Few nucleons near unitarity

Sebastian König

GDR RESANET GT3 meeting
"Quelles sont les nouvelles frontières dans la description microscopique des noyaux?"

Saclay, France

November 13, 2018

SK, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, PRL 118 202501 (2017)
 SK, J Phys. G 44 064007 (2017)
 P. Klos, SK, J. Lynn, H.-W. Hammer, and A. Schwenk, PRC 98 034004 (2018)

Nuclear paradise

Nuclear paradise

Nuclear paradise?

- QCD = underlying theory of strong interaction
- **EFT** = effective description in terms of hadrons

$separation \ of \ scales + symmetries$

\hookrightarrow systematic expansion of observables

• <u>chiral EFT:</u> nucleons + pions, expand in $(Q \sim m_\pi)/M_{\rm QCD}$ Weinberg (90); Rho (91); Ordoñez+van Kolck (92); van Kolck (93); Epelbaum *et al.* (98); Entem+Machleidt (03); . . .

• LO triton not very good! e.g., $\sim 4~{\rm MeV}$ (LO) vs. $8.5~{\rm MeV}$ (exp.)

Nogga et al., PRC 72 054006 (2005)

Nuclear paradise?

chiral expansion

Universal trimers and tetramers

• **Efimov effect:** infinite tower of three-body states in unitarity limit

Efimov, PLB 33 563 (1970)

each state comes with two associated tetramers

Hammer+Platter, EPJA 32 13 (2007)

plus higher-body cluster states beyond that

von Stecher, JPB 43 101002 (2010); Gattobigio et al., PRA 84 052503 (2011)

Braaten+Hammer, Phys. Rept. 428 259 (2006)

• at unitarity: $B_4/B_3 \simeq 4.611$, $B_{4^*}/B_3 \simeq 1.002$

Deltuva, PRA 82 040701 (2010)

Universal trimers and tetramers

• **Efimov effect:** infinite tower of three-body states in unitarity limit

Efimov, PLB 33 563 (1970)

each state comes with two associated tetramers

Hammer+Platter, EPJA 32 13 (2007)

• plus higher-body cluster states beyond that

von Stecher, JPB 43 101002 (2010); Gattobigio et al., PRA 84 052503 (2011)

• at unitarity: $B_4/B_3 \simeq 4.611$, $B_{4*}/B_3 \simeq 1.002$

Deltuva, PRA 82 040701 (2010)

• in ${}^4{\rm He}$: ground state at $B_{\alpha}/B_H \simeq 3.66$, resonance at $B_{\alpha^*}/B_H \simeq 1.05$ (where $B_H = 7.72$)

New nuclear paradise

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

- shift focus away from two-body details
- zero-energy deuteron at LO and NLO
- physics in universality regime
 - discrete scale invariance as guiding principle (Efimov effect!)
 - near equivalence to bosonic clusters
 - exact $SU(4)_W$ symmetry at LO

```
Wigner, PR 51 106 (1937); Mehen et al., PRL 83 931 (1999); Bedaque et al., NPA 676 357 (2000)
                                                      Vanasse+Phillips, FB Syst. 58 26 (2017)
                                     cf. Kievsky+Gattobigio, EPJ Web Conf. 113 03001 (2016)
```

New nuclear paradise

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

- shift focus away from two-body details
- zero-energy deuteron at LO and NLO
- physics in universality regime
 - discrete scale invariance as guiding principle (Efimov effect!)
 - near equivalence to bosonic clusters
 - ullet exact $SU(4)_W$ symmetry at LO

Wigner, PR **51** 106 (1937); Mehen *et al.*, PRL **83** 931 (1999); Bedaque *et al.*, NPA **676** 357 (2000) Vanasse+Phillips, FB Syst. **58** 26 (2017)

cf. Kievsky+Gattobigio, EPJ Web Conf. 113 03001 (2016)

Conjecture

Nuclear sweet spot

$$1/a_{s,t} < Q_A < 1/R \sim m_{\pi}$$

$$Q_A \sim \sqrt{2M_N B_A/A}$$

van Kolck (2018)

describe strong force with **contact interactions** (cutoff $\Lambda \leadsto$ smearing)

$$C_0 = \underbrace{C_0^{(0)}}_{\text{leading order (LO)}} + C_0^{(1)} + \cdots$$

