} \mathrm{H}$	${ }^{2} \mathrm{H}$	${ }^{3} \mathrm{H}$	${ }^{4} \mathrm{H}$	H
	n		$?$?

- recent indications for a three-neutron resonance...

Gandolfi et al., PRL 118232501 (2017)

- ... although excluded by previous work

Offermann + Glöckle, NPA 318, 138 (1979); Lazauskas + Carbonell, PRC 71044004 (2005)

- possible experimental evidence for tetraneutron resonance

Kisamori et al., PRL 116052501 (2016)

Conflicting theoretical tetraneutron results!

Hiyama et al., PRC 93044004 (2016); Deltuva, PLB 782238 (2018)

Shirokov et al. PRL 117182502 ('16); Gandolfi et al., PRL 118232501 ('17); Fossez et al., PRL 119032501 ('17)

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by π in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by π in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

(2) Find complex poles in S-matrix:
e.g., Glöckle, PRC 18564 (1978); Borasoy et al., PRC 74055201 (2006);
\checkmark direct, clear signature \boldsymbol{X} technically challenging, needs analytic pot.

How to tackle resonances?

Resonances

- metastable states
- decay width \leftrightarrow lifetime

(1) Look for jump by π in scattering phase shift:
\checkmark simple \boldsymbol{X} possibly ambiguous (background), need 2-cluster system

(2) Find complex poles in S-matrix:
e.g., Glöckle, PRC 18564 (1978); Borasoy et al., PRC 74055201 (2006);
$\sqrt{ }$ direct, clear signature \boldsymbol{X} technically challenging, needs analytic pot.
(3) Put system into periodic box!

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
\rightsquigarrow volume-dependent energies

Lüscher formalism

Physical properties encoded in the L-dependent energy levels!

- infinite-volume S-matrix governs discrete finite-volume spectrum
- PBC natural for lattice calculations...
- ... but can also be implemented with other methods

Bound-state volume dependence

$$
\hat{H}\left|\psi_{B}\right\rangle=-\frac{\kappa^{2}}{2 \mu}\left|\psi_{B}\right\rangle
$$

binding momentum κ
\leftrightarrow intrinsic length scale

- for S-wave states, one finds $\Delta B(L)=-3 \pi|\gamma|^{2} \frac{\mathrm{e}^{-\kappa L}}{\mu L}+\mathcal{O}\left(\mathrm{e}^{-\sqrt{2} \kappa L}\right)$ Lüscher, Commun. Math. Phys. 104177 (1986);
- in general, the prefactor is a polynomial in $1 / \kappa L$

Bound-state volume dependence

$$
\hat{H}\left|\psi_{B}\right\rangle=-\frac{\kappa^{2}}{2 \mu}\left|\psi_{B}\right\rangle
$$

binding momentum κ
\leftrightarrow intrinsic length scale

- for S-wave states, one finds $\Delta B(L)=-3 \pi|\gamma|{ }^{2} \frac{\mathrm{e}^{-\kappa L}}{\mu L}+\mathcal{O}\left(\mathrm{e}^{-\sqrt{2} \kappa L}\right)$ Lüscher, Commun. Math. Phys. 104177 (1986);
- in general, the prefactor is a polynomial in $1 / \kappa L$

SK, Lee, Hammer, PRL 107112001 (2011); Annals Phys. 327, 1450 (2012)

General N-body result

nearest breakup threshold determines volume dependence

$$
\begin{gathered}
\Delta B(L) \propto \exp \left(-\kappa_{A \mid N-A} L\right) / L^{(d-1) / 2} \\
\mathrm{SK}+\text { Lee, PLB 779, } 9 \text { (2018) } \quad \kappa_{A \mid N-A}=\sqrt{2 \mu_{A \mid N-A}\left(B_{N}-B_{A}-B_{N-A}\right)}
\end{gathered}
$$

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2} \quad, \quad p=p(E(L))
$$

