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The very basics of ab initio quantum chemistry

The mathematical problem

@ Chemistry < mainly about electronic structure

@ Born-Oppenheimer approximation
= focus on \Ilelec(rl, o N, {RJ, ZJ})
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The very basics of ab initio quantum chemistry

The mathematical problem

@ Chemistry < mainly about electronic structure

@ Born-Oppenheimer approximation
= focus on \Ilelec(rl, o N, {RJ, ZJ})

H Uoee(r1, .., tn, {R, Z1}) = Beee Yeree(ri, .- rn,, {Ry, Z5})

SV 5
=) —ZA; + 4 —
i1 2 ' v - Ryl i>; T

vne=electron-nuclei 1V, =electron-electron
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The very basics of ab initio quantum chemistry

The mathematical problem

@ Chemistry < mainly about electronic structure

@ Born-Oppenheimer approximation
= focus on \Ilelec(rl, o N, {RJ, ZJ})

H Uoee(r1, .., tn, {R, Z1}) = Beee Yeree(ri, .- rn,, {Ry, Z5})

SV 5L
=S A+ — 4 —
S 2 4 ni-Ry T

vne=electron-nuclei 1V, =electron-electron
e Difference between QC calculations » {R;,Z;}
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The very basics of ab initio quantum chemistry

The charm of having nuclei

Globally v,,. is larger V..
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The very basics of ab initio quantum chemistry

The charm of having nuclei

Globally v,,. is larger W,
Electrons are bound near the nuclei

o Large energy splitting between levels

e The shell model makes sense < mean-field approaches

o Most of the molecules exist at HF level

o Non mean-field part of W, is small (0.1 % of the Energy)
@ Use hydrogen-like atom-centered basis (AOs basis set)

e In practice use polynoms x gaussians

=i (= 2
X[ (r) = (& - X5)% (y - Y5)% (2 - Z;)%e %R

v
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The very basics of ab initio quantum chemistry

The charm of having nuclei

Globally v,,. is larger W,

Electrons are bound near the nuclei

o Large energy splitting between levels

e The shell model makes sense < mean-field approaches
o Most of the molecules exist at HF level
o Non mean-field part of W, is small (0.1 % of the Energy)

@ Use hydrogen-like atom-centered basis (AOs basis set)
e In practice use polynoms x gaussians

=i (= 2
X[ (r) = (& - X5)% (y - Y5)% (2 - Z;)%e %R

o All Hamiltonian integrals are analytical in that basis
o "Easy" to refine the basis set (e.g degree of polynoms)
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The very basics of ab initio quantum chemistry

Then why QC is tedious ? the accuracy !

Ability of unraveling chemistry < Accuracy of AE
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The very basics of ab initio quantum chemistry

Then why QC is tedious ? the accuracy !

Ability of unraveling chemistry < Accuracy of AE

The famous chemical accuracy in quantum chemistry

@ "Chemical accuracy" ~ 1 kcal/mol ~ 1.6 1072 a.u. ~ 0.04 eV

e ~ accuracy of thermochemistry experiments
o » (.2 of Bolzman probability ratio at 298 K
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The very basics of ab initio quantum chemistry

Then why QC is tedious ? the accuracy !

Ability of unraveling chemistry < Accuracy of AE

The famous chemical accuracy in quantum chemistry

@ "Chemical accuracy" ~ 1 kcal/mol ~ 1.6 1072 a.u. ~ 0.04 eV

e ~ accuracy of thermochemistry experiments
o » (.2 of Bolzman probability ratio at 298 K

@ Typical quantity of interest: atomization energy (AE)
AE(AB) =E(AB) - (E(A) +E(B))

e 10° < AE < 10? kcal/mol
o Typical error at HF level: ~ 10" or even ~ 10 kcal /mol
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The very basics of ab initio quantum chemistry

Then why QC is tedious ? the accuracy !

Ability of unraveling chemistry < Accuracy of AE

The famous chemical accuracy in quantum chemistry

@ "Chemical accuracy" ~ 1 kcal/mol ~ 1.6 1072 a.u. ~ 0.04 eV

e ~ accuracy of thermochemistry experiments
o » (.2 of Bolzman probability ratio at 298 K

@ Typical quantity of interest: atomization energy (AE)
AE(AB) =E(AB) - (E(A) +E(B))

e 10° < AE < 10? kcal/mol
o Typical error at HF level: ~ 10" or even ~ 10 kcal /mol

What do we miss ? The correlation effects !
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The very basics of ab initio quantum chemistry

What tools for correlation ?

