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The Skyrme energy density functional at NLO

In Skyrme-EDF jargon, NLO means ”next-to-leading order in gradients”, i.e. the terms in the EDF
contain zero (LO) or two (NLO) gradients. There are efforts to construct extended EDFs with four
(N2LO) and six (N3LO) gradients. There is no reason to expect that this refers to a strict hierarchy
in physical relevance, but it nevertheless refers a hierarchy in computational complexity.

E = Ekin + ESkyrme + ECoul + Epair + Ecorr

ESkyrme =

∫
d3r
∑
t=0,1

+t∑
t3=−t

{
Cρρt [ρ0]ρtt3 ρt −t3

+ Cρτt (ρtt3 τ t −t3 − jtt3 · jt −t3
)

+ Cρ∆ρ
t ρtt3 ∆ρt −t3

+ C ss
t [ρ0]stt3 · st −t3 + C s∆s

t stt3 ·∆st −t3

+ C sT
t

(
stt3 · Tt −t3 −

∑
µ,ν=x,y,z

Jµν;tt3Jµν;t −t3

)
+ Cρ∇J

t

(
ρtt3∇ · Jt −t3 + stt3 · ∇ × jt −t3

)
+ C sF

t

(
stt3 · Ft −t3 −

1
2

∑
µ,ν=x,y,z

Jµν;tt3Jνµ;t −t3 −
1
2

∑
µ,ν=x,y,z

Jµµ;tt3Jνν;t −t3

)

+ C∇s∇s
t

(
∇ · stt3

)(
∇ · st−t3

)}
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Local densities

ρq(r) = ρq(r, r′)
∣∣
r=r′

,

τq(r) = ∇ · ∇′ ρq(r, r′)
∣∣
r=r′

,

Jq,µν(r) = − i
2

(
∇µ −∇′µ

)
sq,ν(r, r′)

∣∣
r=r′

,

sq(r) = sq(r, r′)
∣∣
r=r′

,

Tq(r) = ∇ ·∇′ sq(r, r′)
∣∣
r=r′

,

Fq,µ(r) = 1
2

∑
ν

(∇µ · ∇′ν +∇ν · ∇′µ) sq,ν(r, r′)
∣∣
r=r′

,

jq(r) = − i
2

(
∇µ −∇′µ

)
ρq(r, r′)

∣∣
r=r′

.
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Energy functional from a ”density-dependent Skyrme force”

ESkyrme = 〈HF|t̂ + v̂ central + v̂LS + v̂ tensor|HF〉

central

v̂ central = t0 (1 + x0P̂σ) δ + 1
6
t3 (1 + x3P̂σ) ρα δ

+ 1
2
t1 (1 + x1P̂σ)

(
k̂
′2
δ + δ k̂

2)
+t2 (1 + x2P̂σ) k̂

′ · δ k̂

+ 1
6
t3 (1 + x3P̂σ) ρα0 δ

spin-orbit

v̂LS = iW0 (σ̂1 + σ̂2) · k̂′ × δ k̂

tensor

v̂ tensor = 1
2
te
{[

3(σ̂1 · k̂
′
)(σ̂2 · k̂

′
)− (σ̂1 · σ̂2) (k̂

′
)2
]
δ

+ δ
[
3(σ̂1 · k̂)(σ̂2 · k̂)− (σ̂1 · σ̂2) (k̂)2

]}
+ 1

2
to
{[

3(σ̂1 · k̂
′
) δ (σ̂2 · k̂) + 3(σ̂2 · k̂

′
) δ (σ̂1 · k̂)− 2(σ̂1 · σ̂2) k̂

′ · k̂
] }
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The Gogny EDF

The force

v =
2∑

i=1

[
Wi + Bi P̂σ − Hi P̂τ −Mi P̂σP̂τ

]
e−r2/µ2

i

+ t0 (1 + x0P̂σ) ρα(R) δ(r)

+ iWLS

(
σ̂1 + σ̂2

)
· k̂′ × δ(r)k̂

The functional

E =

∫
d3r

∫
d3r′

∑
t=0,1

2∑
i=1

e−(r−r′)2/µ2
i

[
Aρρit ρt(r) ρt(r

′) + Ass
it st(r) · st(r′)

+ Bρρit ρt(r, r
′) ρt(r

′, r) + B ss
it st(r, r

′) · st(r′, r)
]

+

∫
d3r

∑
t=0,1

[
Cρρt [ρ0] ρtρt + C ss

t [ρ0] st · st + Cρ∇J
t

(
ρt∇ · Jt + jt ·∇× st

)]
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A bilinear EDF is not enough I

Weisskopf [NP3 (1957) 423] pointed out that any pure two-body interaction
(irrespective of its form) fitted to reproduce (at the mean-field level) the empirical
values for ρsat and E/A of homogeneous symmetric and spin-symmetric infinite
nuclear matter necessarily leads to m∗0/m ≈ 0.4, which is incompatible with
empirical data. For a modern analysis see [Davesne, Navarro, Meyer, Bennaceur,
Pastore, PRC 97 (2018) 044304].

⇒ need for higher-order terms in the density matrix when aiming at a description of
nuclear properties (at the mean-field level with effective interactions built for that
purpose). But what kind of terms is missing that describes which physics phenomenon?
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A bilinear EDF is not enough I

There are many indications that there are genuine three-body (and four-body, . . . ) forces
acting in nuclear many-body systems.

From a modern point of view, any attempt to renormalize the ”bare” NN and NNN
interaction to an effective interaction acting only below a given cutoff scale necessarily leads
to induced three-body (and higher many-body) forces. Nuclear EDFs are not (yet)
constructed this way, but the in can be expected that many-body forces find their way into
it.

Any approach that is ”beyond the mean field” in a diagrammatic sense leads in one way or
the other to a kF dependence of the total binding energy (and in principle also an energy
dependence, but that is irrelevant for the present discussion).

In particular, the Brueckner-HF formalism when applied to infinite nuclear matter yields a
kF -dependent G matrix, which in local density approximation (LDA) can be translated into

a density-dependent effective in-medium interaction via the relation kF = ( 3
2
π2ρ)1/3 for the

Fermi energy in homogeneous symmetric and spin-symmetric infinite nuclear matter
[Köhler, NPA258 (1976) 301].

The density-matrix expansion (DME) of exchange terms of finite-range interactions leads
either to complicated density dependences of the resulting effective interaction for Hartree
calculations [Negele & Vautherin, PRC5 (1972) 1472; PRC11 (1975) 1031; Gebremariam,
Duguet, Bogner, PRC 82(2010) 014305; NPA851 (2011) 17; Stoitsov et al, PRC82 (2010)
054307] or higher-order momentum dependences [Carlsson & Dobaczewski, PRL105 (2010)
122501].
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Density dependence vs. three-body force I

Skyrme’s simple gradientless contact three-body force

v3b = u0

(
δ̂r1r3 δ̂r2r3 + δ̂r3r2 δ̂r1r2 + δ̂r2r1 δ̂r3r1

)
. (1)

In the absence of proton-neutron mixing, the EDF reads

E3b = 3
4
u0

∫
d3r

[
ρn
(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)

+ ρp
(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)]

(2)

The absence of contributions that are trilinear in the same isospin is a consequence of the
Pauli principle: a gradientless contact force only acts between nucleons in relative s waves,
meaning here two nucleons of same isospin but opposite spin and a third nucleon of
opposite isospin and arbitrary spin [Waroquier et al, PRC 13 (1976) 1664].

Gradientful contact three-body forces were considered later [Liu, PLBB60, 9 (1975); Onishi
and Negele NPA301, 336 (1978); Waroquier et al, PRC 19 (1979) 1983, NPA404 (1983)
269, NPA404 (1983) 298; Arima et al, NPA459 (1986) 286; Zheng et al, AP201 (1990)
342; Liu et al, NPA534 (1991) 1, NPA534 (1991) 58; Sadoudi, Duguet, Meyer, Bender,
PRC88 (2013) 064326].

A gradientless contact three-body force fails to provide realistic K∞, leads to repulsive
pairing matrix elements [Zamick, Proc. Int. Conf. on Nuclear Structure and Spectroscopy,
Amsterdam (1974), p. 24; Arima, NPA354 (1981) 19c] and leads to a spin-instability
signalled by the Landau parameter g0 < −1 [Chang PLB56 (1975) 205; Bäckman, Jackson,
Speth, PLB 56 (1975) 209; Passler, NPA 257 (1976) 253; Stringari, Leoardi, Brink, NPA
269 (1976) 87]. The last problem disappears when re-interpreting the 3-body force as a
density-dependent 2-body force.
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Density dependence vs. three-body force II

A density dependent two-body force is obtained multiplying Skyrme’s t0 term by
1
3

[
ρn(R) + ρp(R)

]
, where P̂σ is the spin exchange operator and R ≡ 1

2
(r + r′) the mean

position of the two nucleons

v2b,dd :l = 1
3
t3

(
1 + x3P̂σ

) [
ρn(R) + ρp(R)

]
δ̂r1r2 (3)

The corresponding EDF reads

Et3 =

∫
d3r

{
1

12
t3

(
1− x3

)[(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)
ρn +

(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)
ρp
]

+ 1
12
t3

(
1− x3

)[(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)
ρp +

(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)
ρn
]

+ 1
6
t3

(
1 + x3

2

)(
ρ2
n ρp + ρn ρ

2
p

)
+ 1

12
t3

(
ρnsn · sp + sn · spρp

)}
(4)

Terms in red have the structure of those from a genuine three-body force (2).