② fix $C_0^{(0)}$ to get $a = \infty$ for both NN S-wave channels $(s={}^1S_0, t={}^3S_1)$

describe strong force with **contact interactions** (cutoff $\Lambda \rightsquigarrow$ smearing)

$$C_0 = \underbrace{C_0^{(0)}}_{\text{leading order (LO)}} + C_0^{(1)} + \cdots$$

- ② fix $C_0^{(0)}$ to get $a = \infty$ for both NN S-wave channels $(s={}^1S_0, t={}^3S_1)$
- **3** fix Efimov spectrum to physical $B(^{3}\mathrm{H}) \leftrightarrow LO$ three-body contact

Bedaque et al., NPA 676 357 (2000)

use triton as "anchor" at each order

① describe strong force with **contact interactions** (cutoff $\Lambda \leadsto$ smearing)

$$C_0 = \underbrace{C_0^{(0)}}_{\text{leading order (LO)}} + C_0^{(1)} + \cdots$$

- ② fix $C_0^{(0)}$ to get $a=\infty$ for both $N\!N$ S-wave channels ($s{=}^1S_0$, $t{=}^3S_1$)
- **1** fix Efimov spectrum to physical $B(^3\mathrm{H})\leftrightarrow$ **LO three-body contact**

Bedaque et al., NPA 676 357 (2000)

use triton as "anchor" at each order

- include in perturbation theory:
- finite a, Coulomb
 - range effects
 - higher-order corrections

- amplitudes $T = T^{(0)} + T^{(1)} + \cdots$
- binding energies $B = B^{(0)} + B^{(1)} + \cdots$

Trinucleon energy difference

- at LO $^3\mathrm{H}$ and $^3\mathrm{He}$ are degenerate (exact isospin symmetry)
- ullet Coulomb correction enters together with $1/a_{s,pp}$ at NLO

	LO	NLO	exp.
$^{3}\mathrm{H}$	8.48	8.48	8.48
$^{3}\mathrm{He}$	8.48	7.6(2)	7.72

Range corrections

- unitarity and standard pionless expansions paired
- → range corrections enter at NLO
- however, treat $r_{s,np}=2.73~{
 m fm}
 eq r_{s,pp}=2.79~{
 m fm}$ as higher order SK et al. JPG 43 055106 (2016)
 - \hookrightarrow range corrections cancel at NLO in ΔE_3

Trinucleon energy difference

Various contributions at N²LO...

- quadratic scattering-length corrections
- 2 two-photon exchange
- **3** quadratic range corrections, isospin-breaking: $r_{s,pp} \neq r_{s,np}$
- 4 mixed Coulomb and range corrections!

- unitarity expansion converges well in three-nucleon sector √
- further test: ${}^{4}\mathrm{He}$, with $Q_{4} \sim 115~\mathrm{MeV}$
- good standard pionless LO description established previously

Platter et al., PLB 607 254 (2005); cf. also Platter, PhD thesis (2005) incomplete NLO (finite-a corr. only) remarkably close to LO with physical a

	LO	NLO	exp.
$^{3}\mathrm{H}$	8.48	8.48	8.48
$^4{ m He}$	39(12)	30(9)	28.30

- ullet unitarity expansion converges well in three-nucleon sector $oldsymbol{\checkmark}$
- further test: ${}^{4}\mathrm{He}$, with $Q_{4}\sim115~\mathrm{MeV}$
- good standard pionless LO description established previously

Platter et al., PLB 607 254 (2005); cf. also Platter, PhD thesis (2005) incomplete NLO (finite-a corr. only) remarkably close to LO with physical a

	LO	NLO	exp.
$^{3}\mathrm{H}$	8.48	8.48	8.48
$^4{ m He}$	39(12)	30(9)	28.30

⁴He monopole resonance

- ullet ⁴He resonance state $0.3~{
 m MeV}$ above ${
 m ^3H}$ + p threshold
- just below threshold at unitarity LO
- boson calculations with nuclear scales \rightsquigarrow shift by about $0.2-0.5~\mathrm{MeV}$