Two types of approaches

o Density Functiona Theory (DFT)
Uses the 1-body density and its derivatives: very cheap !
Until the last years, clearly the most used tool
Initially: trying to know n{2)(ry,rs) with n(H(r)
Often fitted with experiments
BUT: Problems with non-local correlation effects ...
BUT: Hard to systematically improve the quality
Alternative: mixing WFT and DFT 7
e Wave Function Theory (WFT)

o Uses the N-body wave function: not cheap ...
Until recently, much less used than DFT ...
Systematically improvable
CCSD(T) very reliable for most of chemical situation
BUT: CPU time
BUT: WFT is smoothly taking over DFT ...
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An heterogeneous problem

Quantum chemistry from outside: why so many

(Some) Acronyms for Wave Function Theory ...

e HF, MP2, CEPA-n, CISD(SC)?, CCSD(T), BCCD(T),
EOM-CCSD(T), PNO-CCSD(T), DLPNO-CCSD(T), ...

o CASCI, CASSCF, MCSCF, MRMP2, XMCQDPT, CASPT2,
MS-CASPT2, NEVPT2, SC-NEVPT2, PC-NEVPT2,
QD-NEVPT2, JMMRPT2, ...

o CIPSI, HBCI, MPS, DMRG, FCIQMC, iFCIQMC, AClI,
SORCI, DDCI, FOBOCI, ...

e SS-MRCC, SU-MRCC, VU-MRCC, JM-MRCC,
Mk-MRCCSDT, ic-MRCC, ...

o F12-MP2, F12-CCSD(T), F12-NEVPT2,
F12-DLPNO-NEVPT2, RS-DFT, ...
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An heterogeneous problem

Quantum chemistry from outside: why so many

(Some) Density Functional Theory acronyms ...
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An heterogeneous problem

Molecular simulations: why so many acronyms 7

Mainly two answers ...

© Quantum chemists have a bigger ego issue

o The researcher ego is quite uniformly distributed in science
o Why bigger ego than mathematicians ?
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An heterogeneous problem

Molecular simulations: why so many acronyms ?

Mainly two answers ...

© Quantum chemists have a bigger ego issue
o The researcher ego is quite uniformly distributed in science
o Why bigger ego than mathematicians ?

@ The theoretical chemistry problem is very heterogeneous

4

The main objectives of molecular simulation

@ Predict and/or interpret molecular experiments

o Basically infinite possibilities at human scale !

A\

Molecular simulation is as diverse as chemistry can be !
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An heterogeneous problem

An overview of the heterogeneity of theoretical chemistry

Two main variables to define a chemistry experiment

@ Types of molecular properties
= Different objects to compute

@ Types of molecular systems
= Different size of systems
= Different level of e-e correlation

Different implications for the theoretician
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An heterogeneous problem

A few examples of molecular properties

&
o o
& :
Different chemical problematics g o>
o Formation of molecules Reactants '"termeﬂiates\_&G
Products
o Gd state energy
Reaction path

o Energy derivatives with R

e UV /visible spectroscopy
o Excited states
o Oscillation strength

e Magnetic spectroscopy

e Open shell systems
o Energy derivatives with B 0

Ao = 524 0

Absorbance

@ Any combination ... B A A AR

Wavelength (nm)

E. Giner Molecular systems: status and perspectives of ab initio calculatio




An heterogeneous problem

A few examples of molecular systems

Different types of systems

o Size of the system
o from 10° to 102 electrons
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An heterogeneous problem

A few examples of molecular systems

Different types of systems

o Size of the system

0 2 " “
o from 10" to 10° electrons Lo 05, J\
/ ] w0 OH
. N... ﬁ(o e~ NH OH
PN
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An heterogeneous problem

A few examples of molecular systems

Different types of systems

o Size of the system
o from 10° to 102 electrons

o Elements in the systems
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An heterogeneous problem

A few examples of molecular systems

Different types of systems

o Size of the system e T o
o from 10° to 102 electrons IE lclulol [

o Elements in the systems

e sorpatoms (H, C, N,..): ‘[: o
"Easy" atoms fre e | oo

zr

| <

[ie e [or [a [om 5 e oa " [y o e 7] v [ 10
Y 0 P P Y e A 2 A
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An heterogeneous problem

A few examples of molecular systems

Different types of systems

o Size of the system
o from 10° to 10? electrons
o Elements in the systems
e sorpatoms (H, C, N,..):
"Easy" atoms
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An heterogeneous problem