Terms in blue and purple have an isospin structure that is not obtained from a genuine
three-body force (2). Choosing x3 = +1 in order to suppress the term in blue also sets the
desired term in red to zero. The term in purple can only be set to zero by setting t3 = 0, a
choice which sets all terms to zero.

The expression in brown has the correct isospin structure for the time-even terms, but has
no spin or pairing terms it can correctly combine with.

Altogether, a gradientless three-body contact force cannot be exactly mapped onto a
density-dependent gradientless contact two-body force, which is not unexpected.
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Density dependence vs. three-body force III

To get rid of the pairing terms and to obtain the same energy in a time-reversal invariant
system (sq = 0) requires x3 = +1

Et3,x3=1 =

∫
d3r

{
3

12
t3

(
ρ2
n ρp + ρn ρ

2
p

)
+ 1

12
t3

(
ρnsn · sp + sn · spρp

)}
. (5)

which evidently differs from the expression from a true three-body force (2)

E3b = 3
4
u0

∫
d3r

[
ρn
(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)

+ ρp
(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)]

From a phenomenological point of view this has been excellent news. Following the
suggestion of Vautherin and Brink [PRC5 (1972) 626] to re-interpret the three-body force of
early parameterisations like SIII as a density-dependent two-body force that gives the same
result for time-reversal-conserving HF states, the difference in spin structure between (2)
and (5) suppresses the (Landau type) spin-instability of these parameterisations.
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Density dependence vs. three-body force IV

However, as results for homogeneous isotropic spin-saturated infinite matter are not
affected, the incompressibility K∞ remains non-physically high.
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Density dependence vs. three-body force V

The incompressibility can be lowered to its empirical value by taking a fractional power
α < 1/n of the density entering the density dependence

[
ρn(R) + ρp(R)

]α
of the coupling

constant, as can be motivated by the structure of the expression for the Brueckner G matrix
[Köhler, NPA258 (1976) 301]

v2b,dd = 1
3
t3

(
1 + x3P̂σ

) [
ρn(R) + ρp(R)

]α
δ̂r1r2 (6)

which leads to the EDF

Et3 =

∫
d3r

{
1

12
t3

(
1− x3

)[(
ρ2
n − s2

n + ρ̃∗n ρ̃n
)

+
(
ρ2
p − s2

p + ρ̃∗p ρ̃p
)]

(ρn + ρp)α

+ 1
6
t3

(
1 + x3

2

)
ρn ρp

(
ρn + ρp

)α
+ 1

12
t3sn · sp

(
ρn + ρp

)α]
. (7)

Köhler’s Ska and Skb with α = 1/3, SkM has α = 1/6 [Krivine et al, NPA336 (1980) 155].

Such density dependence with α = 1/3 has also always been used with the Gogny force
making the additional choice x3 = +1 in order to suppress the divergence of the contact
pairing terms when solving HFB equations.

For all widely-used standard Skyrme parameterisations, only the coupling constant of the
gradientless two-body term is chosen to be density dependent. Extensions tried concern
density-dependences of gradient terms [Krewald et al, NPA281 (1977) 166; Farine et al,
NPA696 (2001) 396; Chamel et al, PRC80 (2009) 065804] using two density dependences
[Farine et al, NPA696 (2001) 396; Cochet et al, NPA731(2004) 34; Lesinski et al, PRC74
(2006) 044315] density-dependence with different isospin structure [Dutta et al, NPA458
(1986) 77] and different forms [Erler et al, PR82 (2010) 044307].
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Density dependence vs. three-body force I

Unfortunately, practitioners of nuclear EDF methods did not live happily ever after.
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Self-interactions from density-dependent terms

Self-interaction in a nut-shell:

A many-body system shall not gain binding through the interaction of a given article
with itself.
early papers by Hartree and Fock
Stringari and Brink, NPA 304, 307 (1978)
Perdew and Zunger, PRB 23, 5048 (1981)
Lacroix, Duguet, and Bender, PRC 79, 044318 (2009); Bender, Duguet, and Lacroix, PRC 79, 044319 (2009)

The interaction part of the EDF has to vanish in the one-body limit

lim
A→1
E → Ekin ⇔ lim

A→1
ESkyrme → 0

Similarly, the 3-body contribution to the EDF has to vanish in the 2-body limit

Automatically fulfilled for HF-expectation values of true operators

Similar concept (”self-pairing”) for paired systems: ”A correlated pair shall not gain
energy by pair-interaction with itself”, automatically fulfilled for HFB-expectation
values of true operators
Bender, Duguet, Lacroix, PRC 79, 044319 (2009)
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Functionals corresponding to “true Hamiltonians” vs. “general” functionals

True contact pseudo-potential t0 (1 + x0P̂σ) δ(r − r′)

E =

∫
d3r

{
3
8
t0 ρ

2
0(r)− 1

8
t0 (1 + 2x0) ρ2

1(r)− 1
8
t0 (1− 2x0) s2

0(r)

− 1
8
t0 s

2
1(r) + 1

8
t0 (1 + x0) s̆0(r) · s̆∗0 (r) + 1

8
t0 (1− x0) ρ̆1(r) ρ̆∗1 (r)

}
(see Perlinska et al. PRC 69 (2004) 014316 for definition of s̆0(r) and ρ̆1(r))

Functional with contact vertices:

E =

∫
d3r

{
Cρ0 [ρ0, . . .] ρ

2
0(r) + Cρ1 [ρ0, . . .] ρ

2
1(r) + C s

0 [ρ0, . . .] s
2
0(r)

+C s
1 [ρ0, . . .] s

2
1(r) + C s̆

0 [ρ0, . . .] s̆0(r) · s̆∗0 (r) + C ρ̆1 [ρ0, . . .] ρ̆1(r) ρ̆∗1 (r)
}

Coulomb interaction e2

|r−r′|

E =
1

2

∫∫
d3r d3r ′

e2

|r − r′|

[
ρp(r)ρp(r′)− ρp(r, r′)ρp(r′, r) + κ∗p(r, r′)κp(r, r′)

]
Approximate Coulomb functionals

E =
e2

2

∫∫
d3r d3r ′

ρp(r)ρp(r′)

|r − r′| −
3e2

4

(
3

π

)1/3∫
d3rρ4/3

p (r)
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Functionals corresponding to “true Hamiltonians” vs. “general” functionals
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Self-interactions from density-dependent terms

TARPANOV, TOIVANEN, DOBACZEWSKI, AND CARLSSON PHYSICAL REVIEW C 89, 014307 (2014)

energies in even and odd systems. Inserting the odd-system
density matrices (2) into the odd-system energy (1b), we obtain

EA±1 = EA ± tλλ +
∑

ii ′

ti ′iδρii ′ + 1
2
v̄λλλλ

+ 1
2

∑

ii ′kk′

δρi ′i v̄ik′i ′kδρkk′ ±
1
2

∑

ii ′

ρA
i ′i v̄iλi ′λ

± 1
2

∑

kk′

v̄λk′λkρ
A
kk′ ±

1
2

∑

ii ′

δρi ′i v̄iλi ′λ

± 1
2

∑

kk′

v̄λk′λkδρkk′ + 1
2

∑

ii ′kk′

ρA
i ′i v̄ik′i ′kδρkk′

+ 1
2

∑

ii ′kk′

δρi ′i v̄ik′i ′kρ
A
kk′ . (16)

We now use the following facts and definitions:

hA
i ′i = ti ′i +

∑

kk′

v̄i ′k′ikρ
A
kk′, (17a)

eλ = hA
λλ, (17b)

0 = v̄λλλλ, (17c)

hλ
i ′i = v̄i ′λiλ, (17d)

δhi ′i =
∑

kk′

v̄i ′k′ikδρkk′ . (17e)

Equation (17a) is the standard definition of the HF mean
field in the A-particle system and eλ (17b) is its diagonal matrix
element in the self-consistent basis. Equation (17c) is a simple
consequence of the antisymmetry of the two-body matrix
elements and represents the fact that in the HF approximation
there is no self-interaction (SI). Equations (17d) and (17e)
define the mean-field potentials generated by the polarizing
state λ and correction δρ, respectively. In terms of these
definitions, the odd-system energy can be written as

EA±1 = EA ± eλ +
∑

ii ′

hA
i ′iδρii ′

±
∑

ii ′

hλ
i ′iδρii ′ + 1

2

∑

ii ′

δhi ′iδρii ′ . (18)

Up to now, expression (18) is exact. To simplify it, we
can use the small-amplitude expansion (9) and thus conditions
(12), and neglect terms beyond second order. In the basis of
particle and hole states, the mean-field Hamiltonian hA

i ′i is by
definition diagonal; therefore, owing to Eqs. (12), the third
term on the right-hand side is of the second order in δρ(1).
Similarly, the fifth term is obviously of the second order too.
However, unless we assume that hλ is small (of the first order),
the fourth term may contain subleading second-order terms,
including the pp and hh matrix elements of δρ(2), which do
not appear in the standard RPA method. Therefore, to have a
consistent RPA-type second-order expression for the energy
of the A ± 1 system, we must make the assumption of hλ

being small as compared to hA. This assumption can also be

understood as ρλ being small as compared to ρA, that is, the
system being appropriately heavy.