TUNL nuclear data

- unitarity expansion converges well in three-nucleon sector \checkmark
- further test: ${}^{4}\mathrm{He}$, with $Q_{4} \sim 115~\mathrm{MeV}$
- good standard pionless LO description established previously

incomplete NLO (finite-a corr. only) remarkably close to LO with physical a

	LO	NLO	exp.
$^{3}\mathrm{H}$	8.48	8.48	8.48
$^4{ m He}$	39(12)	30(9)	28.30

unitarity LO 60 B_a [MeV] 50 30 20 12 10 $B_T [MeV]$

Tion line

Tjon, PLB 56 217 (1975)

- ullet unitarity expansion converges well in three-nucleon sector $oldsymbol{\checkmark}$
- further test: ${}^{4}\mathrm{He}$, with $Q_{4}\sim115~\mathrm{MeV}$
- good standard pionless LO description established previously

Platter *et al.*, PLB **607** 254 (2005); *cf.* also Platter, PhD thesis (2005) **incomplete NLO**

incomplete NLO (finite-a corr. only) remarkably close to LO with physical a

	LO	NLO	exp.
$^{3}\mathrm{H}$	8.48	8.48	8.48
$^4{ m He}$	39(12)	30(9)	28.30

Tjon line

Tjon, PLB 56 217 (1975)

- ullet unitarity expansion converges well in three-nucleon sector $oldsymbol{\checkmark}$
- further test: ${}^{4}\mathrm{He}$, with $Q_{4}\sim115~\mathrm{MeV}$
- good standard pionless LO description established previously

Platter et al., PLB 607 254 (2005); cf. also Platter, PhD thesis (2005)

incomplete NLO (finite-a corr. only) remarkably close to LO with physical a

	LO		exp.
$^{3}\mathrm{H}$	8.48	8.48	8.48
⁴ He	8.48 39(12)	30(9)	28.30

Tjon line

Tjon, PLB 56 217 (1975)

Unitarity expansion summary

Novel approach to few-nucleon systems

SK et al., PRL **118** 202501 (2017) SK, JPG **44** 064007 (2017)

	LO	NLO*	N^2LO	exp.
$^{2}\mathrm{H}$	0	0	1.41	2.22
$^{3}\mathrm{H}$	8.48	8.48	8.48	8.48
$^{3}\mathrm{He}$	8.48	7.56		7.72
$^4{\rm He}$	38.86	29.50		28.30

 *) four-body: no Coulomb, zero-range NLO uncertainties: $0.2~{
m MeV}$ ($^3{
m He}$), $9~{
m MeV}$ ($^4{
m He}$)

Unitarity expansion summary

Novel approach to few-nucleon systems

SK et al., PRL **118** 202501 (2017) SK, JPG **44** 064007 (2017)

	LO	NLO*	N^2LO	exp.
$^2\mathrm{H}$	0	0	1.41	2.22
$^{3}\mathrm{H}$	8.48	8.48	8.48	8.48
$^{3}\mathrm{He}$	8.48	7.56		7.72
$^4{ m He}$	38.86	29.50		28.30

- $^*)$ four-body: no Coulomb, zero-range NLO uncertainties: $0.2~{
 m MeV}$ ($^3{
 m He}$), $9~{
 m MeV}$ ($^4{
 m He}$)
- emphasize three-body sector over two-body precision
- enhanced symmetry and only one parameter at leading order
- conjecture: unitarity expansion useful beyond four nucleons
 - supported by bosonic cluster results

Bazak + van Kolck, PRA 94 052502 (2016), Carlson et al., PRL 119 223002 (2017)

• Coester line from discrete scale invariance

van Kolck, Few-Body Syst. **58** 112 (2017)

Unitarity expansion summary

Novel approach to few-nucleon systems

SK et al., PRL **118** 202501 (2017) SK, JPG **44** 064007 (2017)

	LO	NLO*	N^2LO	exp.
$^{2}\mathrm{H}$	0	0	1.41	2.22
$^{3}\mathrm{H}$	8.48	8.48	8.48	8.48
$^{3}\mathrm{He}$	8.48	7.56		7.72
$^4{ m He}$	38.86	29.50		28.30

 $^*)$ four-body: no Coulomb, zero-range NLO uncertainties: $0.2~{\rm MeV}$ ($^3{\rm He}),~9~{\rm MeV}$ ($^4{\rm He})$

The great nuclear simplification

- EDFs constrained by unitarity
- saturation point from pionless-like model
- one-parameter description of He isotopes
- d- α universality (6 Li Phillips line)

Denis's talk earlier this morning

Kievsky et al., PRL 121 072701 (2018)

Fossez et al., arXiv:1806.02936

Lei et al., arXiv:1809.06351

Few-neutron systems

terra incognita at the doorstep...