A few examples of molecular systems

Different types of systems

o Size of the system

o from 10° to 102 electrons BRI - v

si|p s [a |

o Elements in the systems [ o e e e o S e | o | -
o sorpatoms (H, C N,.): o o T o Foe s PP P o
"Easy" atoms B oo o e o [ [ ) ) e

o dor [ atoms (Fe, Dy, ..):
"Hard" atoms

ia e[ HmHmNsm\anmH anl\m\sﬂmanH

o [ir | _
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An heterogeneous problem

A few examples of molecular systems

Different types of systems
o Size of the system
o from 10° to 102 electrons
o Elements in the systems
e sorpatoms (H, C, N,..):
"Easy" atoms
o dor [ atoms (Fe, Dy, ..):
"Hard" atoms
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An heterogeneous problem

A few examples of molecular systems

Different types of systems

o Size of the system
o from 10° to 10? electrons
o Elements in the systems
e sorpatoms (H, C, N,..):
"Easy" atoms
o d or f atoms (Fe, Dy, ..):
"Hard" atoms
@ Electronic structure

o Are there unpaired electrons ?
o Is HF a good representation ?
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A few examples of molecular systems
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@ Electronic structure

o Are there unpaired electrons ?
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Weak correlation: SR approaches

Weak correlation effects: the basics

Predominance of the HF Slater determinant

U = |HF) + ; ek, [k)

—
cp<kl

@ Correlation does not change de HF picture

E©" =Y ¢ (HF|H|k)
k %,—/
small quantities

e Total £ as a sum of many small contributions

Typical systems

@ Closed-shell molecules near their equilibrium geometries

@ Open-shell systems in a high-spin state
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Weak correlation: SR approaches

Perturbative analysis of weak correlation effects

EorT = Z Cabvab Z e

iagb iagb
ab
Vij

€ — € T€ —€

Vab / dI‘l dI‘Q ¢L(r1)¢a(r1) ¢J(r2)¢b(r2)

ab

CLJ ~

Weak correlation effects < c b« 1:
° V;‘j‘b is small

@ and/or €; + € — €, — €, is large
Two main regimes: long-range and short-range correlation
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Weak correlation: SR approaches

Weak long-range correlation effects: V' is small

Vi = f dry dry ¢i(rl)¢a(rl)Timﬁbj(r?)ébb(m)

A B
e ©
A B
07“120<R<:>V;;bo<%

2 . .
o EMP2 o _ (Vz{;b) oc — 45 <> attractive dispersion forces

@ Scales as the pairs of atoms and depends on {R;}

e Hydrogen bonds (DNA)
o Molecular-surface interaction (solid state)
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Weak correlation: SR approaches

WET in a finite basis set and Kato's cusp condition

0.22 T T
=l ——
o o S
0.2 \\\ :max:; 1
é 019 F \ / ]
Problems of the basis-set 3 01 \\\/ 1
o
a \ E i TS
@ No cusp in a finite basis-set g My S ]
g \. S ) \
016 ~—— ! 1
e Wrong near 712 =0 ' He TL
05 . e
014 L L L 1 L L - _\
-4 3 -2 1 0 1 2 3 4
6 (radian)
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Weak correlation: SR approaches

WET in a finite basis set and Kato's cusp condition

0.22 T T
=l ——
o o S
0.2 \\\ :max:; 1
é 019 F \ / ]
Problems of the basis-set 3 01 \\\/ 1
o
a \ E i TS
@ No cusp in a finite basis-set g My S ]
g \. S ) \
016 ~—— ! 1
e Wrong near 712 =0 ' He TL
05 . e
014 L L L 1 L L - _\
-4 3 -2 1 0 1 2 3 4
6 (radian)

Affects local properties of ¥
Is it really a problem for AE?
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Weak correlation: SR approaches

[llustration of the impact of short-range correlation effects

FCI Atomic ionization potentials

IP(A) = E(A) - E(A")

Error (mH)

Only short-range effects

Slow convergence

1
& Uman)?

Require large basis-set

Nuclear charge

(]

Impact energy differences

Favours the less correlated )

Impacts also molecular properties
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Weak correlation: SR approaches

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

v
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o Treat bigger systems
o The correlation effects are essentially local
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Weak correlation: SR approaches

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

o Treat bigger systems

o The correlation effects are essentially local
o Use localized molecular orbitals to treat dispersion forces
Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)
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Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

o Treat bigger systems

o The correlation effects are essentially local
o Use localized molecular orbitals to treat dispersion forces
Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)

o Smaller basis-set error
e The wave function should satisfy Kato's cusp condition
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Weak correlation: SR approaches

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

o Treat bigger systems

o The correlation effects are essentially local
o Use localized molecular orbitals to treat dispersion forces
Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)