In fact, such an assumption can partially be tested by
keeping the leading-order (second-order) pp′ and hh′ matrix
elements of the fourth term, which depend on the leading-
order (first-order) matrix elements of δρ. Then we obtain the
following approximate expression:

EA±1 = EA ± eλ +
∑

ph

(ep − eh)δρphδρhp

+ 1
2

∑

ph

δhphδρhp + 1
2

∑

ph

δhhpδρph

±
∑

pp′h

hλ
p′pδρphδρhp′ ∓

∑

hh′p

hλ
h′hδρhpδρph′

±
∑

ph

hλ
phδρhp ±

∑

ph

hλ
hpδρph. (19)

This can be summarized in the form of polarization corrections
to energies of odd states δE,

EA±1 = EA ± eλ + δE, (20)

or polarization corrections to s.p. energies δeλ,

EA±1 = EA ± (eλ + δeλ), (21)

for

δE = ±δeλ = 1
2

(δρ∗, δρ)
(

A′ B
B∗ A′∗

) (
δρ
δρ∗

)

± (δρ∗, δρ)
(

hλ

hλ∗

)
, (22)

where δρ and hλ represent vectors of ph matrix elements, δρph
and hλ

ph, respectively; that is,

hλ
ph = v̄pλhλ, (23a)

hλ∗
ph = hλ

hp = v̄hλpλ, (23b)

and matrices A′ and B,

A′
p′h′,ph = Ap′h′,ph ± hλ

p′pδh′h ∓ hλ
hh′δpp′ , (24a)

Ap′h′,ph = (ep − eh)δpp′δhh′ + v̄hp′ph′ , (24b)

Bp′h′,ph = v̄pp′hh′ , (24c)

build the RPA matrix (A′ B
B∗ A′∗).

We see that the second-order terms depending on hλ, which
we have kept in Eq. (19), lead to modified matrix elements
A′

p′h′,ph, as compared to the standard RPA matrix Ap′h′,ph. In this
formulation, the RPA equations do depend on the polarizing
state λ. In Sec. III, we perform numerical calculations with
and without these terms, and we check that they play a minor
role and can be safely omitted, thus supporting the validity of
the assumption about the smallness of hλ.

3. Equation for δρ

Equation for the correction δρ can be derived from the fact
that the density matrix of Eq. (2) is a self-consistent solution
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systems, unless we make the simplifying assumption that
v̄[ρA±1] and v̄[ρA] can be connected by a second-order
expansion in ρA±1 − ρA. From Eq. (2) we see again that this
requires ρλ to be of the same (first) order as δρ. Under this
assumption, we have

v̄i ′k′ik[ρA±1]

# v̄i ′k′ik[ρA] ±
∑

mn

∂ v̄i ′k′ik

∂ρmn

(
ρλ

mn ± δρmn

)

+ 1
2

∑

m′n′mn

∂2v̄i ′k′ik

∂ρmn∂ρm′n′

(
ρλ

mn ± δρmn

) (
ρλ

m′n′ ± δρm′n′
)
,

(39)

where all partial derivatives must be evaluated at ρ ≡ ρA.
We can now insert Eqs. (2) and (39) into the odd-system

energy (38b) and obtain up to the second order in ±ρλ + δρ,

EA±1 = EA + Trh̃A(±ρλ + δρ)

+ 1
2 Tr1Tr2(±ρλ + δρ) ˜̃v(±ρλ + δρ), (40)

where the mean-field Hamiltonian h̃A,

h̃A
i ′i = ti ′i +

∑

kk′

ṽi ′k′ikρ
A
kk′, (41)

and effective two-body matrix elements, ṽi ′k′ik and ˜̃vi ′k′ik ,
contain rearrangement terms,

ṽi ′k′ik = v̄i ′k′ik + 1
2

∑

j ′j

∂ v̄j ′k′jk

∂ρii ′
ρA

jj ′ , (42a)

˜̃vi ′k′ik = v̄i ′k′ik +
∑

j ′j

(
∂ v̄j ′k′jk

∂ρii ′
+ ∂ v̄j ′i ′ji

∂ρkk′

)
ρA

jj ′

+ 1
2

∑

j ′m′jm

∂2v̄j ′m′jm

∂ρii ′∂ρkk′
ρA

jj ′ρ
A
mm′ . (42b)

The redefined two-body matrix elements allow us to write
the odd-system energy in the form analogous to Eq. (18),

EA±1 = EA ± eλ +
∑

ii ′

h̃A
i ′iδρii ′ +

1
2

˜̃hλ
λλ

±
∑

ii ′

˜̃hλ
i ′iδρii ′ + 1

2

∑

ii ′

δ ˜̃hi ′iδρii ′ , (43)

but with the following redefinitions,

eλ = h̃A
λλ (44a)

˜̃hλ
λλ = ˜̃vλλλλ, (44b)

˜̃hλ
i ′i = ˜̃vi ′λiλ, (44c)

δ ˜̃hi ′i =
∑

kk′

˜̃vi ′k′ikδρkk′ . (44d)

We see that the first-order rearrangement terms (42a)
become fully absorbed in the s.p. energies, which are now, as
usual, the eigenvalues of mean fields h̃A. Moreover, both the
polarizing fields ˜̃hλ and RPA matrices A and B [see Eqs. (23)

and (24)] must now be determined using the second-order
rearrangement terms (42b). Therefore, owing to the fact
that the effective two-body matrix elements (42a) are not
antisymmetric, the SI term (44b),

Eλ
SI = 1

2
˜̃hλ
λλ, (45)

is nonzero, and explicitly appears in Eq. (43). This leads to
corrections to s.p. energies now having the form,

δeλ = ±δE = ±
(
δEλ

SIF + Eλ
SI

)
, (46)

where, based on the analogy with Eq. (37), the first term can
be called self-interaction-free (SIF) polarization correction,

δEλ
SIF = −

∑

ω>0

∣∣∑
ph

˜̃hλ∗
phX

ω
ph + ˜̃hλ

phY
ω
ph

∣∣2

!ω
. (47)

The second-order mean fields ˜̃hλ
i ′i (44c) and δ ˜̃hi ′i (44d) are

simply related to the linearized first-order mean fields; that is,

˜̃hλ
i ′i =

∑

k′k

∂h̃i ′i

∂ρk′k

∣∣∣∣∣∣
ρ=ρA

ρλ
k′k, (48a)

δ ˜̃hi ′i =
∑

k′k

∂h̃i ′i

∂ρk′k

∣∣∣∣∣∣
ρ=ρA

δρk′k. (48b)

These expressions can be explicitly verified directly from
definitions (42). They are extremely useful in practical
applications because (i) the second-order mean fields (48a)
that define the polarization vertex (47) can be determined
without explicitly calculating the second derivatives of matrix
elements, (ii) the amplitude mean fields (48b) are the only
objects that one has to calculate when using the iterative
methods to solve the RPA equations [37], and (iii) exactly
the same piece of code can be used to calculate both mean
fields (48a) and (48b).

1. The self-interaction

The SI term (45), where a particle interacts with the mean
field generated by itself, is unphysical, because, in reality,
each nucleon should interact with the other nucleons only. As
discussed in Sec. II A 2, for an EDF generated by Hamiltonian,
no SI appears. However, EDFs generated by density-dependent
interactions do produce the SI.

An EDF has a one-body SI if it gives nonzero energy for a
single nucleon state. This was discussed in Ref. [35], where it
has been shown how the one-body SI of a Skyrme EDF can be
removed by introducing extra constraints between the Skyrme
coupling constants. We note here that in our approach there
is no SI of this type, because we use the so-called “native”
time-odd terms [27], that is, those originating from the mean-
field averaging of the Skyrme force. In general, the SI results
from the violation of the antisymmetry of effective matrix
elements (42b); that is, the SI studied here originates from the
density dependence of the Skyrme force. Another source of the
SI is the mismatch between the ph and the pp matrix elements
of the interaction; see Eq. (68) below.
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low energies [14]. However, assuming the above assumptions
are fulfilled, the equivalence of the HF(B) and (Q)RPA
polarization corrections is obtained only when all phonons
are included, irrespective of their collectivity or energy. This
is because, when deriving the SIF corrections of Eqs. (47)
or (76), the exact (Q)RPA completeness relations must be used.
In addition, the same equivalence guarantees the convergence
of sums in Eqs. (47) or (76); indeed, with the increasing phase
space, owing to the variational principle, the HF(B) energies
must converge, and thus the (Q)RPA polarization corrections
must converge too.

III. RESULTS

All calculations presented in this section aim at comparing
self-consistent results obtained using the deformed solver
HFODD (v2.52k) [46], with RPA and QRPA solutions im-
plemented in the spherical solver HOSPHE [47]. We used the
configuration space that includes all harmonic-oscillator shells
up to N0 = 15.