Few-neutron systems

terra incognita at the doorstep...

neutron-neutron scattering length is large but not known very well!

$$a_{nn, {\sf exp}} = -16.1 \pm 0.4 \; {
m fm}$$
, $-18.7 \pm 0.7 \; {
m fm}$, $a_{nn, {\sf th}} = -22.9 \pm 4.1 \; {
m fm}$ Huhn et al., PRL **85** 1190 (2000), González et al., PRC **73** 034001 (2006); Phillips + Kirscher, PRC **84** 054004 (2011)

dineutron bound at large pion masses

Orginos et al. (NPLQCD) PRD 92 (2015); Yamazaki et al. (PACS) PoS LATTICE2015 081 (2016)

at phyiscal pion mass: not excluded by pionless EFT

Hammer + SK, PLB 736 208 (2014)

however, discouraged by deuteron muon capture data

Marcucci + Machleidt, PRC 90 054001 (2014)

Few-neutron systems

terra incognita at the doorstep...

recent indications for a three-neutron resonance...

Gandolfi et al., PRL 118 232501 (2017)

• ... although excluded by previous work

 $Offermann + Gl\"{o}ckle, NPA~\textbf{318},~138~(1979);~Lazauskas + Carbonell,~PRC~\textbf{71}~044004~(2005)$

possible experimental evidence for tetraneutron resonance

Kisamori et al., PRL 116 052501 (2016)

Conflicting theoretical tetraneutron results!

Hiyama et al., PRC 93 044004 (2016); Deltuva, PLB 782 238 (2018)

Shirokov et al. PRL 117 182502 ('16); Gandolfi et al., PRL 118 232501 ('17); Fossez et al., PRL 119 032501 ('17)

How to tackle resonances?

Resonances

- metastable states
- ullet decay width \leftrightarrow lifetime

- **1** Look for jump by π in scattering phase shift:
 - ✓ simple ✗ possibly ambiguous (background), need 2-cluster system

How to tackle resonances?

Resonances

- metastable states
- ullet decay width \leftrightarrow lifetime

- **1** Look for jump by π in scattering phase shift:
 - ✓ simple ✗ possibly ambiguous (background), need 2-cluster system

- Find complex poles in S-matrix:
 - e.g., Glöckle, PRC 18 564 (1978); Borasoy et al., PRC 74 055201 (2006); ...
 - √ direct, clear signature ✗ technically challenging, needs analytic pot.

How to tackle resonances?

Resonances

- metastable states
- ullet decay width \leftrightarrow lifetime

- **1** Look for jump by π in scattering phase shift:
 - ✓ simple ✗ possibly ambiguous (background), need 2-cluster system

- Find complex poles in S-matrix:
 - e.g., Glöckle, PRC 18 564 (1978); Borasoy et al., PRC 74 055201 (2006); ...

 V direct, clear signature X technically challenging, needs analytic pot.
- Out system into periodic box!

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- → volume-dependent energies

Lüscher formalism

Physical properties encoded in the *L*-dependent energy levels!

- infinite-volume S-matrix governs discrete finite-volume spectrum
- PBC natural for lattice calculations. . .
- ... but can also be implemented with other methods

Bound-state volume dependence

$$\hat{H} \left| \psi_B \right\rangle = -\frac{\kappa^2}{2\mu} \left| \psi_B \right\rangle$$

binding momentum κ

- for S-wave states, one finds $\Delta B(L) = -3\pi |\gamma|^2 \frac{\mathrm{e}^{-\kappa L}}{\mu L} + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L})$
- ullet in general, the prefactor is a polynomial in $1/\kappa L$

SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

Bound-state volume dependence

$$\hat{H} |\psi_B\rangle = -\frac{\kappa^2}{2\mu} |\psi_B\rangle$$

binding momentum κ

- for S-wave states, one finds $\Delta B(L) = -3\pi |\gamma|^2 \frac{\mathrm{e}^{-\kappa L}}{\mu L} + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L})$ Lüscher, Commun. Math. Phys. 104 177 (1986); ...
- in general, the prefactor is a polynomial in $1/\kappa L$ SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

General N-body result nearest breakup threshold determines volume dependence

$$\Delta B(L) \propto \exp\left(-\kappa_{A|N-A}L\right)/L^{(d-1)/2}$$

SK + Lee, PLB 779, 9 (2018)

$$\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N - B_A - B_{N-A})}$$

Lüscher formalism: phase shift ↔ box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
 , $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution \leadsto avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); ...

