Many-body calculations of condensed matter systems

Palaiseau Theoretical Spectroscopy Group \&friends

Palaiseau Theoretical Spectroscopy Group \&friends

Marco Vanzini Jianqiang Sky Zhou Ayoub Aouina Pierluigi Cudazzo Ckaudia Roedl Matteo Gatti

Marilena Tzavala Martin Panholzer John Rehr, Josh Kas (Seattle)

\rightarrow Theoretical Spectroscopy: what are we heading for?

\rightarrow The framework
\rightarrow Recycling I: \rightarrow Cumulants

* satellites in the one-body spectral function
* satellites in the two-body spectral function
\rightarrow Recycling II: \rightarrow Connector Theory
* the dynamic structure factor
* the one-body spectral function
\rightarrow Conclusions and outlook

ARPES

From Damascelli et al., RMP 75, 473 (2003) and http://www.ieap.uni-kiel.de/surface/ag-kipp/arpes/arpes.htm

Cohen and Chelikowsky: "Electronic Structure and Optical Properties of Semiconductors" Solid-State Sciences 75, Springer-Verlag 1988)
M. Guzzo et al., PRL 107, 166401 (2011)

$$
G(1,2) \equiv-i\left\langle\Psi_{0}\right| \mathbf{T}\left[\hat{\psi}(1) \hat{\psi}^{\dagger}(2)\right]\left|\Psi_{0}\right\rangle
$$

\rightarrow The Framework

$$
1=\left(\mathrm{r}_{1}, \sigma_{1}, \mathrm{t}_{1}\right)
$$

Dyson equation: $\mathcal{G}=\mathcal{G}_{0}+\mathcal{G}_{0} \Sigma \mathcal{G}$

$+\ldots \ldots .$.
L. Hedin (1965)
$W=\varepsilon^{-1}(\omega) v$
\rightarrow Effective interaction brings in additional excitations

Usually good gaps and band structures in GW

van Schilfgaarde, Kotani, Faleev, Phys. Rev. Lett. 96, 226402 (2006)

Self-energy and Satellites

Cohen and Chelikowsky: "Electronic Structure and Optical Properties of Semiconductors" Solid-State Sciences 75, Springer-Verlag 1988)
M. Guzzo et al., PRL 107, 166401 (2011)

Self-energy and Satellites

Indeed, our favorite approx. fail !!!

Cohen and Chelikowsky: "Electronic Structure and Optical Properties of Semiconductors" Solid-State Sciences 75, Springer-Verlag 1988)
M. Guzzo et al., PRL 107, 166401 (2011)

Recycling I: \rightarrow Cumulants

\rightarrow Need higher order expressions
\rightarrow Want many-body also in complex materials
\rightarrow Try to be more expeditious - or calculate less: recycle!!!

Cohen and Chelikowsky: "Electronic Structure and Optical Properties of Semiconductors" Solid-State Sciences 75, Springer-Verlag 1988)
M. Guzzo et al., PRL 107, 166401 (2011)

Alternative: solve approximately a functional differential equation

$$
G_{u}\left(1,1^{\prime}\right)=G_{\mathrm{cl}}\left(1,1^{\prime}\right)+i G_{\mathrm{cl}}(1, \overline{2}) W_{u}(\overline{2}, \overline{3}) \frac{\delta G_{u}\left(\overline{2}, 1^{\prime}\right)}{\delta u_{\mathrm{cl}}\left(\overline{3}^{+}\right)}
$$

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (reformulated)

$$
G_{\mathrm{cl}}=G_{0}+G_{0}\left[U+v_{H}\right] G=G_{0}+G_{0} u_{\mathrm{cl}} G
$$

$$
1 \equiv\left(\mathrm{r}_{1}, \sigma_{1}, t_{1}\right)
$$

Exact equation that creates diagrams, GW, Hedin's equations,..... Ansatz: $G\left(t_{1}, t_{2}\right)=G_{\mathrm{cl}}\left(t_{1}, t_{2}\right) \mathcal{F}\left(t_{1}, t_{2}\right)$

For decoupled orbitals, analytic solution:

$$
G_{i j}=\sum_{k} G_{\mathrm{cl}}^{i k} \mathcal{F}_{k j}
$$

$$
\mathcal{F}\left(t_{1}-t_{2}\right)=\exp \left[-i \int_{t_{1}}^{t_{2}} d t^{\prime} \int_{t^{\prime}}^{t_{2}} d t^{\prime \prime} \mathcal{W}\left(t^{\prime} t^{\prime \prime}\right)\right]
$$

$$
G_{u}\left(1,1^{\prime}\right)=G_{\mathrm{cl}}\left(1,1^{\prime}\right)+i G_{\mathrm{cl}}(1, \overline{2}) W_{u}(\overline{2}, \overline{3}) \frac{\delta G_{u}\left(\overline{2}, 1^{\prime}\right)}{\delta u_{\mathrm{cl}}\left(\overline{3}^{+}\right)}
$$

Exact equation that creates diagrams, GW, Hedin's equations,.....

$$
\text { Ansatz: } \quad G\left(t_{1}, t_{2}\right)=G_{\mathrm{cl}}\left(t_{1}, t_{2}\right) \mathcal{F}\left(t_{1}, t_{2}\right)
$$

For decoupled orbitals, analytic solution: $\mathcal{F}\left(t_{1}-t_{2}\right)=\exp \left[-i \int_{t_{1}}^{t_{2}} d t^{\prime} \int_{t^{\prime}}^{\iota_{2}} d t^{\prime \prime} \mathcal{W}\left(t^{\prime} t^{\prime \prime}\right)\right]$
With some coupling, still analytic:

$$
\mathcal{F}\left(t_{1}-t_{2}\right)=\exp \left[-i \int_{t_{1}}^{t_{2}} \quad \text { Linear functional of } \Sigma_{\mathrm{GW}}\right.
$$

Recycle GW self-energy to get much improved results!

$$
\text { Note: } \quad G=\frac{G_{\mathrm{cl}}}{1-G_{\mathrm{cl}} \Sigma_{\mathrm{xc}}} \quad \text { versus } \quad G=G_{\mathrm{cl}} e^{C}
$$

\rightarrow Cumulant expansion in bosons

L. Hedin, Physica Scripta 21, 477 (1980), ISSN 0031-8949.
L. Hedin, J. Phys.: Condens. Matter 11, R489 (1999).
P. Nozieres and C. De Dominicis, Physical Review 178, 1097 (1969), ISSN 0031-899X.
D. Langreth, Physical Review B 1, 471. (1970).

