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B.R. Barrett, P. Navrátil, J.P. Vary, J.P. Progr. Part. Nucl. Phys. 69 (2013).

• the many body problem can be solved with CI method:

Can address bound 
and low-lying 
resonances (short 
range correlations)

Ψ𝑁𝐶𝑆𝑀
(𝐴)

= ȁ ۧ𝐴𝜆𝐽𝜋𝑇 =

𝛼

𝑐𝛼 ȁ ۧ𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

ȁ ۧ𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴

No-Core Shell Model

ℏΩ

N
m

ax

G. Hupin, S. Quaglioni and P. Navrátil PRL114 (2015)
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• All methods agree with each other to a few percent.
• “Significant” discrepancies with expt. are found.
• As observed in A=3, polarization observables are the 

most sensitive probes.
• Note that there are few measurements (particularly 

polarization) they are old and maybe inaccurate.

Exact reaction calculations for very light systems 
A=2, 3 and 4

• Faddeev-Yacubovsky (FY) 

• Alt-Grassberger-Sandhas (AGS) 

• Hyperspherical Harmonics (HH)
M. Viviani et al. PRC95 (2017) 

AGS
GY
HH

A.C. Fonseca and A. Deltuva FBS58 (2017)

n+3He
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Courtesy of R. Lazauskas

• Should separate all possible scattering channels to incorporate proper asymptotes! Number 
of binary channels increases  ~2N

ΨN = 

𝑝𝑒𝑟𝑚

Ψ(𝑁−1)(1) + 

𝑝𝑒𝑟𝑚

Ψ(𝑁−2)(2) + 

𝑝𝑒𝑟𝑚

Ψ(𝑁−3)(3) +⋯

• Should be systematically reducible to smaller subsystems, in order to built proper asymptotic 
solutions and to be consistent to its subsystems (tree-like structure)

Ψ(𝑁−𝑖)(𝑖) = Ψ𝑁−𝑖ራΨ𝑖

Boundary problem

Sometimes known 
asymptotic
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Courtesy of R. Lazauskas
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77

Problem Number eq.
(identical particles)

Number eq. 
(different particles)

A=2 1 1

A=3 1 3

A=4 2 18

A=5 5 180

A=6 15 2700

A=N nint(
2 𝑁−1 !

(𝜋/2)𝑁
) 𝑁! 𝑁 − 1 !

2𝑁−1

Merits:
✓ Handling of symmetries
✓ Boundary conditions for 

binary channels
✓ Easy reduction to subsystems

Price
✓ Overcomplexity

12

5

4 3

1212 1212
4 3

4 3
3

4

5 5

3

45 5

Courtesy of R. Lazauskas
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S. Quaglioni, P. Navrátil PRL101 (2008).

Can address bound 
and low-lying 
resonances (short 
range correlations)

NCSM/RGM
Cluster formalism for 

elastic/inelastic

• Methods develop in this presentation to solve the many body
problem

Can address bound 
and low-lying 
resonances (short 
range correlations)

Ψ𝑁𝐶𝑆𝑀
(𝐴)

= ȁ ۧ𝐴𝜆𝐽𝜋𝑇 =

𝛼

𝑐𝛼 ȁ ۧ𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

ȁ ۧ𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴

Ψ𝑅𝐺𝑀
(𝐴)

=

𝑣

න𝑑Ԧ𝑟 𝑔𝑣 Ԧ𝑟 መ𝐴𝑣 ቚ Φ
𝑣 Ԧ𝑟
(𝐴−𝑎,𝑎)

Channel 
basis

Relative wave 
function (unknown) Antisymmetrizer

Cluster expansion 
technique

Ԧ𝑟𝐴−𝑎,𝑎

𝜓𝛼1
(𝐴−𝑎)

𝜓𝛼2
(𝑎)

𝛿(Ԧ𝑟 − Ԧ𝑟𝐴−𝑎,𝑎)

(𝐴 − 𝑎)
𝑎
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Ψ𝑁𝐶𝑆𝑀𝐶
(𝐴)