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta)$$
 , $\eta=\left(rac{Lp}{2\pi}
ight)^2$, $p=p(E(L))$

resonance contribution \rightsquigarrow avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); .

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
 , $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B **354** 531 (1991);

resonance contribution → avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); .

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
 , $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

resonance contribution \rightsquigarrow avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); ...

Lüscher, Nucl. Phys. B 354 531 (1991):

Discrete variable representation

Needed: calculation of <u>several</u> few-body energy levels

difficult to achieve with QMC methods

- Klos et al., PRC 94 054005 (2016)
- direct discretization possible, but not very efficient

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix sparse (in d > 1)...
- ... or implemented via Fast Fourier Transform

periodic boundary condistions ↔ plane waves as starting point

Three-body check

Study established three-body resonance from literature:

Fedorov et al., Few-Body Syst. P 33 153 (2003); Blandon et al., PRA 75 042508 (2007)

$$V(r) = V_0 \exp\left(-\left(\frac{r}{R_0}\right)^2\right) + V_1 \exp\left(-\left(\frac{r-a}{R_1}\right)^2\right)$$

$$V_0 = -55 \text{ MeV}, V_1 = 1.5 \text{ MeV}, R_0 = \sqrt{5} \text{ fm}, R_1 = 10 \text{ fm}, a = 5 \text{ fm}$$

- ullet three spinless bosons with mass $m=939.0~{
 m MeV}$
- three-body resonance at -5.31 i0.12 MeV (Blandon et al.), -5.96 i0.40 MeV (Fedorov et al.)

• fit inflection point(s) to extract resonance energy $\leadsto E_R = -5.32(1) \ \mathrm{MeV}$

- shifted Gaussian 2-body potential
- note: no 2-body bound state!

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

three-boson system

- shifted Gaussian 2-body potential
- note: no 2-body bound state!
- add short-range 3-body force

 \hookrightarrow possible to move three-body state \leftrightarrow spatially localized wf.

Current status

- ✓ method established for up to four particles
- \checkmark handle large N_{DVR} for three-body systems (current record: 32)
- ✓ efficient symmetrization and antisymmetrization
- ✓ projection onto cubic irreps. $(H \to H + \lambda(1 P_{\Gamma}), \lambda \text{ large})$

Current status

- ✓ method established for up to four particles
- \checkmark handle large N_{DVR} for three-body systems (current record: 32)
- ✓ efficient symmetrization and antisymmetrization
- ✓ projection onto cubic irreps. $(H \to H + \lambda(1 P_{\Gamma}), \lambda \text{ large})$

Work in progress

- ✓ **chiral interactions** (non-diagonal due to spin dependence!)
 - application to few-neutron systems
 - further optimization (especially for spin-dep. potentials)
 - \hookrightarrow need to reach decent N_{DVR} for four-neutron calculation!
 - isospin degrees of freedom → treat general nuclear systems
 - different boundary conditions (e.g., antiperiodic)

Current status

- ✓ method established for up to four particles
- \checkmark handle large N_{DVR} for three-body systems (current record: 32)
- ✓ efficient symmetrization and antisymmetrization
- ✓ projection onto cubic irreps. $(H \to H + \lambda(1 P_{\Gamma}), \lambda \text{ large})$

Work in progress

- ✓ chiral interactions (non-diagonal due to spin dependence!)
 - application to few-neutron systems
 - further optimization (especially for spin-dep. potentials)
 - \hookrightarrow need to reach decent N_{DVR} for four-neutron calculation!
 - isospin degrees of freedom → treat general nuclear systems
 - different boundary conditions (e.g., antiperiodic)

*** Thank you! ***