Sodium: Aryasetiawan et al., PRL 77, 1996
Silicon: Kheifets et al., PRB 68, 2003
In DMFT context: Casula, Rubtsov, Biermann, PRB 85, 035115 (2012)

Here: \rightarrow the first in a series of approximations \rightarrow link to GW \rightarrow prescription for ingredients

\rightarrow Electron-boson coupling

$$
\begin{aligned}
& H=\epsilon_{0} c^{\dagger} c+c c^{\dagger} g\left(a+a^{\dagger}\right)+\omega_{0} a^{\dagger} a \\
& A^{h}(\omega)=\sum_{n=0}^{\infty} \frac{\beta^{n} e^{-\beta}}{n!} \delta\left(\omega-\epsilon_{0}-\beta \omega_{0}-n \omega_{0}\right) \\
& \beta=\frac{g^{2}}{\omega_{0}^{2}}
\end{aligned}
$$

Cohen and Chelikowsky: "Electronic Structure and Optical Properties of Semiconductors" Solid-State Sciences 75, Springer-Verlag 1988)
Exp.: F. Sirotti et al., TEMPO beamline SOLEIL

Magnon

Convincing description in terms of electron-boson coupling.....

IF

\rightarrow we solve the coupled problem reasonably well
\rightarrow we have the boson (plasmon, magnon, photon, phonon,...)

ARPES bulk aluminum

Exp.: Swiss Light Source

Zhou, Reining, Nicolaou, Bendounan, Ruotsalainen, Vanzini, Kas, Rehr, Muntwiler, Strocov, Sirotti, Gatti, 2018

Zhou, Reining, Nicolaou, Bendoun Sirotti, Gatti, 2018.

)V,

Zhou, Reining, Nicolaou, Bendoun Sirotti, Gatti, 2018.

Zhou, Reining, Nicolaou, Bendoun Sirotti, Gatti, arXiv.....

Zhou, Gatti, Kas, Rehr, Reining, Physical Review B 97, 035137 (2018).
Nery, Allen, Antonius, Reining, Miglio, Gonze, PRB 97, 115145 (2018).

ARPES bulk aluminum

Exp.: Swiss Light Source

Zhou, Reining, Nicolaou, Bendounan, Ruotsalainen, Vanzini, Kas, Rehr, Muntwiler, Strocov, Sirotti, Gatti, 2018

\rightarrow Electron-hole correlation

Dressed hole

e-h problem: Bethe-Salpeter (Dyson) equation
Cumulant ansatz

Many-body calculations of condensed matter systems

\rightarrow The framework
\rightarrow Recycling I: \rightarrow Cumulants

* satellites in the one-body spectral function
* satellites in the two-body spectral function
\rightarrow Recycling II: \rightarrow Connector Theory

> * the dynamic structure factor
> * the one-body spectral function
\rightarrow Conclusions and outlook

\rightarrow Density response in TDDFT and BSE

1. Good descriptor: density $\mathrm{n}(\mathrm{r}) \quad \rightarrow \mathrm{DFT}$

So, first we have to calculate the density
2. Auxiliary system \rightarrow KS-DFT

$$
\begin{aligned}
& \left(-\frac{1}{2} \nabla^{2}+v_{\mathrm{eff}}(\mathbf{r})\right) \psi_{i}(\mathbf{r})=\varepsilon_{i} \psi_{i}(\mathbf{r}) \\
& v_{\mathrm{eff}}(\mathbf{r})=v_{\mathrm{ext}}(\mathbf{r})+v_{\mathbf{H}}([n], \mathbf{r})+v_{\mathrm{xc}}([n], \mathbf{r}) .
\end{aligned}
$$

\rightarrow Why are we here?

1. Good descriptor: density $\mathrm{n}(\mathrm{r}) \quad \rightarrow \mathrm{DFT}$

So, first we have to calculate the density
2. Auxiliary system

$$
\rightarrow \text { KS-DFT }
$$

So, first we have to calculate the xc potential
3. Model system

$$
\rightarrow \text { LDA }
$$

$$
\begin{aligned}
v_{\mathrm{xc}}([n], r) & \approx v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right) \\
n_{r}^{h} & =n(r)
\end{aligned}
$$

Used empirically in DFT-LDA!

\rightarrow Why are we here?

1. Good descriptor: density $\mathrm{n}(\mathrm{r}) \quad \rightarrow \mathrm{DFT}$

So, first we have to calculate the density
2. Auxiliary system

$$
\rightarrow \text { KS-DFT }
$$

So, first we have to calculate the xc potential
3. Model system

$$
\rightarrow \text { LDA }
$$

$$
\begin{aligned}
v_{\mathrm{xc}}([n], r) & \approx v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right)
\end{aligned} \quad v_{\mathrm{xc}}([n], r)=v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right), ~ n_{r}^{h}=n(r) \quad \approx n(r)
$$

Why is this good?

LDA: Do an advanced (QMC) calculation in the HEGs

- but do it only once and forever, and for everyone!
D. M. Ceperley and B. J. Alder

Phys. Rev. Lett. 45, 566 (1980)

Why is this good?

1. General: do involved calculations in the model, once and forever, for everyone

Why is this good?

1. General: do involved calculations in the model, once and forever, for everyone

Connector: $\quad V_{\mathrm{aux}}^{\mathrm{real}}([n], x)=V_{\mathrm{aux}}^{\mathrm{HEG}}\left(n^{h}, \tilde{x}\right)$

$$
n^{h}=\left[V_{\mathrm{aux}}^{\mathrm{HEG}}(\tilde{x})\right]^{-1}\left(V_{\mathrm{aux}}^{\mathrm{real}}([n], x)\right)
$$

$$
n_{x \tilde{x}}^{h}[n]=\left[V_{\mathrm{aux}}^{\mathrm{HEG}}(\tilde{x})\right]^{-1}\left(V_{\mathrm{aux}}^{\mathrm{real}}([n], x)\right)
$$

Why is this good?