Lüscher, Nucl. Phys. B 354531 (1991);
resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2} \quad, \quad p=p(E(L))
$$

Lüscher, Nucl. Phys. B 354531 (1991);
resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2} \quad, \quad p=p(E(L))
$$

Lüscher, Nucl. Phys. B 354531 (1991);
resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Finite-volume resonance signatures

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$
p \cot \delta_{0}(p)=\frac{1}{\pi L} S(\eta) \quad, \quad \eta=\left(\frac{L p}{2 \pi}\right)^{2} \quad, \quad p=p(E(L))
$$

Lüscher, Nucl. Phys. B 354531 (1991);
resonance contribution \rightsquigarrow avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989);

Discrete variable representation

Needed: calculation of several few-body energy levels

- difficult to achieve with QMC methods
- direct discretization possible, but not very efficient
\hookrightarrow use a Discrete Variable Representation (DVR)
well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix sparse (in $d>1$)...
- ... or implemented via Fast Fourier Transform
periodic boundary condistions \leftrightarrow plane waves as starting point

Three-body check

Study established three-body resonance from literature:

Fedorov et al., Few-Body Syst. P 33153 (2003); Blandon et al., PRA 75042508 (2007)
$V(r)=V_{0} \exp \left(-\left(\frac{r}{R_{0}}\right)^{2}\right)+V_{1} \exp \left(-\left(\frac{r-a}{R_{1}}\right)^{2}\right)$
$V_{0}=-55 \mathrm{MeV}, V_{1}=1.5 \mathrm{MeV}, R_{0}=\sqrt{5} \mathrm{fm}, R_{1}=10 \mathrm{fm}, a=5 \mathrm{fm}$

- three spinless bosons with mass $m=939.0 \mathrm{MeV}$

- three-body resonance at $-5.31-\mathrm{i} 0.12 \mathrm{MeV}$ (Blandon et al.), $-5.96-\mathrm{i} 0.40 \mathrm{MeV}$ (Fedorov et all.)

- fit inflection point(s) to extract resonance energy $\rightsquigarrow E_{R}=-5.32(1) \mathrm{MeV}$

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

Three bosons with shifted Gaussian interaction

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

\hookrightarrow possible to move three-body state \leftrightarrow spatially localized wf.

Current status

method established for up to four particles handle large $N_{\text {DVR }}$ for three-body systems (current record: 32)
efficient symmetrization and antisymmetrization
projection onto cubic irreps. $\left(H \rightarrow H+\lambda\left(1-P_{\Gamma}\right), \lambda\right.$ large $)$

Current status

method established for up to four particles handle large $N_{\text {DVR }}$ for three-body systems (current record: 32)
efficient symmetrization and antisymmetrization
projection onto cubic irreps. $\left(H \rightarrow H+\lambda\left(1-P_{\Gamma}\right), \lambda\right.$ large $)$

Work in progress

\checkmark chiral interactions (non-diagonal due to spin dependence!)

- application to few-neutron systems
- further optimization (especially for spin-dep. potentials)
\hookrightarrow need to reach decent $N_{\text {DVR }}$ for four-neutron calculation!
- isospin degrees of freedom \rightsquigarrow treat general nuclear systems
- different boundary conditions (e.g., antiperiodic)

Current status

method established for up to four particles handle large $N_{\text {DVR }}$ for three-body systems (current record: 32)
efficient symmetrization and antisymmetrization
projection onto cubic irreps. $\left(H \rightarrow H+\lambda\left(1-P_{\Gamma}\right), \lambda\right.$ large $)$

Work in progress

\checkmark chiral interactions (non-diagonal due to spin dependence!)

- application to few-neutron systems
- further optimization (especially for spin-dep. potentials)
\hookrightarrow need to reach decent $N_{\text {DVR }}$ for four-neutron calculation!
- isospin degrees of freedom \rightsquigarrow treat general nuclear systems
- different boundary conditions (e.g., antiperiodic)