A. RPA calculations in 100Sn for the Skyrme EDF SV

We begin the presentation by showing examples of calcu-
lations performed for the case of an exact HF approximation,
as discussed in Sec. II A. To this end, we employed the
density-independent Skyrme interaction SV [48] and we
analyzed results only for neutrons, so as to avoid effects
of density-dependent Slater approximation for the Coulomb
exchange term. On the one hand, to treat the EDF SV as fully
generated by an interaction, we included in the functional
all tensor terms, that is, those given by the square of the
spin-orbit density J2, which were originally neglected [48].
Also the so-called “native” time-odd terms [27], that is, those
originating from the mean-field averaging of the Skyrme force,
were all included. On the other hand, as mentioned in Sec. II A,
we neglected the so-called center-of-mass correction to the
kinetic energy.

In Fig. 1 we test Eq. (21); that is, we compare polarization
corrections,

δeλ = ±(EA±1 − EA) − eλ, (80)

FIG. 1. (Color online) Comparison of polarization corrections of
selected orbitals in 100Sn, determined using the HF and RPA methods
and Skyrme EDF SV [48]; see text. Lines connect the values obtained
for different projections of the angular momentum |mλ| = 1

2 , . . . ,jλ

(from left to right).

FIG. 2. (Color online) Polarization corrections of |mλ| = jλ or-
bitals in 100Sn, determined by not including (left bars) and including
(right bars) the orbital-dependent terms in the RPA matrices; see text.
The order of orbitals is the same as shown in Fig. 1. Contributions
coming from four RPA channels J π = 0+, 1+, 2+, and 3+ are shown
separately (note very different scales).

obtained from the HF energies of odd and even systems, EA±1

and EA, and HF s.p. energies, eλ, with those determined form
the RPA solutions [Eq. (37)]. Apart from a few cases, the
obtained agreement is nearly perfect. This result is particu-
larly gratifying, because it confirms not only the analytical
derivations presented in Sec. II A and the Appendix, but also
the validity of two completely independent numerical codes.

At this point, we must discuss one important aspect of the
HF calculations in odd nuclei. In principle, for any given value
of mλ, there may exist two solutions: one with prolate and
another one with oblate shape. Usually only the lowest one
can be converged; the other one, being excited, either does not
converge or falls down to the lowest one. In our calculations,
in full agreement with the standard Nilsson diagram [32], we
obtain converged prolate (oblate) solutions for low-mλ (high-
mλ) particle states, and vice versa for the hole states. We
note here that we did not constrain these solutions to axial
symmetry; nevertheless, stable triaxial solutions were never
obtained.

FIG. 3. (Color online) Contributions to polarization corrections
of |mλ| = jλ orbitals in 100Sn, coming from different J π RPA
channels, determined for the Skyrme EDF SV [48]. The order of
orbitals is the same as shown in Fig. 1. Contributions are ordered
according to the value of J , with the 0+ channels shown nearest the
abscissa.
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FIG. 4. (Color online) Same as in Fig. 3, but for the |mλ| = 1
2

orbitals.

Next we tested the assumption, discussed in Sec. II A,
related to the smallness of terms ρλ and hλ with respect to the
small-amplitude expansion. In Fig. 2, we compare polarization
corrections determined using the standard RPA matrices (24b)
with those containing the orbital-dependent terms (24a).
Because both sets of results are almost identical, we conclude
that in medium-heavy nuclei like 100Sn, the orbital-dependent
terms can be safely ignored. This significantly simplifies the
calculations because a single common solution of the RPA
equation can then be used to determine polarization corrections
for all orbitals.

In Fig. 3, we show polarization corrections of the |mλ| = jλ

orbitals in 100Sn, split into contributions from different J π

RPA channels. First we note that the geometric constraints in
Eq. (A16) limit the polarizations of jλ orbitals to channels with
J ! 2jλ. As expected, the largest contributions come from the
coupling to the quadrupole channel 2+; however, the monopole
0+ and dipole 1+ channels also significantly contribute. For
higher-jλ orbitals, channels 3+ and 4+ show some effect,
whereas channels with J > 4 can be safely neglected. For the
|mλ| = 1

2 orbitals shown in Fig. 4, the convergence is slightly
slower, but still all terms with J > 5 contribute very little.

B. RPA calculations in 100Sn for the Skyrme EDF SLy5

We now proceed to discuss the problem of SI energies
in the EDF calculations, presented in Sec. II B. To this

FIG. 5. (Color online) Same as in Fig. 1, but for the Skyrme EDF
SLy5 [49]. The RPA results correspond to the SIF terms in Eq. (46),
whereas RPA + SI denotes both SIF and SI contributions combined.

FIG. 6. (Color online) The SIF and SI contributions to the polar-
ization corrections of Eq. (46), calculated in 100Sn for the Skyrme
EDF SLy5.

end, we repeated the self-consistent calculations presented in
Sec. III A by employing the Skyrme EDF SLy5 [49]. This is a
standard Skyrme parametrization containing a strong density-
dependent term, for which we can study the SI energies, as
defined in Eq. (45). As before, the “native” time-odd terms of
SLy5 were included and the center-of-mass correction to the
kinetic energy was neglected.

In Fig. 5, we show the RPA (SIF) contributions to polar-
ization corrections (46), and we compare the total polarization
corrections calculated using Eq. (46) with the HF results (80).
The obtained agreement is very good, although not as perfect as
that obtained in Sec. III A for the Skyrme EDF SV. Moreover,
the RPA results obtained for the SV and SLy5 functionals are
significantly different from one another, the latter ones being
close to about ±0.4 MeV for holes and particles, respectively.
We also see that the SLy5 results are much less mλ dependent.

The most striking observation seen in Fig. 5, also explicitly
illustrated in Fig. 6, is a strong cancellation between the SIF
and SI contributions to the polarization corrections (46). This
cancellation makes the HF polarization corrections quite small
and gives the explanation to the long-standing problem of
significant differences between the magnitudes of the HF and
RPA values [20]. Indeed, it is the unphysical SI contribution
that renders the HF polarization corrections so small; see
Ref. [25] for a set of comprehensive calculations across the
mass chart.

FIG. 7. (Color online) Same as in Fig. 3, but for the contributions
to the RPA SIF polarization corrections of |mλ| = jλ orbitals,
determined for the Skyrme EDF SLy5.

014307-11
Tarpanov, Toivanen, Dobaczewski, Carlsson, PRC89 (2014) 014307

M. Bender, IPN Lyon (IPN Lyon) The troubles with and without density dependences 13 November 2018 16 / 41



Self-interactions from density-dependent terms
POLARIZATION CORRECTIONS TO SINGLE-PARTICLE . . . PHYSICAL REVIEW C 89, 014307 (2014)

FIG. 4. (Color online) Same as in Fig. 3, but for the |mλ| = 1
2

orbitals.

Next we tested the assumption, discussed in Sec. II A,
related to the smallness of terms ρλ and hλ with respect to the
small-amplitude expansion. In Fig. 2, we compare polarization
corrections determined using the standard RPA matrices (24b)
with those containing the orbital-dependent terms (24a).
Because both sets of results are almost identical, we conclude
that in medium-heavy nuclei like 100Sn, the orbital-dependent
terms can be safely ignored. This significantly simplifies the
calculations because a single common solution of the RPA
equation can then be used to determine polarization corrections
for all orbitals.

In Fig. 3, we show polarization corrections of the |mλ| = jλ

orbitals in 100Sn, split into contributions from different J π

RPA channels. First we note that the geometric constraints in
Eq. (A16) limit the polarizations of jλ orbitals to channels with
J ! 2jλ. As expected, the largest contributions come from the
coupling to the quadrupole channel 2+; however, the monopole
0+ and dipole 1+ channels also significantly contribute. For
higher-jλ orbitals, channels 3+ and 4+ show some effect,
whereas channels with J > 4 can be safely neglected. For the
|mλ| = 1

2 orbitals shown in Fig. 4, the convergence is slightly
slower, but still all terms with J > 5 contribute very little.

B. RPA calculations in 100Sn for the Skyrme EDF SLy5

We now proceed to discuss the problem of SI energies
in the EDF calculations, presented in Sec. II B. To this

FIG. 5. (Color online) Same as in Fig. 1, but for the Skyrme EDF
SLy5 [49]. The RPA results correspond to the SIF terms in Eq. (46),
whereas RPA + SI denotes both SIF and SI contributions combined.

FIG. 6. (Color online) The SIF and SI contributions to the polar-
ization corrections of Eq. (46), calculated in 100Sn for the Skyrme
EDF SLy5.

end, we repeated the self-consistent calculations presented in
Sec. III A by employing the Skyrme EDF SLy5 [49]. This is a
standard Skyrme parametrization containing a strong density-
dependent term, for which we can study the SI energies, as
defined in Eq. (45). As before, the “native” time-odd terms of
SLy5 were included and the center-of-mass correction to the
kinetic energy was neglected.

In Fig. 5, we show the RPA (SIF) contributions to polar-
ization corrections (46), and we compare the total polarization
corrections calculated using Eq. (46) with the HF results (80).
The obtained agreement is very good, although not as perfect as
that obtained in Sec. III A for the Skyrme EDF SV. Moreover,
the RPA results obtained for the SV and SLy5 functionals are
significantly different from one another, the latter ones being
close to about ±0.4 MeV for holes and particles, respectively.
We also see that the SLy5 results are much less mλ dependent.