1. General: do involved calculations in the model,
once and forever, for everyone

Connector: $\quad V_{\text {aux }}^{\text {real }}([n], x)=V_{\mathrm{aux}}^{\mathrm{HEG}}\left(n^{h}, \tilde{x}\right)$

$$
\begin{aligned}
& n^{h}=\left[V_{\mathrm{aux}}^{\mathrm{HEG}}(\tilde{x})\right]^{-1}\left(V_{\mathrm{aux}}^{\mathrm{real}}([n], x)\right) \\
& n_{x \tilde{x}}^{h}[n]=\left[V_{\mathrm{aux}}^{\mathrm{HEG}}(\tilde{x})\right]-1\left(V_{\mathrm{aux}}^{\mathrm{real}}([n], x)\right)
\end{aligned}
$$

Why is this good?

1. General: do involved calculations in the model, once and forever, for everyone
2. Connector: error canceling

$$
\begin{aligned}
& n^{h}=\left[V_{\text {aux }}^{\mathrm{HEG}}(\tilde{x})\right]^{-1}\left(V_{\text {aux }}^{\mathrm{real}}([n], x)\right) \\
& n_{x \tilde{x}}^{h}[n]=\left[V_{\text {aux }}^{\mathrm{HEG}}(\tilde{x})\right]^{-1}\left(V_{\text {aux }}^{\mathrm{real}}([n], x)\right)
\end{aligned}
$$

Vanzini, Aouina, Panholzer, Gatti, Reining (2018)

\rightarrow Connector Theory: Example

Target: Hartree potential of finite system. Model: jellium sphere.

$$
\begin{gathered}
v_{H}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}!=!n^{h o m} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
n^{h o m}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} / \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
v_{H}(\mathbf{r},[n])=v_{H}^{\text {model }}\left(\mathbf{r}, n^{\text {hom }}(\mathbf{r})\right)
\end{gathered}
$$

Now approximate, e.g. $\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rightarrow c$
In original expression:

$$
v_{H}(\mathbf{r}) \approx N * c
$$

In connector: $\quad n^{\text {hom }}(\mathbf{r},[n])=\frac{1}{4 \pi R^{3} / 3} \int d \mathbf{r}^{\prime} n\left(\mathbf{r}^{\prime}\right)=\bar{n}$ DA
Correct long-range behaviour, c cancels!!!

$$
v_{H}(\mathbf{r}) \approx \bar{n} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

\rightarrow Connector Theory: Example

Target: Hartree potential of finite system. Model: jellium sphere.

$$
v_{H}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}!=!n^{\text {hom }} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Errors due to approximations cancel in connector

Much better than same approx. directly on $V^{\text {real }}$

Model system tabulated and used in simple way

In original expression:

$$
v_{H}(\mathbf{r}) \approx N / c
$$

In connector: $\quad n^{\text {hoo }}(\mathbf{r},[n])=\frac{1}{4 \pi R^{3} / 3} \int d \mathbf{r}^{\prime} n\left(\mathbf{r}^{\prime}\right)=\bar{n}$
Correct long-range behaviour, c cancels!!!

$$
v_{H}(\mathbf{r}) \approx \bar{n} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

IXS-Sodium

Making it time-dependent:

(TD)DFT point of view: moving density

hv

Excitation?

\rightarrow Induced potentials

Excitation?

\rightarrow Induced potentials

Example : \rightarrow the dynamic structure factor

$$
\mathrm{S}(\mathrm{q}, \omega) \sim \operatorname{Im}[\chi(\mathrm{q}, \omega)]
$$

In TDDFT,

$$
\chi(\mathrm{q}, \omega)=\chi_{0}(\mathrm{q}, \omega)+\chi_{\Delta}(\mathrm{q}, \omega)\left\{\mathrm{v}(\mathrm{q})+\mathrm{f}_{\mathrm{xc}}(\mathrm{q}, \omega)\right\} \chi(\mathrm{q}, \omega)
$$

Auxiliary interaction
(Matrices in G,G')
\rightarrow As a model system, we stay with the HEG
v_{xc} in the HEG from QMC (Ceperley and Alder)
But $f_{x c}$?

Martin Panholzer following

H. M. Boehm, R. Holler, E. Krotscheck, and M. Panholzer, Phys. Rev. B 82, 224505 (2010)
\rightarrow Calculate χ in the HEG:
\rightarrow action with Jastrow wavefunction
\rightarrow linear response
\rightarrow selected number of excitations
$\rightarrow \mathrm{S}(\mathrm{q})$ from QMC
\rightarrow Calculate f_{xc} in the HEG by inverting $\chi=\chi_{0}+\chi_{\square}\left[\mathrm{v}+\mathrm{f}_{\mathrm{xc}}\right] \chi$

HEG f ${ }_{x c}$

Static: M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B 57, 14569 (1998).

Dynamic: Martin Panholzer et al.

S. Huotari et al., PRB 77, 1951252008
K. Sturm and A. Gusarov, Phys. Rev. B 62, 164742000.

HEG f

Static: M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B 57, 14569 (1998).

Dynamic: Martin Panholzer et al.