=

𝜆

𝑐𝜆ȁ ۧ𝐴𝜆𝐽𝜋𝑇 +

𝑣

න𝑑Ԧ𝑟 𝑔𝑣 Ԧ𝑟 መ𝐴𝑣 ቚ Φ
𝑣 Ԧ𝑟
(𝐴−𝑎,𝑎)

S. Baroni, P. Navrátil and S. Quaglioni PRL110 (2013); PRC93 (2013)

• Methods develop in this presentation to solve the many body
problem

Can address bound 
and low-lying 
resonances (short 
range correlations)

Design to account for 
scattering states (best 
for long range 
correlations)

• Our best ansatz combines both wave functions

NCSMC

Ψ𝑁𝐶𝑆𝑀
(𝐴)

= ȁ ۧ𝐴𝜆𝐽𝜋𝑇 =

𝛼

𝑐𝛼 ȁ ۧ𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

ȁ ۧ𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴

Ψ𝑅𝐺𝑀
(𝐴)

=

𝑣

න𝑑Ԧ𝑟 𝑔𝑣 Ԧ𝑟 መ𝐴𝑣 ቚ Φ
𝑣 Ԧ𝑟
(𝐴−𝑎,𝑎)

Channel 
basis

Relative wave 
function (unknown) Antisymmetrizer

Cluster expansion 
technique

Ԧ𝑟𝐴−𝑎,𝑎

𝜓𝛼1
(𝐴−𝑎)

𝜓𝛼2
(𝑎)

𝛿(Ԧ𝑟 − Ԧ𝑟𝐴−𝑎,𝑎)

(𝐴 − 𝑎)
𝑎
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n-4He scattering phase shifts

3N vs

NN “bare”

NN+3N
NN+3N-induced
expt.

• The 3N interactions influence mostly 

the P waves.

• Conservative estimate of EFT accuracy 

is in the range of 3N force effects.

Some of the shortcomings of the nuclear 
interaction can already be probed in p-
shell nuclei through reactions.
[known since the work of K. Nollett]

R-matrix results from G. Hale
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Primordial Nucleosynthesis (blue)
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ITER design (Cadarache, France)

Primordial Nucleosynthesis (blue)

Structure of the 5He Τ3 2
+

resonance

s-shell

p-shell

1p1h 
excitation

(d,n)
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• The S-factor is globally well reproduced.
• The accurate reproduction (of the order of

keV) of the resonance position/width is
essential.

• Shape of a the angular distribution agrees
with recent evaluation.

S-factor: computed and data Angular distribution at 𝜃 = 0°

<10 keV

Ab initio

Adjusted to Τ3 2
+

resonance centroid

M. Drosg and N. Otuka, INDC(AUS)-0019 (2015). 
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S-factor: NCSMC vs binary cluster

no 5He structure

• Importance of structure of neighboring
resonances is magnified in transfer
reactions.

Structure of the 5He Τ3 2
+

resonance

s-shell

1p1h 
excitation

pheno

𝟓He 𝟒𝑺 Τ𝟑 𝟐 𝑬𝒓 (𝐤𝐞𝐕) 𝚪𝒓 (𝐤𝐞𝐕)

Cluster basis (D g.s. 
only)

105 1100

Cluster basis 120 570

NCSMC (D g.s. only) 65 160

NCSMC 55 110

NCSMC-pheno 50 98

R-matrix 48 25
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ℏΩ

• Τ3 2
+

resonance converges the fastest with
ℏ𝜔 = 16 MeV, understood from major
shell splitting.

• n-4He elastic scattering independent of HO
frequency and SRG flow.

Convergence of Τ3 2
+

resonance n-4He phase shifts

𝑵max
ℏ𝝎=𝟐𝟎 MeV

𝜦𝑺𝑹𝑮=𝟐. 𝟎 fm−𝟏

ℏ𝝎=𝟏𝟔 MeV

𝜦𝑺𝑹𝑮=𝟏. 𝟕 fm−𝟏

7 78.70% 42.29%

9 45.04% 18.85%

11 25.68% 8.41%

13 13.78% -

a g.s.
2H continuum

5He resonances
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Anisotropies of X-section

• Influence of p- and d-waves in the slope

and bump of ൗ𝜕𝜎rel
𝜕Ω, respectively.