The most striking observation seen in Fig. 5, also explicitly
illustrated in Fig. 6, is a strong cancellation between the SIF
and SI contributions to the polarization corrections (46). This
cancellation makes the HF polarization corrections quite small
and gives the explanation to the long-standing problem of
significant differences between the magnitudes of the HF and
RPA values [20]. Indeed, it is the unphysical SI contribution
that renders the HF polarization corrections so small; see
Ref. [25] for a set of comprehensive calculations across the
mass chart.

FIG. 7. (Color online) Same as in Fig. 3, but for the contributions
to the RPA SIF polarization corrections of |mλ| = jλ orbitals,
determined for the Skyrme EDF SLy5.
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FIG. 10. (Color online) Same as in Fig. 6, but for 110Sn.

for predominantly hole-type (particle-type) quasiparticles. For
quasiparticles near the Fermi level, however, there is a certain
degree of ambiguity, which we here arbitrarily resolve by
checking whether the s.p. energy e! corresponding to the
blocked quasiparticle state is below or above the Fermi level
λ. In practice, we determine e! by diagonalizing in the even
nucleus the mean-field Hamiltonian hA, which is a part of the
HFB Hamiltonian (49). In addition, to link results presented in
this section to those presented before for magic nuclei without
pairing, in Figs. 9–16 we plot results for hole states with flipped
signs, that is,

− δE = +(EA − EA−1) − (λ − E!) for e! < λ, (81a)

+δE = −(EA − EA+1) − (λ + E!) for e! > λ (81b)

[cf. Eq. (80)].
Within such a convention, in Fig. 9 we show the QRPA

SIF + SI (symbols) and HFB (lines) polarization corrections
given by the left-hand and right-hand sides of Eqs. (81),
respectively. We note that not all blocked quasiparticle states
could be converged in all studied nuclei, and thus in the figure
there is quite a number of missing HFB points. Nevertheless,
we conclude that the agreement between the QRPA and the
HFB results is satisfactory. By this we establish the equivalence
of the two methods in determining the polarization corrections
with pairing.

In Figs. 10 and 11, we compare the QRPA SIF (76) and
SI (77) contributions to the polarization corrections. Similar

FIG. 11. (Color online) Same as in Fig. 6, but for 120Sn.

FIG. 12. (Color online) Same as in Fig. 7, but for 110Sn.

to that seen in the case without pairing, shown in Fig. 6,
the SIF and SI terms always have opposite signs, and thus
the SI partially cancels the SIF contribution. However, here
the SI terms are relatively smaller, and thus they to a lesser
degree decrease the SIF contributions, as compared to the
results with no pairing. It is fairly difficult to pin down specific
reasons for the qualitative differences between the SI energies
obtained with and without pairing correlations. It could be that
the SI energies related to density dependence of the Skyrme
interaction (45) and those related to differences between the
pp and ph channels (68), partially cancel out.

Convergence of the QRPA polarization corrections as a
function of the angular momentum J of the QRPA phonons,
shown in Figs. 12 and 13, is much faster than that without
pairing; cf. Figs. 7 and 8. Here, the 2+ channels clearly dom-
inate. This can be interpreted as the result of the quadrupole
collectivity being increased by the pairing correlations. In most
cases, channels with J > 4 can be safely neglected, with the
exception of the J = 2j! channels that slightly contribute to
the corrections of the m! = 1

2 quasiparticle states.
All results presented up to now pertain to single-reference

HF(B) and (Q)RPA calculations; that is, only one single
orbital, with a fixed projection mλ or m!, was occupied and
was inducing polarization effects. As discussed previously,
this required symmetry breaking in the HF(B) solutions
and required coupling of (Q)RPA phonons to odd particles
in a symmetry-nonconserving way. However, a symmetry-
conserving (Q)RPA coupling [14] simply amounts to averag-
ing the results obtained for different values of mλ or m!; see
Eqs. (A18). In Figs. 14–16, we present results for the averages
obtained in this way.

FIG. 13. (Color online) Same as in Fig. 8, but for 110Sn.
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this required symmetry breaking in the HF(B) solutions
and required coupling of (Q)RPA phonons to odd particles
in a symmetry-nonconserving way. However, a symmetry-
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la te r  on  ca l l ed  the  loca l  v a c u u m .  I f  one  is s t u d y i n g  s low co l l e c t i ve  m o t i o n ,  the  s ta te  
Iq) is t a k e n  to be  the  e n e r g e t i c a l l y  l owes t  H F B  d e t e r m i n a n t  sa t i s fy ing  

alq) = 0 ,  (4) 

w h e r e  b o t h  the  d e s t r u c t i o n  o p e r a t o r  a = a ( q )  a n d  its v a c u u m  are  de f i ned  loca l ly  
fo r  e a c h  p o i n t  (q) .  T h e  a b o v e  p r o c e d u r e  m e a n s  an  a d i a b a t i c  p r e p a r a t i o n  o f  a 
s e q u e n c e  o f  s tates* l a b e l e d  by  q, q ' ,  q",  • • • .  In this  a d i a b a t i c  r eg ime ,  c o n s i d e r  t hen  
a ser ies  o f  level  c ross ings  as s h o w n  in fig. 1. H e r e  the  loca l  v a c u u m  Iq) fo l lows  
m e r e l y  the  e n v e l o p e  o f  t he  ene rgy  o f  p u r e  c o n f i g u r a t i o n s  (see fig. 1) in s t ead  o f  
c o n t i n u i n g  in the  p r e v i o u s  c o n f i g u r a t i o n  w h i c h  inc reases  in ene rgy** .  A c c o r d i n g  to 

CAL 
ICUA 

Fig. 1. Schematic plot of the energy versus the collective variable. The dark envelopes show the positions 
of the local vacua. The domain of the collective variable is defined by q,m,~, qm,x and the energy cut Em~,~. 

* To simplify the notation, we label the above well-prepared set of determinantal solutions subject 
to the routhian (3) by the symbol q regardless of the fact that q may not always lead to a complete 
classification of the set of states taken into account. 

** It is important to mention that for the formalism given one can prepare also another set of HFB 
states following adiabatic filling regime, and furthermore adiabatic and diabatic sets could even be used 
simultaneously. 

F. Dönau et al, NPA496 (1989) 333.
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MR EDF: Horizontal vs. vertical expansion of correlations

M. Bender, P.-H. Heenen, unpublished

F. D6nau et al. / Large amplitude collective motion 335 
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CAL 
ICUA 

Fig. 1. Schematic plot of the energy versus the collective variable. The dark envelopes show the positions 
of the local vacua. The domain of the collective variable is defined by q,m,~, qm,x and the energy cut Em~,~. 

* To simplify the notation, we label the above well-prepared set of determinantal solutions subject 
to the routhian (3) by the symbol q regardless of the fact that q may not always lead to a complete 
classification of the set of states taken into account. 

** It is important to mention that for the formalism given one can prepare also another set of HFB 
states following adiabatic filling regime, and furthermore adiabatic and diabatic sets could even be used 
simultaneously. 

F. Dönau et al, NPA496 (1989) 333.
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MR EDF: Symmetry restoration

particle-number projector

P̂N0 =
1

2π

∫ 2π

0

dφN e−iφNN0︸ ︷︷ ︸
weight

rotation in gauge space︷ ︸︸ ︷
e iφN N̂

angular-momentum restoration operator

P̂J
MK =

2J + 1

16π2

∫ 4π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ D∗JMK (α, β, γ)︸ ︷︷ ︸
Wigner function

rotation in real space︷ ︸︸ ︷
R̂(α, β, γ)

K is the z component of angular momentum in the body-fixed frame.
Projected states are given by

|JMq〉 =
+J∑

K=−J

fJ(K) P̂J
MK P̂Z P̂N |MF(q)〉 =

+J∑
K=−J

fJ(K) |JM(qK)〉

fJ(K) is the weight of the component K and determined variationally

Axial symmetry (with the z axis as symmetry axis) allows to perform the α and γ
integrations analytically, while the sum over K collapses, fJ(K) ∼ δK0
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MR EDF: Configuration mixing by the symmetry-restored Generator
Coordinate Method

Superposition of projected self-consistent mean-field states |MF(q)〉 differing in a set of
collective and single-particle coordinates q

|NZJMν〉 =
∑
q

+J∑
K=−J

f NZJ,κ (q,K) P̂J
MK P̂Z P̂N |MF(q)〉 =

∑
q

+J∑
K=−J

f NZ
Jν (q,K) |NZ JM(qK)〉

with weights f NZJν (q,K).