Connector for $\mathrm{f}_{\mathrm{xc}}\left(\mathrm{r}, \mathrm{t} ; \mathrm{r}^{\prime}, \mathrm{t}^{\prime}\right)$:

 "mean density approximation"Panholzer, Gatti, Reining, Phys. Rev. Lett. 120, 166402 (2018)

Silicon

Panholzer, Gatti, Reining, Phys. Rev. Lett. 120, 166402 (2018)
\rightarrow The framework
\rightarrow Recycling I: \rightarrow Cumulants

* satellites in the one-body spectral function
* satellites in the two-body spectral function
\rightarrow Recycling II: \rightarrow Connector Theory
* the dynamic structure factor
* the one-body spectral function
\rightarrow Conclusions and outlook

\rightarrow (One of) the problem(s): memory effects

In time-dependent problems: often make adiabatic aproximation

$$
f_{\mathrm{xc}}\left(\mathbf{r}, \mathbf{r}^{\prime}, t, t^{\prime} ;[n]\right) \rightarrow \delta\left(t-t^{\prime}\right) f_{\mathrm{xc}}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega=0 ;[n](t)\right)
$$

Consequences:

* e.g. after switching off perturbation, $\mathrm{n}(\mathrm{r}, \mathrm{t}) \rightarrow \mathrm{v}(\mathrm{r}, \mathrm{n}(\mathrm{r}, \mathrm{t})) \rightarrow \omega_{\mathrm{i}}(\mathrm{t})$
* wrong charge transfer
* cannot describe Rabi oscillations

Important work by:
Maitra, Burke, Nest,...

\rightarrow (One of) the problem(s): memory effects

$$
f_{\mathrm{xc}}\left(\mathbf{r}, \mathbf{r}^{\prime}, t-t^{\prime} ;[n]\right) \rightarrow f_{\mathrm{xc}}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega ;[n]\right)
$$

In equilibrium: memory $\rightarrow \omega$-dependence

\rightarrow To understand how to include memory effects, we can study frequency-dependent interactions and potentials

$$
\begin{aligned}
& \frac{\delta v_{H}(\mathbf{r}, t ;[n])}{\delta n\left(\mathbf{r}^{\prime}, t^{\prime}\right)}=\frac{\delta \int d \mathbf{x} v_{c}(\mathbf{r}-\mathbf{x}) n(\mathbf{x}, t)}{\delta n\left(\mathbf{r}^{\prime}, t^{\prime}\right)}=v_{c}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
& \frac{\delta v_{\mathrm{xc}}(\mathbf{r}, t ;[n])}{\delta n\left(\mathbf{r}^{\prime}, t^{\prime}\right)} \equiv f_{\mathrm{xc}}\left(\mathbf{r}, \mathbf{r}^{\prime}, t, t^{\prime} ;[n]\right)
\end{aligned}
$$

Memory!

$f_{\mathrm{xc}}\left(\mathbf{r}, \mathbf{r}^{\prime}, t-t^{\prime} ;[n]\right) \rightarrow f_{\mathrm{xc}}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega ;[n]\right)$
In equilibrium: memory $\rightarrow \omega$ - dependence

$$
f_{x c}\left(r, r^{\prime}, \omega\right)
$$

$1.6 r$

O. Gunnarsson, M. Jonson, and B. Lundqvist, Solid State Communications 24, 765 (1977); Phys. Rev. B 20, 3136 (1979).

$$
f_{x c}\left(r, r^{\prime}, \omega\right)
$$

$1.6 r$

$$
f_{x c}\left(r, r^{\prime}, \omega\right)
$$

Interatomic distances: $\mathrm{Na}=1.75 r_{s} \quad \mathrm{Si}=2.2 r_{s}$

\rightarrow Mean Density Approximation

See also V. U. Nazarov, G. Vignale, and Y.-C. Chang, Phys. Rev. Lett. 102, 113001 (2009).

$$
\begin{gathered}
\Delta v^{x c}(\mathbf{r}, t)[n, \bar{n}]=\sum_{\mathbf{G}} \int_{1 B Z} \frac{d^{3} q}{(2 \pi)^{3}} \int \frac{d w}{2 \pi} e^{i(\mathbf{q} \cdot \mathbf{r}-w t)} e^{i \mathbf{G} \cdot \mathbf{r}} \delta n(\mathbf{q}+\mathbf{G}, w) f_{\mathbf{G}, \mathbf{G}}^{x c}(\mathbf{q}, w)[\bar{n}] \\
\Delta v^{x c}(\mathbf{r}, t)\left[n^{h}, \bar{n}^{h}\right]=\Delta n^{h} f_{h}^{x c}\left(\bar{n}^{h}\right) \\
\Delta v^{x c}(\mathbf{r}, t)[n, \bar{n}]=\Delta v^{x c}(\mathbf{r}, t)\left[n^{h}, \bar{n}^{h}\right] \\
n^{h}=\bar{n}^{h}+\sum_{\mathbf{G}} \int_{1 B Z} \frac{d^{3} q}{(2 \pi)^{3}} \int \frac{d w}{2 \pi} e^{i(\mathbf{q} \cdot \mathbf{r}-w t)} e^{i \mathbf{G} \cdot \mathbf{r}} \Delta n(\mathbf{q}+\mathbf{G}, w) \frac{f_{\mathbf{G}}^{x c}(\mathbf{q}, w)[\bar{n}]}{f_{h}^{x c}(\bar{n})}
\end{gathered}
$$

$n_{\mathbf{r}}^{c o n}=\frac{1}{f^{C O D P}(\bar{n})} \int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathbf{r}} n(\mathbf{k}) f^{x c}(\mathbf{k}, \bar{n})$
 $\Delta n(\mathbf{r})=B \cos (\mathbf{a} \cdot \mathbf{r})+A$

Figure 15: Two different starting points : the mean and the maximum of the density in the case of slowly varying density $|\mathbf{a}|=0.4$

- Time dependent density: $n(\mathbf{r}, t)=A \cos (\mathbf{a} \cdot \mathbf{r}-\omega t)+B$

(a)

(b)

Gaussian density: $n(\mathbf{r})=A e^{-\frac{1}{2 \sigma}(\mathbf{r}-\mathbf{m})^{2}}+B e^{-\frac{1}{2 \sigma}(\mathbf{r}+\mathbf{m})^{2}}$

(a) exchange correlation potential for two gaussian densities using connector strategy

(b) The exchange correlation potential of LiH taken from [4]
[4] S. V. Kohut et al.
Phys. Chem. Chem. Phys., 18:20938, (2016).