• Overall good reproduction of data:
collision matrix is expected to be accurate.

Anisotropies of X-section

P. Bém et al., Few-Body Syst22, 77 (1997).
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• Discretization of 2H is essential for the
reproduction of the S-factor.

• Stable behavior with respect to the
number of 2H pseudo states.

• Converged with Nmax.

Convergence wrt 2H continuum Convergence with Nmax

a g.s.
2H continuum

5He resonances

N
m

ax
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• 3N force impacts:
➢ The threshold position.

➢ The positions and splitting between the Τ3 2
+

and Τ1 2
+

resonances.
• Tensor force is essential to model the 3H(d,n)4He transfer reaction.

Reaction threshold

𝐽 = 1𝐽 = Τ1 2

𝐽 = ൗ3 2

𝐽 = 0

s-wave

d-wave
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• The S-factor is globally well
reproduced.

• However, there are discrepancies
between data sets around the
peak of the S-factor.

• Influence of p- and d-waves in
agreement with data.

e- screening
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Deviations from a pure s-wave of
the analyzing tensors are globally
reproduced in shape but their
amplitude is not.
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Deviations from a pure s-wave of
the analyzing tensors are globally
reproduced in shape but their
amplitude is not.
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Polarization transfer is in agreement
with data around the fusion peak
but disagree at higher energies.
[as is the differential cross-section]

K.A. Fletcher, et al. PRC66 (2002)

Caution: analyzing tensors cannot
be deduced straightforwardly from
mirror reaction.
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𝜎polar 𝜃

= 𝜎 𝜃 1 +
1

2
𝑝𝑧𝑧𝐴𝑧𝑧 +

3

2
𝑝𝑧𝑞𝑧𝐶𝑧,𝑧

• Predictions for polarized 3H Ԧ𝑑, 𝑛 4He

enhancement factor and reaction rate.
• Confirmation of maximum enhancement

(𝛿 = 1.5) scenario.
• Ab initio calculation shows that 𝛿 = 1.38

can be achieved in lab.

Enhancement factor and reaction rate
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Angular distribution in different 
polarization scenarios

𝐽 = 1
𝐽𝑧=1

𝐽 = Τ1 2
𝐽𝑧= Τ−1 2

Spin tensor properties of the deuteron 
give the angular shape.

(Same as in 3He( Ԧ𝑑, 𝑝)4He)

Total cross section increased on average no effects Total cross section decreased
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0p3/2

0p1/2

Z=4 N=7

1s1/2

0s1/2

Single particle interpretation 
using nuclear shell model 

In a shell model picture, the g.s. expected to be Jπ =
Τ1 2

−
.

In reality, 11Be g.s. is Jπ = Τ1 2
+

-- parity inversion.

Very weakly bound: Eth=-0.5 MeV Halo state --
dominated by n-10Be in a S-wave.

The 1/2- state also bound -- only by 180 keV.

Can we describe 11Be in ab initio calculations?

Continuum must be included.

Does the 3N interaction play a role in the parity 
inversion? 
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A. Calci et al. PRL117 (2016)

Parity inversion
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P. Capel, D.R. Phillips, H.-W. Hammer PRC09 034610 (2018)

Pb@ 69 MeV/nucl.

C@ 67 MeV/nucl.

Inputs:
• Ab initio ANC for s- and p-

wave bound states.
• Experimental Sn.

Methods:
• Response function and 10Be-n potential 

from Halo EFT.
• Optical potential for target interactions.
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Summary:

❖ Ab initio reaction model is reasonably accurate.

❖ Continued evidence that 3N force is essential to p-shell physics.

❖ Surprisingly good postdiction of DT and D3He fusion reaction.

❖ Confirmation of a 50 year old idea suggested for plasma application.