δ

δf ∗Jν(q,K)

〈NZ JMν|Ĥ|NZ JMν〉
〈NZ JMν|NZ JMν〉 = 0 ⇒ Hill-Wheeler-Griffin equation

∑
q′

+J∑
K ′=−J

[
HNZ

J (qK , q′K ′)− ENZ
J,ν INZJ (qK , q′K ′)

]
f NZJ,ν (q′K ′) = 0

with

HJ(qK , q′K ′) = 〈NZ JM qK |Ĥ|NZ JM q′K ′〉 energy kernel
IJ(qK , q′K ′) = 〈NZ JM qK |NZ JM q′K ′〉 norm kernel

Angular-momentum projected GCM gives the

correlated ground state for each value of J

spectrum of excited states for each J
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MR EDF: typical applications
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Problems with density dependences

pure particle-number projection

M. Bender, IPN Lyon (IPN Lyon) The troubles with and without density dependences 13 November 2018 22 / 41



Problems with density dependences

pure particle-number projection

first hints from Hamiltonian-based
approaches: Dönau, PRC 58 (1998)
872; Almehed, Frauendorf, Dönau,
PRC 63 (2001) 044311; Anguiano,
Egido, Robledo NPA696 (2001) 467

First analysis in a strict energy density
functional (EDF) framework and of
EDF-specific consequences by
Dobaczewski, Stoitsov, Nazarewicz,
Reinhard, PRC 76 (2007) 054315

Further analysis of the EDF case by
Lacroix, Duguet, Bender, PRC 79
(2009) 044318; Bender, Duguet,
Lacroix, PRC 79 (2009) 044319;
Duguet, Bender, Bennaceur, Lacroix,
Lesinski, PRC 79 (2009) 044320;
Bender, Avez, Duguet, Heenen,
Lacroix, in preparation
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The origin of the problem in a nutshell

All standard energy density functionals (EDF) used for mean-field models and
beyond do not correspond to the expectation value of a Hamiltonian for at least one
of the following reasons:

density dependences
the use of different effective interactions in the particle-hole and pairing parts of the
energy functional
the omission, approximation or modification of specific exchange terms

that are all introduced for phenomenological reasons and/or the sake of numerical
efficiency.

consequence: breaking of the exchange symmetry (”Pauli principle”) under particle
exchange when calculating the energy, leading to non-physical interactions of a given
nucleon or pair of nucleons with itself, or of three nucleons among themselves etc.

the resulting self-interactions and self-pairing-interactions remain (usually) hidden in
the mean field

in the extension to symmetry-restored GCM, these terms cause
discontinuities and divergences in symmetry-restored energy surfaces
breaking of sum rules in symmetry restoration
potentially multi-valued EDF in case of standard density-dependences
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Using non-analytical density dependences

Non-viability of non-analytical density
dependences

Duguet, Lacroix, Bender, Bennaceur, Lesinski, PRC 79 (2009) 044320

in symmetry restored GCM, the local
densities ρqq

′
(r) are in general complex[

ρqq
′
(r)
]α

is a multi-valued
non-analytical function

spurious contribution from branch cuts
(see Dobaczewski et al. PRC76 (2007)
054315, and Duguet et al. PRC79
(2009) 044320 for complex plane
analysis)

(partial) workaround when conserving
specific symmetries: use
particle-number projected densities for
density dependence instead (strategy
currently used by L. Egido and
collaborators).

Difficult to justify formally.
Does not bypass the problem
anymore when using
time-reversal-invariance breaking
reference states.
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What to do?

1 constructing the EDF as expectation value of a strict Hamiltonian. Numerically very
costly due to Coulomb exchange & pairing; no available parameterisations of high
quality (the difficulties to construct such parametrisations was the main motivation
to use more general EDFs in the 1970s).

2 construct the EDF from a density-dependent Hamiltonians with special treatment of
the density entering density dependent terms for which numerically efficient
high-quality parameterisations can be easily constructed. Problem: cannot be
defined for all possible configuration mixing [Robledo, J. Phys. G 37 (2010) 064020].

3 introduce a physics-motivated regularisation scheme of the EDF that allows for the
use of (almost) standard functionals [Lacroix, Duguet, & Bender, PRC 79 (2009)
044318] for which numerically efficient high-quality parameterisations can be easily
constructed. Works for particle-number projection, but not for angular-momentum
projection or GCM mixing. Alternative mathematics-motivated regularisation [Satu la
& Dobaczewski, PRC 90 (2014) 054303] has problems too when applied in realistic
calculations [Dobaczewski, private communication].

4 Construct symmetry-conserving functionals from projected density (matrices).
[Hupin, Lacroix, Bender, PRC 84 (2011) 014309; Hupin, Lacroix, PRC86 (2012)
024309]. Difficult to apply to spatial projection and GCM mixing for conceptual and
numerical reasons, and also potential problems with nuclear saturation [Robledo, J.
Phys. G 37 (2010) 064020].

M. Bender, IPN Lyon (IPN Lyon) The troubles with and without density dependences 13 November 2018 26 / 41



Density-dependent Hamiltonians in symmetry-restored matrix elements

In general, (non-normalised) projected matrix elements of an operator T̂ read

〈q|P̂J
KM T̂ P̂J′

M′K ′ |q
′〉 . (8)

If the operator is an irreducible tensor operator T̂λµ , then the commutator [T̂λµ P̂
J′
M′K ′ ] is

known from the general properties of the rotational group. For the special case of a scalar

tensor operator T̂ 0
0 (i.e. a tensor operator of rank 0 like the Hamiltonian), one has

[T̂ 0
0 , P̂

J′
M′K ′ ] = 0.

Using P̂J
KM P̂J′

M′K ′ = P̂J
KK ′ δJJ′ δMM′ , it follows that

〈q|P̂J
KM T̂ 0

0 P̂
J′
M′K ′ |q

′〉 = 〈q|P̂J
KK ′ T̂

0
0 |q′〉 δJJ′ δMM′ . (9)

It is sufficient to rotate one state to calculate matrix elements

〈q|P̂J
KK ′ Ĥ|q

′〉 =
2J + 1

16π2

∫ 4π

0
dα

∫ π

0
dβ sin(β)

∫ 2π

0
dγ D∗JKK ′ (α, β, γ)〈q|R̂†(α, β, γ)Ĥ|q′〉 .

(10)
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MR expectation values of an Hamiltonian

Using the example of a linear density dependence of the mixed density ρLR(r)

〈q|P̂J
KK ′ Ĥ[ρ]|q′〉 =

2J + 1

16π2

∫ 4π

0
dα

∫ π

0
dβ sin(β)

∫ 2π

0
dγ D∗JKK ′ (α, β, γ)

×〈q|R̂†(α, β, γ)Ĥ|q′〉
〈q|R̂†(α, β, γ)ρ̂|q′〉
〈q|R̂†(α, β, γ)|q′〉

. (11)

it has been argued that density-dependent Hamiltonians are invariant under rotations
[Rodŕıguez-Guzmán et al., NPA709 (2002) 201].

But a density dependent term uses [Note: α represents two different things here]

〈q|P̂J
KK ′ Ĥ[ρ]|q′〉 =

2J + 1

16π2

∫ 4π

0
dα

∫ π

0
dβ sin(β)

∫ 2π

0
dγ D∗JKK ′ (α, β, γ)

×〈q|R̂†(α, β, γ)Ĥ|q′〉
(
〈q|R̂†(α, β, γ)ρ̂|q′〉
〈q|R̂†(α, β, γ)|q′〉

)α
. (12)

Is
[
ρLR(r)

]α
an irreducible scalar tensor operator for α 6= 1?
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MR expectation values of an Hamiltonian

In case of combined angular-momentum and particle-number projection one has for a Hamiltonian

〈q|P̂J
KK ′ ĤP̂N |q′〉 =

1

2π

∫
dφN e+iNφ 2J + 1

16π2

∫ 4π

0
dα

∫ π

0
dβ sin(β)

∫ 2π

0
dγ D∗JKK ′ (α, β, γ)

×〈q|R̂†(α, β, γ)Ĥe−i N̂φ|q′〉 .

The arguments brought forward above lead for density-dependent Hamiltonians to

〈q|P̂J
KK ′ Ĥ[ρ]|q′〉 =

1

2π

∫
dφN e+iNφ 2J + 1

16π2

∫ 4π

0
dα

∫ π

0
dβ sin(β)

∫ 2π

0
dγ D∗JKK ′ (α, β, γ)

×
∫

d3r 〈q|R̂†(α, β, γ)Ĥe−i N̂φ|q′〉(r)
[
〈q|R̂†(α, β, γ)ρ̂e−i N̂φ|q′〉
〈q|R̂†(α, β, γ)e−i N̂φ|q′〉

(r)

]α
.

The Madrid group started to use a density that is projected on particle number (but still mixed in
all other degrees of freedom) for the density dependence

〈q|P̂J
KK ′ Ĥ[ρ]|q′〉 =

2J + 1

16π2

∫ 4π

0
dα

∫ π

0
dβ sin(β)

∫ 2π

0
dγ D∗JKK ′ (α, β, γ)

×
∫

d3r

[
1

2π

∫
dφN e+iNφ〈q|R̂†(α, β, γ)Ĥe−i N̂φ|q′〉(r)

]
×
[

1

2π

∫
dφ′N e+iNφ′ 〈q|R̂†(α, β, γ)ρ̂e−i N̂φ|q′〉

〈q|R̂†(α, β, γ)e−i N̂φ′ |q′〉
(r)

]α
.