\rightarrow Connector Theory: Example

Target: Hartree potential of finite system. Model: jellium sphere.

$$
\begin{gathered}
v_{H}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}!=!n^{h o m} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
n^{h o m}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} / \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
v_{H}(\mathbf{r},[n])=v_{H}^{\text {model }}\left(\mathbf{r}, n^{\text {hom }}(\mathbf{r})\right)
\end{gathered}
$$

Now approximate, e.g. $\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rightarrow c$
In original expression:

$$
v_{H}(\mathbf{r}) \approx N * c
$$

In connector: $\quad n^{\text {hom }}(\mathbf{r},[n])=\frac{1}{4 \pi R^{3} / 3} \int d \mathbf{r}^{\prime} n\left(\mathbf{r}^{\prime}\right)=\bar{n}$ DA
Correct long-range behaviour, c cancels!!!

$$
v_{H}(\mathbf{r}) \approx \bar{n} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

\rightarrow Connector Theory: Example

Target: Hartree potential of finite system. Model: jellium sphere.

$$
v_{H}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}!=!n^{\text {hom }} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Errors due to approximations cancel in connector

Model system tabulated and used in simple way

$$
v_{H}(\mathbf{r},[n])=v_{H} \quad(\mathbf{r}, n(\mathbf{r}))
$$

Now approximate, e.g. $\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rightarrow c$
In original expression:

$$
v_{H}(\mathbf{r}) \approx N / c
$$

In connector: $\quad n^{\text {hom }}(\mathbf{r},[n])=\frac{1}{4 \pi R^{3} / 3} \int d \mathbf{r}^{\prime} n\left(\mathbf{r}^{\prime}\right)=\bar{n}$
Correct long-range behaviour, c cancels!!!

$$
v_{H}(\mathbf{r}) \approx \bar{n} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Example : \rightarrow the dynamic structure factor

$$
\mathrm{S}(\mathrm{q}, \omega) \sim \operatorname{Im}[\chi(\mathrm{q}, \omega)]
$$

In TDDFT,

$$
\chi(\mathrm{q}, \omega)=\chi_{\mathrm{a}}(\mathrm{q}, \omega)+\chi_{\Delta}(\mathrm{q}, \omega)\left\{\mathrm{v}(\mathrm{q})+\mathrm{f}_{\mathrm{xc}}(\mathrm{q}, \omega)\right\} \chi(\mathrm{q}, \omega)
$$

Auxiliary interaction
(Matrices in G,G')

\rightarrow As a model system, we stay with the HEG
v_{xc} in the HEG from QMC (Ceperley and Alder)
But $f_{x c}$?

Martin Panholzer following

H. M. Boehm, R. Holler, E. Krotscheck, and M. Panholzer, Phys. Rev. B 82, 224505 (2010)
\rightarrow Calculate χ in the HEG:
\rightarrow action with Jastrow wavefunction
\rightarrow linear response
\rightarrow selected number of excitations
$\rightarrow \mathrm{S}(\mathrm{q})$ from QMC
\rightarrow Calculate f_{xc} in the HEG by inverting $\chi=\chi_{\square}+\chi_{\square}\left[\mathrm{v}+\mathrm{f}_{\mathrm{xc}}\right] \chi$

HEG f ${ }_{x c}$

Static: M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B 57, 14569 (1998).

Dynamic: Martin Panholzer et al.

S. Huotari et al., PRB 77, 1951252008
K. Sturm and A. Gusarov, Phys. Rev. B 62, 164742000.

$$
f_{x c}\left(r, r^{\prime}, \omega\right)
$$

$1.6 r$

O. Gunnarsson, M. Jonson, and B. Lundqvist, Solid State Communications 24, 765 (1977); Phys. Rev. B 20, 3136 (1979).

$$
f_{x c}\left(r, r^{\prime}, \omega\right)
$$

$1.6 r$

$$
f_{x c}\left(r, r^{\prime}, \omega\right)
$$

Interatomic distances: $\mathrm{Na}=1.75 r_{s} \quad \mathrm{Si}=2.2 r_{s}$

\rightarrow Mean Density Approximation

See also V. U. Nazarov, G. Vignale, and Y.-C. Chang, Phys. Rev. Lett. 102, 113001 (2009).

HEG f ${ }_{x c}$

Static: M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B 57, 14569 (1998).

Dynamic: Martin Panholzer et al.

Connector for $\mathrm{f}_{\mathrm{xc}}\left(\mathrm{r}, \mathrm{t} ; \mathrm{r}^{\prime}, \mathrm{t}^{\prime}\right)$:

 "mean density approximation"

Silicon

\rightarrow Connector Theory for one-body spectral functions

Cohen and Chelikowsky: "Electronic Structure and Optical Properties of Semiconductors" Solid-State Sciences 75, Springer-Verlag 1988)
M. Guzzo et al., PRL 107, 166401 (2011)

Usually from GW, or similar

$$
G\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)=G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)+G_{0}\left(\mathbf{r}, \mathbf{r}_{1}, \omega\right) \Sigma\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega\right) G\left(\mathbf{r}_{2}, \mathbf{r}^{\prime}, \omega\right)
$$

Non-local, complex self-energy

$$
A_{\ell \ell}(\omega)=\frac{1}{\pi}\left|\operatorname{Im} G_{\ell \ell}(\omega)\right| \quad \text { ARPES: } \ell=\mathbf{k}
$$

$$
\text { PES: } \quad A(\omega)=\sum_{\ell} A_{\ell \ell}(\omega)=\frac{1}{\pi} \int d \mathbf{r}|\operatorname{Im} G(\mathbf{r}, \mathbf{r}, \omega)|
$$

$$
n(\mathbf{r})=\int_{-\infty}^{\mu} d \omega A(\mathbf{r}, \mathbf{r}, \omega)
$$

Only a part of G needed \rightarrow can we make a simpler auxiliary system? YES: $v_{S F}(r, \omega) \quad$ (see M. Gatti et al., PRL 99057401 (2007))

$$
v_{S F}(\boldsymbol{r}, \omega) \text { from } \Sigma\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \text { HSE06 } \quad \rightarrow \text { in HEG: } v_{S F}(\omega) \text { from } \Sigma\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

(perturbative)

Silicon
------- LDA HSE06

LDA
HSE06

About the design of frequency-dependent potentials and interactions

\rightarrow Goal and problem

\rightarrow Recycling I: \rightarrow Cumulants

* satellites in the one-body spectral function
* satellites in the two-body spectral function
\rightarrow Recycling II: \rightarrow Connector Theory

> * the dynamic structure factor
> * the one-body spectral function
\rightarrow Conclusions and outlook
G. Lani, P. Romaniello, and L. Reining, New J. Phys. 14, 013056 (2012); J.A. Berger et al., New J. Phys. 16, 113025 (2014); A. Stan, et al., New J. Phys. 17, 093045 (2015);

JS Zhou, et al., J. Chem. Phys. 143, 184109; JS Zhou, M Gatti, JJ Kas, JJ Rehr, L Reining, Phys. Rev. B 97, 035137 (2018);

M Vanzini, L Reining, M Gatti, arXiv:1708.02450; M Panholzer, M Gatti, L Reining; arXiv:1708.02992.

Sodium as a test case

```
------- LDA
HSE06
```


Connector:

$v_{S F}(\boldsymbol{r}, \omega)=$

$$
+v_{x c}(\boldsymbol{r})-v_{x c}^{h}[\bar{n}]
$$

Energy scale

Alignment of energies

In the $\mathrm{HEG}, \mathrm{k} \Longleftrightarrow \omega$
\rightarrow we can correct the b.s. by $\Delta(\omega)$ while keeping $\mathrm{A}(\omega)$ the same (but change way to calculate it)

Then use $v_{S F}^{h}(\omega) \longrightarrow v_{S F}^{h}(\omega)-\Delta^{h}(\omega)$ in

$$
\begin{aligned}
& v_{S F}(\boldsymbol{r}, \omega)= \\
& \qquad v_{n^{h}=n(\boldsymbol{r})}^{h}\left[\frac{\omega_{P}(n(\boldsymbol{r}))}{\omega_{P}(\bar{n})}\left(\omega-v_{K S}(\boldsymbol{r})+v_{K S}^{h}[\bar{n}]\right)\right] \\
&+v_{x c}(\boldsymbol{r})-v_{x c}^{h}[\bar{n}]
\end{aligned}
$$

$\mathrm{a}::$ band $\Gamma-\mathrm{N}$

Lattice Constant

Quasi-particles and satellites from a direct approach to the calculation of

 many-body Green's functions\rightarrow "Dynamical" correlation effects from Green's functions
\rightarrow Details of screening needed!
\rightarrow Screening beyond RPA: don't work too much!
\rightarrow Connector Theory
\rightarrow Connector Theory for spectral functions
\rightarrow Conclusions and outlook

The great idea: local density approximation

1. Near-sightedness principle:

$$
\mathrm{V}_{\mathrm{xc}}[\mathrm{n}](\mathrm{r}) \rightarrow \mathrm{V}_{\mathrm{xc}}(\mathrm{n}(\mathrm{r}), \mathrm{r})
$$

2. Near-sightedness principle:

Locally as in the HEG,

$$
\mathrm{V}_{\mathrm{xc}}(\mathrm{n}(\mathrm{r}), \mathrm{r}) \rightarrow \mathrm{V}_{\mathrm{xc}}^{\mathrm{HEG}} \text { with } \mathrm{n}=\mathrm{n}(\mathrm{r})
$$

Calculated super well and once forever!!!

Sodium as a test case

```
------- LDA
HSE06
```


Sodium as a test case

$\mathrm{c}::$ band $\Gamma-\mathrm{N}$
Core polarization

Sodium as a test case

$$
A(\omega)=\sum_{n \mathbf{k}} \delta\left(\omega-\varepsilon_{n \mathbf{k}}^{S F}(\omega)\right)=\sum_{n \mathbf{k}} \delta\left(\omega-\varepsilon_{n \mathbf{k}}^{H S E 06}\right)
$$

In HEG by definition: same DOS, although b.s. different!!!
\rightarrow Real, local and frequency dependent "HSE06-potential" tabulated in HEG
\rightarrow Can be used with simple connector; CPU gain \gg factor 10
For quite homogeneous and for quite local systems:
\rightarrow Reproduce integrated spectral function very well
\rightarrow Reproduce also the band structure very well

For covalent semiconductor:
\rightarrow Reproduce band width in integrated spectral function very well
\rightarrow Correct about 30% of KS-LDA gap error
\rightarrow Corresponding quality of the band structure

Density Functionals for the dynamic structure factor and more

\rightarrow Why are we here?
\rightarrow Connector theory for observables
\rightarrow The dynamic structure factor
\rightarrow The one-body spectral function
Local, real, ω-dep. Potential Advanced connector
\rightarrow New auxiliary systems
plus new connectors: a very promising way to go!

We know that $f_{x c}$ can often be taken to be quite smooth (head only) \rightarrow Must average around r,r'. If the density variation is fast on the scale of r-r' \rightarrow MDA

IXS-Sodium

S. Huotari et al., PRB 77, 1951252008 Sturm and Gusarov, PRB 62, 164742000.

\rightarrow Connector Theory

$\mathrm{V}^{\text {real }}(\mathrm{x}, P)=\mathrm{V}^{\text {model }}\left(\mathrm{y}, P_{c}(\mathrm{y}, \mathrm{x}, P)\right) \rightarrow$ Model must span real range
$P_{c}(\mathrm{x}, \mathrm{y}, P)=\left(\mathrm{V}^{\text {model }}\right)^{-1}\left(\mathrm{y}, \mathrm{V}^{\text {real }}(\mathrm{x}, P)\right) \rightarrow \boldsymbol{P}_{\boldsymbol{c}}$ must be allowed value

For example, real and positive if $P_{c}=n$

\rightarrow Connector Theory: Example

Target: Hartree potential of finite system. Model: jellium sphere.

$$
\begin{gathered}
v_{H}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}!=!n^{h o m} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
n^{h o m}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} / \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
v_{H}(\mathbf{r},[n])=v_{H}^{\text {model }}\left(\mathbf{r}, n^{\text {hom }}(\mathbf{r})\right)
\end{gathered}
$$