For non-paired Slater determinants this becomes the standard recipe again.
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Pseudo-potentials for MR EDF. First try: SLyMR0

Effective interaction used throughout this talk: SLyMR0

v̂ = t0

(
1 + x0P̂σ

)
δ̂r1r2

+
t1

2

(
1 + x1P̂σ

)(
k̂
′ 2
12 δ̂r1r2 + δ̂r1r2 k̂

2

12

)
+ t2

(
1 + x2P̂σ

)
k̂
′
12 · δ̂r1r2 k̂12

+ iW0 (σ̂1 + σ̂2) · k̂ ′12 × δ̂r1r2 k̂12

+ u0

(
δ̂r1r3 δ̂r2r3 + δ̂r3r2 δ̂r1r2 + δ̂r2r1 δ̂r3r1

)
+ v0

(
δ̂r1r3 δ̂r2r3 δ̂r3r4 + δ̂r1r2 δ̂r3r2 δ̂r2r4 + · · ·

)
J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, and T. Duguet, Physica Scripta T154 (2013) 014013
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Pseudo-potentials for MR EDF. First try: SLyMR0

it is impossible to fulfill the usual nuclear
matter constraints , to have stable
interactions and attractive pairing

no ”best fit” possible

very bad performance compared to standard
general functionals

J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, and T. Duguet, Physica Scripta T154 (2013) 014013
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Density dependence with particle-number projected density

25Mg
B. Bally, B. Avez, M. Bender, unpublished (2012).

effective interaction: standard
density-dependent Skyrme taking all exchange
and pairing terms into account, courtesy of
K. Bennaceur (unpublished, 2012).

exact Coulomb exchange and Coulomb pairing

particle-number projected (mixed) density
entering the linear density dependence ρα = ρ

No obvious problems when projecting and
mixing time-reversal invariance conserving
HFB states.

On a very small level, projected energies
depend on the number of discretisation points
and sum-rules might not be fulfilled.

unrealistic decomposition into J, K
components when projecting
time-reversal-invariance breaking HFB states
(where the particle-number projected mixed
densities are complex)
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Discretisation dependence

Dependence on the number of discretisation points chosen for Euler angles when projecting the
same blocked triaxial state of 25Mg which is practically pure K = 5/2, with SLy5sp2 and
SLyMR0.

SLy5sp2

E
(M

eV
)

mα

mβ = 24, mγ = 2mα

SLyMR0

E
(M

eV
)

mα

mβ = 24, mγ = 2mα
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25Mg, HF, K = 5/2: projection of the t0 term of the Skyrme Hamiltonian

t0 term, nn contribution

+ −

− +

π/4 π/2 3π/4 π

β α = γ = 0

t0 term, np contribution

+ −

− +

π/4 π/2 3π/4 π

β α = γ = 0

t0 term, pp contribution

+ −

− +

π/4 π/2 3π/4 π

β α = γ = 0

ELR
t0

= 〈L|t0
(

1 + x0P̂σ
)
δ̂
r|R〉

= 1
4
t0
(

1− x0
) ∫

d3r
[
ρ
LR
n (r) ρLRn (r)− sLRn (r) · sLR (r) + ρ̃

RL∗
n (r) ρ̃LRn (r)

]
〈Ln|Rn〉 〈Lp |Rp〉

+

∫
d3r

[
1
2
t0
(

1 +
x0
2

)
ρ
LR
n (r) ρLRp (r) + 1

4
t0s

LR
n (r) · sLRp (r)

]
〈Ln|Rn〉 〈Lp |Rp〉

+ 1
4
t0
(

1− x0
) ∫

d3r
[
ρ
LR
p (r) ρLRp (r)− sLRp (r) · sLRp (r) + ρ̃

RL∗
p (r) ρ̃LRp (r)

]
〈Ln|Rn〉 〈Lp |Rp〉

where |L〉 = R̂(α, β, γ)|R〉 with |R〉 = |Rn〉 ⊗ |Rp〉 and analogous for |L〉.
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25Mg, HF, K = 5/2: projection of the t3 term of a density-dependent
Skyrme Hamiltonian

SLy5sp.v2, mixed density

+ −

+ − +

π/4 π/2 3π/4 π

+ −

β α = γ = 0

For a parameteriation with x3 = 1 and in the limit of Slater
determinants, the energy kernel of the density-dependent part
of the Skyrme interaction reads

ELR
t3

=

∫
d3r

[
1
2
t3
(

1 +
x3
2

)
ρ
LR
n (r) ρLRp (r)

+ 1
4
t3 sLRn (r) · sLRp (r)

]
×
[
ρ
LR
n (r) + ρ

LR
p (r)

]α
×〈Ln|Rn〉 〈Lp |Rp〉
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Same in HFODD

J. Dobaczewski, private communication, 18/03/2017
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A dead end (unfortunately)

RAPID COMMUNICATIONS

DENIS LACROIX AND K. BENNACEUR PHYSICAL REVIEW C 91, 011302(R) (2015)

TABLE I. Correspondence between the coefficients (c1,c2) and
the interaction strengths. Coefficients ykα defined as ck =

∑
k ykαvα

are reported.

cSM
1 cSM

2 cNM
1 cNM

2 cPM
1 cPM

2 cPNM
1 cPNM

2

v0 1 −1/4 1 −1/2 1 −1/2 1 −1
vσ 1/2 −1/2 +1/2 −1 1 −1/2 1 −1
vτ 1/2 −1/2 1 −1/2 1/2 −1 1 −1
vστ 1/4 −1 +1/2 −1 1/2 −1 1 −1

(vijk + vikj + vkij )/3, with

vijk = {V0(r) + Vσ (r)Pσ + Vτ (r)Pτ + Vστ (r)PσPτ }

× δ

(
rk −

[
ri + rj

2

])
, (1)

where the short-hand notation r = |ri − rj | is used, while Pσ

(Pτ ) exchanges the projections of spin (isospin) of particles i
and j . Note that the interaction can be used without isospin
exchange operators in the case where it is applied to fermions
with spin degrees of freedom only by omitting the two terms
with Pτ in Eq. (1). The functions Vα(r) with α = 0, σ , τ , and
στ correspond to the two-body interaction acting in different
channels. For simplicity, we assume that they can be written in
terms of a smooth normalized function g as Vα(r) = vαg(r),
where v0, vσ , vτ , and vστ are independent strength parameters.

The functional associated with the semicontact three-
body interaction is directly obtained from its Hartree-Fock
expression for the energy. We focus here on infinite systems
and introduce the Fermi momentum kF and the density of the
Fermi gas ρ = d k3

F /(6π2), where d is the degeneracy, which
depends on the specific situation. We consider the following
four cases: symmetric nuclear matter (SM) with d = 4, neutron
matter (NM) and spin polarized matter (PM) with d = 2, and
spin polarized neutron matter (PNM) with d = 1. A lengthy but
straightforward calculation shows that the energy per particle
can be written

Eρρρ

A
= c1

ρ2

6

∫
d3r g(r)[1 − c3f (kF r/2)2]

+ c2
ρ2

6

∫
d3r g(r)[f (kF r)2 − c3f (kF r)f (kF r/2)2],

(2)

where the function f is expressed in terms of the first spherical
Bessel function as f (x) = 3j1(x)/x. The coefficients c1, c2,
and c3 depend on the specific channel. One has c3 = 1/2
for SM, 1 for both NM and PM, and 2 for PNM. The
correspondences between the coefficients c1 and c2 and the
parameters vα are listed in Table I. Equation (2) can serve,
given a specific function g associated with the range a, to
get expansions in powers of (kF a) and obtain the low-density
behavior. Note that if a two-body interaction is used with the
same finite-range part as in Eq. (1), the energy is identical
to Eq. (2) with c3 = 0 and ρ2/6 → ρ/2. In this case, the
functional is denoted Eρρ . In SM, the limit for zero-range
two-body and three-body interactions is obtained by setting

g(r) = δ(r) and gives

E
ρρ
zero

A
= 3

8
t3ρ,

E
ρρρ
zero

A
= t3

8
(1 − c3)ρ2, (3)

with t3 = 4(c1 + c2)/3. Note that for NM, PM, and PNM, Eρρρ
zero

cancels out as expected.
In the present work, we are interested in the intermediate-

density region (around the equilibrium configuration) where
deviation from the limits, (3), is anticipated for finite-range
interactions. To progress further, we assume that g is a
normalized Gaussian function g(r) = e−(r2/a2)/(a

√
π )3. In this

case, using the same technique as in Ref. [16], integrals in
Eq. (2) become analytical functions of x = (akF ), leading to

Eρρρ

A
= ρ2

6
{c1[1 − c3F1(x)] + c2[F1(x/2) − c3F2(x)]}

≡ ρ2

6
F3(akF ), (4)

with

F1(x) = 12
x6

(
1 − e−x2) − 6

x4

(
3 − e−x2) + 6

√
π

x3
Erf(x)

and

F2(x)= 288
x8

(
− e− x2

4 − e−x2) − 24
x6

(
12 + e−x2 − 7e− x2

4
)

+12
x4

(
4e− x2

4 −7e−x2)+ 6
√

π

x3

[
8 Erf(x)−7 Erf

(
x

2

)]

+36
√

π

x7

(
4
x2

− 9
) [

Erf(x) − 2 Erf
(

x

2

)]
.