Now approximate, e.g. $\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rightarrow c$
In original expression:

$$
v_{H}(\mathbf{r}) \approx N * c
$$

In connector: $\quad n^{\text {hom }}(\mathbf{r},[n])=\frac{1}{4 \pi R^{3} / 3} \int d \mathbf{r}^{\prime} n\left(\mathbf{r}^{\prime}\right)=\bar{n}$ DA
Correct long-range behaviour, c cancels!!!

$$
v_{H}(\mathbf{r}) \approx \bar{n} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

\rightarrow Connector Theory: Example

Target: Hartree potential of finite system. Model: jellium sphere.

$$
v_{H}(\mathbf{r},[n])=\int d \mathbf{r}^{\prime} \frac{n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}!=!n^{\text {hom }} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Errors due to approximations cancel in connector

Model system tabulated and used in simple way

$$
v_{H}(\mathbf{r},[n])=v_{H} \quad(\mathbf{r}, n(\mathbf{r}))
$$

Now approximate, e.g. $\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \rightarrow c$
In original expression:

$$
v_{H}(\mathbf{r}) \approx N / c
$$

In connector: $\quad n^{\text {hom }}(\mathbf{r},[n])=\frac{1}{4 \pi R^{3} / 3} \int d \mathbf{r}^{\prime} n\left(\mathbf{r}^{\prime}\right)=\bar{n}$
Correct long-range behaviour, c cancels!!!

$$
v_{H}(\mathbf{r}) \approx \bar{n} \int_{R} d \mathbf{r}^{\prime} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

RC in the HEG: Kas, Rehr, Reining, Phys. Rev. B 90, 085112 (2014)

Approximation for screening

Silicon
------- LDA HSE06

\rightarrow As a model system, we stay with the HEG
v_{xc} in the HEG from QMC (Ceperley and Alder)
But $f_{x c}$?
Martin Panholzer, following
H. M. Boehm, R. Holler, E. Krotscheck, and M. Panholzer, Phys. Rev. B 82, 224505 (2010)
\rightarrow Calculate χ in the HEG:
\rightarrow action with Jastrow wavefunction
\rightarrow linear response
\rightarrow selected number of excitations
$\rightarrow \mathrm{S}(\mathrm{q})$ from QMC
\rightarrow Calculate f_{xc} in the HEG by inverting $\chi=\chi_{0}+\chi_{\square}\left[\mathrm{v}+\mathrm{f}_{\mathrm{xc}}\right] \chi$

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle \equiv F\left|\Phi_{0}\right\rangle=\exp \left\{\frac{1}{2}\left(\sum_{i} u^{(1)}\left(\mathbf{r}_{i}\right)+\sum_{i<j} u^{(2)}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)+\cdots\right)\right\}\left|\Phi_{0}\right\rangle \\
\left|\Psi_{t}\right\rangle=\frac{\mathrm{e}^{-\mathrm{i} E_{0} t / \hbar}}{\sqrt{\Lambda /}} F \mathrm{e}^{\delta U(t)}\left|\Phi_{0}\right\rangle, \quad \mathcal{N} \equiv\left\langle\Psi_{t} \mid \Psi_{t}\right\rangle \\
\delta U(t)=\sum_{p h} \delta u_{p h}^{(1)}(t) a_{p}^{\dagger} a_{h}+\frac{1}{2} \sum_{p p^{\prime} h h^{\prime}} \delta u_{p p^{\prime} h h^{\prime}}^{(2)}(t) a_{p}^{\dagger} a_{p^{\prime}}^{\dagger} a_{h^{\prime}} a_{h}+\cdots
\end{gathered}
$$

Equations of motion for correlation amplitudes
$\mathrm{S}(\mathrm{q})$ enters result; taken from QMC

Böhm H M, Holler R, Krotscheck E and Panholzer M 2008 Int. J. Mod. Phys. B 22 4655-65

HEG f ${ }_{x c}$

Static: M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B 57, 14569 (1998).

Dynamic: Martin Panholzer et al.

HEG f ${ }_{x c}$

Static: M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B 57, 14569 (1998).

Dynamic: Martin Panholzer et al.

Connector for $\mathrm{f}_{\mathrm{xc}}\left(\mathrm{r}, \mathrm{t} ; \mathrm{r}^{\prime}, \mathrm{t}^{\prime}\right)$:

 "mean density approximation"
\rightarrow MDA "great"!

Efforts to improve plasmon spectra

Y. Takada,PRB 94, 245106 (2016)

Modified Richardson-Ashcroft kernel: new spectral features

Diagrammatic derivation of the double plasmon \rightarrow Compares qualitatively, not quantitatively

Diagrammatic derivation of the double plasmon

 \rightarrow Compares qualitatively, not quantitatively
(a) Graphane (b) h-BN

W. A. Caliebe et al. Phys. Rev. Lett., 2000; A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett., 2003 M. Gatti and F. Sottile, Phys. Rev. B 88, 155113 (2013)
(a) Graphane

(b) h-BN

P. Cudazzo et al., PRL 116, 066803 (2016)

W. A. Caliebe et al. Phys. Rev. Lett., 2000; A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett., 2003 M. Gatti and F. Sottile, Phys. Rev. B 88, 155113 (2013)

How to characterize an exciton in 2D? Beyond $\mathrm{q}=0$!

Binding energy:
$\begin{array}{ll}\text { graphane } & 1.6 \mathrm{eV} \\ \text { h-BN } & 2.1 \mathrm{eV} \\ \text { Phosphorene } & 0.6 \mathrm{eV}\end{array}$

P. Cudazzo et al., PRL 116, 066803 (2016)

W. A. Caliebe et al. Phys. Rev. Lett., 2000; A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett., 2003 M. Gatti and F. Sottile, Phys. Rev. B 88, 155113

$$
\begin{aligned}
& \mathrm{V}_{\text {tot }}(\mathrm{r}, \omega)=\int \mathrm{dr}^{\prime} \varepsilon^{-1}\left(\mathrm{r}, \mathrm{r}^{\prime}, \omega\right) \mathrm{V}_{\text {ext }}\left(\mathrm{r}^{\prime}, \omega\right) \\
& \varepsilon^{-1}\left(\mathrm{r}, \mathrm{r}^{\prime}, \omega\right)=\sqrt{\varepsilon_{\mathrm{GG}}^{-1}(\mathrm{q}, \omega)}
\end{aligned}
$$

Full matrix!

Macro/micro-scopic perturbation \rightarrow macro/micro-scopic response

Igor Reshetnyak
Dia: H.C. Weissker et al. Phys. Rev. B (2010) Off-dia: W. Schülke and A. Kaprolat Phys. Rev. Lett. (1991)

What can we do with it?

For example, induced charges

Ralf Hambach, Giulia Pegolotti, Claudia Roedl, Igor Reshetnyak

The whole matrix \rightarrow follow excitations in real space and time

PhD thesis I. Reshetnyak

Cumulant expansions

Similar for 2-body Green's function (absorption, loss,..):

J. S. Zhou et al., JCP 143, 184109 (2015) \rightarrow P. Cudazzo \& L. Reining (2018)

$$
\begin{array}{ll}
P_{\lambda \lambda}^{<}\left(\mathbf{q}, t_{13}\right)=e^{-i E_{\lambda} \mathbf{q}\left(t_{3}-t_{1}\right)+C_{\lambda \mathbf{q}}\left(t_{13}\right)} & \mathrm{G} \rightarrow \mathrm{P} \\
C_{\lambda \mathbf{q}}\left(t_{13}\right)=\int_{t_{1}}^{t_{3}} d t_{1^{\prime}} \int_{t_{1^{\prime}}}^{t_{3}} d t_{3^{\prime}} \Pi_{\lambda \lambda}\left(\mathbf{q}, t_{1^{\prime} 3^{\prime}}\right) e^{i E_{\lambda} \mathbf{q}\left(t_{3^{\prime}}-t_{1^{\prime}}\right)} & \Sigma \rightarrow \Pi \\
\Pi_{\lambda \lambda^{\prime}}\left(\mathbf{q}, t_{13}\right)=\sum_{\alpha \mathbf{q}^{\prime}} \mathcal{W}_{\lambda \mathbf{q} \alpha \mathbf{q}^{\prime} \alpha \mathbf{q}^{\prime} \lambda^{\prime} \mathbf{q}}\left(t_{13}\right) \bar{P}_{\alpha \alpha}\left(\mathbf{q}^{\prime}, t_{13}\right) & \mathrm{G}^{\mathrm{QP}} \rightarrow \overline{\mathrm{P}} \\
& \mathrm{~W} \rightarrow \bar{W}
\end{array}
$$

Pierluigi Cudazzo \& Lucia Reining 2018

Renormalization of QP part

Cudazzo \& Reining, Cumulant expansion for the electronic polarizability (2018)

\rightarrow Why are we here?

1. Good descriptor: density $\mathrm{n}(\mathrm{r}) \quad \rightarrow \mathrm{DFT}$

So, first we have to calculate the density

Exact

2. Auxiliary system for density $\quad \rightarrow$ KS-DFT

So, first we have to calculate the xc potential
3. Model system
\rightarrow LDA

$$
\begin{aligned}
v_{\mathrm{xc}}([n], r) & \approx v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right)
\end{aligned} v_{\mathrm{xc}}([n], r)=v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right), n_{r}^{h}=n(r) \quad \approx n(r)
$$

\rightarrow Why are we here?

1. Good descriptor: density $\mathrm{n}(\mathrm{r}) \quad \rightarrow \mathrm{DFT}$

So, first we have to calculate the density

Exact

2. Auxiliary system for density \rightarrow KS-DFT Exact

So, first we have to calculate the xc potential
3. Model system \rightarrow LDA

$$
\begin{aligned}
& v_{\mathrm{xc}}([n], r) \approx v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right) \quad v_{\mathrm{xc}}([n], r)=v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right) \\
& n_{r}^{h}=n(r) \\
& n_{r}^{h} \approx n(r)
\end{aligned}
$$

\rightarrow Auxiliary system theory

1. Good descriptor: density $\mathrm{n}(\mathrm{r}) \quad \rightarrow \mathrm{DFT}$

So, first we have to calculate the density
2. Auxiliary system for quantity \mathbf{Q}

Exact

So, first we have to calculate the aux. pot., interaction,...
3. Model system
$v_{\mathrm{xc}}([n], r) \approx v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right) \quad v_{\mathrm{xc}}([n], r)=v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right)$
$n_{r}^{h}=n(r)$

\rightarrow Auxiliary system theory

1. Good descriptor: density $\mathrm{n}(\mathrm{r}) \quad \rightarrow \mathrm{DFT}$

So, first we have to calculate the density
2. Auxiliary system for quantity \mathbf{Q}

Exact

So, first we have to calculate the aux. pot., interaction,...
3. Model system \rightarrow LDA

$$
\begin{aligned}
v_{\mathrm{xc}}([n], r) & \approx v_{\mathrm{xc}}^{H} \text { (Exact) } v_{\mathrm{xc}}([n], r) \\
n_{r}^{h} & =\text { Approximation } v_{\mathrm{xc}}^{H E G}\left(n_{r}^{h}\right) \\
& \approx n(r)
\end{aligned}
$$

\rightarrow Auxiliary system + Connector theory

1. Good descriptor: density $\mathrm{n}(\mathrm{r}) \quad \rightarrow \mathrm{DFT}$

So, first we have to calculate the density
2. Auxiliary system for quantity \mathbf{Q}

Exact

So, first we have to calculate the aux. pot., interaction,...
3. Model system \rightarrow Connector Approximation

(Exact)

$$
V_{\mathrm{aux}}^{\mathrm{real}}([n], x)=V_{\mathrm{aux}}^{\mathrm{HEG}}\left(n^{h}, \tilde{x}\right)
$$

$n_{r}^{h}=$ Approximation
$n^{h}=? ? ?$