Therefore, a density dependence ρ1+α for the energy per
particle (as given by the commonly used density-dependent
Skyrme or Gogny interactions) can be locally obtained if
F3(akF ) ∝ (akF )3(α−1) ∝ ρα−1. Adjusting the parameters c1
and c2, our semicontact three-body interaction can thus
approximate the desired density dependence in a given range
of densities. This is illustrated in Fig. 1, for α = 1/3 and
α = 2/3. The functional associated with the three-body force
can fairly well reproduce the effect of a density-dependent
interaction with a noninteger power of the density. Systematic
analyses have shown that the present interaction is suitable for
the density dependence ρ1+α of the energy per particle with
0 ! α ! 1. However, for very small α, i.e., α ! 1/6, the fit
starts to deteriorate.

One of the recurrent difficulties of nuclear DFT based on
zero-range interactions is the impossibility to conjointly get
the proper EOSs in infinite matter and reasonable behavior of
the effective mass [19,20]. The use of a finite-range three-body
interaction automatically induces a contribution to the effective
mass given by

!2

2m∗ =
ρ2

0a
2

4

[
cSM

1

24
M1

(
x

2

)
− cSM

2

3
M1(x) + cSM

2

8
M2(x)

]

in SM, with

M1(x) = 12
x6

(
e−x2 − 1

)
+ 6

x4

(
e−x2 + 1

)
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FIG. 1. (Color online) F3(kF a) as a function of (akF ) obtained
by adjusting the cSM

1 and cSM
2 to get a dependence similar to 1/(akF )

(α = 2/3) [solid (red) line] or 1/(akF )2 (α = 1/3) [dashed (blue)
line]. The reference curves 1/(akF ) [filled (red) circles] and 1/(akF )2

[filled (blue) diamonds] are also shown. The dotted horizontal line
indicates the zero-range three-body interaction limit (α = 1). The
fit was made for (akF ) ∈ [1.25,1.75]; note that in nuclear physics
(akF ) ≃ 1.5 at saturation.

and

M2(x) = 576
x8

(
e−x2 − e− x2

4
)
+ 288

x6

+ 144
√

π

x7

(
2
x2

− 3
) [

2 Erf
(

x

2

)
− Erf x

]
.

As can be done for the energy, the three-body interaction
parameters can be adjusted to reproduce specific behavior of
the effective mass as a function of the density. For instance,
it might be used to get the proper ρ2/3 dependence predicted
by the Galitskii formula (see Eq. (11.62) in Ref. [2] and see
Ref. [21] for a recent discussion). An alternative situation
is presented below, where we show that the three-body
semicontact interaction conjointly used with a two-body
density-independent interaction can appropriately describe the
Skyrme prescription, i.e., (m∗/m) ∝ (1 + θρ)−1, where the
expression of the parameter θ can be found in Ref. [22].

In the nuclear context, it has recently become evident that
the LDA-DFT with noninteger powers of the density leads
to severe problems in describing fluctuations along collective
coordinates or restoring broken symmetries [12]. Here, we
show that the semicontact three-body interaction can replace
the density-dependent term used with standard functionals.
For this to be considered as a practical tool, we should be
able to find a set of parameters that (i) provides a reasonable
description of all spin/isospin channels simultaneously and
(ii) conjointly describes the expected density dependence of
the effective mass. In the past, requirements (i) and (ii) have
been successfully fulfilled using a density-dependent term.
More recently, a zero-range density-independent interaction
that could meet these criteria was introduced [14] using three-
body velocity-dependent terms. While possibly more difficult
to implement, the semicontact three-body interaction limits
the need for velocity-dependent terms, with the advantage
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FIG. 2. (Color online) (a) Scalar-isoscalar effective mass and
(b) equations of state for SM (red), NM (blue), PM (green), and
PNM (black) as a function of the density obtained with the SLy5
functional (symbols) and with the Skyrme (two-body) + three-
body functional (lines), called SLy53b. Inset: Contribution of the
three-body functional to the energy per particle in symmetric matter.
A simple function proportional to ρ1+α has been adjusted on it with
α ≃ 1/3 for an optimal fit in the vicinity of the saturation density.

that it might give better control of unwanted finite-range
instabilities [23].

To illustrate that the new interaction can be employed
successfully in the nuclear DFT context, we have considered
two commonly used functionals based on density-dependent
interactions, namely, a Skyrme (zero-range) [22,24,25] and a
Gogny (finite-range) [26,27] functional. More precisely, we
considered the SLy5 [28] and D1M [29] sets of parameters,
respectively. These two functionals are known to provide a
meaningful description of the EOSs in different spin-isospin
channels as well as the reasonable effective mass (see Figs. 2
and 3) and serve below as reference EOSs.

We consider the original functionals and replace the
density-dependent term with the functional deduced from
the three-body semicontact interaction. Doing this means
that the energy density functional (EDF) can then be truly
considered as the Hartree-Fock functional derived from a
many-body Hamiltonian. Then a global fit is made using
the new functionals, which are labeled SLy53b and D1M3b,
respectively, below. The parameters have been adjusted to
reproduce the four EOSs (SM, NM, PM, and PNM) and the
(scalar-isoscalar) effective masses simultaneously. The details
of the fitting protocol are given in the Appendix. The range
a = 1.2 fm, which is optimal for the fit to the D1M results,
was chosen for the range of the semicontact term. Note that all
parameters have been used for the fit except the ranges of the
two-body part, which have been kept equal to the original D1M
case. Altogether, the fit was made using 10 and 12 parameters
for the SLy53b and D1M3b, respectively. Optimal parameter
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Construction of new forms of effective interactions

Skyrme-type interactions with higher-order terms in derivatives
(not aiming at true Hamiltonians so far, though)

Carlsson, Dobaczewski, Kortelainen, PRC 78 (2008) 044326

Raimondi, Carlsson, Dobaczewski, PRC 83 (2011) 054311

Davesne, Pastore, Navarro, JPG 40 (2013) 095104

Becker, Davesne, Meyer, Pastore, Navarro, JPG 42 (2015) 034001

Skyrme-type interactions with explicit three-body interactions
Sadoudi, thèse, Université de Paris-Sud XI (2011)

Sadoudi, M. Bender, Bennaceur, Davesne, Jodon, Duguet, Phys Scr T154 (2013) 014013

Sadoudi, Duguet, Meyer, M. Bender, PRC 88 (2013) 064326

regularised contact interactions (replacing the delta function in Skyrme with
Gaussians)
Raimondi, Bennaceur, Dobaczewski, JPG 41 (2014) 055112

Bennaceur, Idini, J. Dobaczewski, P. Dobaczewski, Kortelainen, Raimondi, JPG44 (2017) 045106

non-local three-body forces simulating density dependences
Gezerlis, Bertsch, PRL 105 (2010) 212501

Lacroix, Bennaceur, PRC 91 (2015) 011302(R)

or try a different strategy: explicit in-medium correlations from MBPT
Duguet, M. Bender, Ebran, Lesinski, Somà, EPJA 51 (2015) 162
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Ongoing improvements: 3-body terms of 2nd order in gradients

the most general central Skyrme-type 3-body force up to 2nd order in gradients has been
constructed by J. Sadoudi with a dedicated formal algebra code

v̂123 = u0

(
δ̂r1r3 δ̂r2r3 + δ̂r3r2 δ̂r1r2 + δ̂r2r1 δ̂r3r1

)
+
u1

2

[
1 + y1P

σ
12

] (
k̂12 · k̂12 + k̂

′
12 · k̂

′
12

)
δ̂r1r3 δ̂r2r3

+
u1

2

[
1 + y1P

σ
31

] (
k̂31 · k̂31 + k̂

′
31 · k̂

′
31

)
δ̂r3r2 δ̂r1r2

+
u1

2

[
1 + y1P

σ
23

] (
k̂23 · k̂23 + k̂

′
23 · k̂

′
23

)
δ̂r2r1 δ̂r3r1

+u2

[
1 + y21P

σ
12 + y22(Pσ13 + Pσ23)

] (
k̂12 · k̂

′
12

)
δ̂r1r3 δ̂r2r3

+u2

[
1 + y21P

σ
31 + y22(Pσ32 + Pσ12)

] (
k̂31 · k̂

′
31

)
δ̂r3r2 δ̂r1r2

+u2

[
1 + y21P

σ
23 + y22(Pσ21 + Pσ31)

] (
k̂23 · k̂

′
23

)
δ̂r2r1 δ̂r3r1

Sadoudi, Duguet, Meyer, M. Bender, PRC 88 (2013) 064326
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Take-away messages

Why density dependences are needed

Density dependences are a shortcut to in-medium correlations
Without them it is difficult to model phenomenology.
Use of density dependences instead of 3-body forces solves problems with K∞,
spin-stability, sign of pairing matrix elements, . . .

Why density dependences should not be used

Source of self-interaction and self-pairing that might spoil results.
MR calculations become mathematically ill-defined and might/will give
surprising/non-physical results.
Some doubts about their use in diagrammatic beyond-mean-field models have been
voiced too.

Where does this contradiction come from?

In one way or the other, density dependences are meant to approximately describe
the in-medium correlation energy from summing diagrams in a ”vertical” expansion.
The key problem concerning multi-reference calculations is that approximations are
made in the wrong order when expressing the kF dependence of ”vertical”
correlation energies by a density dependence in local-density approximation of
infinite nuclear matter and then using it to calculate ”horizontal” correlation
energies. That final step is ill-defined conceptually (as the densities entering a
”horizontal calculation” are not related to kF ) and mathematically (as densities are
functions in the complex plane).
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