@ Smaller basis-set error

e The wave function should satisfy Kato's cusp condition
o Use explicit correlation factor (F12) to reduce basis-set error
Wa(ri,re) =e 72U (ry,10)
F12-MP2, F12-CCSD, F12-CCSD(T)

v
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Weak correlation: SR approaches

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

o Treat bigger systems

o The correlation effects are essentially local
o Use localized molecular orbitals to treat dispersion forces
Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)

@ Smaller basis-set error

e The wave function should satisfy Kato's cusp condition
o Use explicit correlation factor (F12) to reduce basis-set error
Wa(ri,re) =e 72U (ry,10)
F12-MP2, F12-CCSD, F12-CCSD(T)

o Combine these two approaches to reach big systems
DLPNO-F12-MP2, DLPNO-F12-CCSD(T)

v
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Weak correlation: SR approaches

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

o Treat bigger systems
o The correlation effects are essentially local
o Use localized molecular orbitals to treat dispersion forces
Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)
o Smaller basis-set error
e The wave function should satisfy Kato's cusp condition
o Use explicit correlation factor (F12) to reduce basis-set error
Upia(ry,r2) =720 (ry,12)
F12-MP2, F12-CCSD, F12-CCSD(T)
o Combine these two approaches to reach big systems
DLPNO-F12-MP2, DLPNO-F12-CCSD(T)

o Compute Energy derivatives
Geometry optimization, molecular properties etc ...

v
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Strong correlation effects

Chemical examples of strong correlation

Low-spin open-shell

@ Covalent bond breakings:
AB - A--B

v
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Strong correlation effects

Chemical examples of strong correlation

open-shell

@ Covalent bond breakings:
AB - A--B

He
Be B|c|N|o|F|Ne
d d I ts: | B 7
(] an elements: Na | M si|p|s|aar
O R S A A e A 5[5 |°
K |ch|sc|Ti| v |cr|Mn|Fe|co|Nilcuzn|éa|Ge|As|se|sr|Ke
0 B T R S T S e A s R o e e
Rb | S| Y | 2r |Nb|Mo Tc | Ru |Rh|Pd|Ag|cd | fn|sSn|sSb|Te| 1 |Xe
Cs | B: Hf [Ta | W |[Re | Os | Ir | Pt || Au|Hg | 71 [Pb | Bi t | Rn
= T I e o R O = m
Fr | R Rf | Db | Sg | Bh | Hs | Mt | Ds | Re

9
B 8 O o 1 e o e e s A
o1 Pz | | s |8 |o7 |e | 0 |1 |02 |08 H
e 70 [ea "0 [ "o [am e "o e e [ a [N e

-‘ bl bl | P

v

E. Giner Molecular systems: status and perspectives of ab initio calculatio




Strong correlation effects

Chemical examples of strong correlation

Low-spin open-shell

@ Covalent bond breakings:
AB - A--B

@ d and f elements:
o Single center: e.g. Iron-porphiryn

v
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Strong correlation effects

Chemical examples of strong correlation

Low-spin open-shell

@ Covalent bond breakings:
AB - A--B

@ d and f elements:
o Single center: e.g. Iron-porphiryn
o Multi center: e.g. Tris-OH

v
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Strong correlation effects

Chemical examples of strong correlation

Low-spin open-shell

@ Covalent bond breakings:
AB - A--B

@ d and f elements:
o Single center: e.g. Iron-porphiryn
o Multi center: e.g. Tris-OH
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Strong correlation effects

Chemical examples of strong correlation

Low-spin open-shell

@ Covalent bond breakings:
AB - A--B

@ d and f elements: 7 —
o Single center: e.g. Iron-porphiryn U
o Multi center: e.g. Tris-OH

@ On-site repulsion U:
e Tends to break pairs % ﬁ
o Tends to localize electrons A

o Short-range < long-range

v
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Strong correlation effects

Chemical examples of strong correlation

Low-spin open-shell

@ Covalent bond breakings:
AB - A--B

@ d and f elements:
o Single center: e.g. Iron-porphiryn A dyy _H,
o Multi center: e.g. Tris-OH
@ On-site repulsion U: ? |
e Tends to break pairs A
e Tends to localize electrons
o Short-range < long-range A A _T_l, _T_l,
o Correlation effects in d elements: d d
xrz

o A lot of e on a site
o Very polarizable !

v
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Strong correlation effects

Chemical examples of strong correlation

Low-spin open-shell

o Covalent bond breakings: l
AB - A--B A do o f#

z2—y #

@ d and f elements: V'"";

y
o Single center: e.g. Iron-porphiryn A dyy ‘T_lV
o Multi center: e.g. Tris-OH ,
@ On-site repulsion U: d.s ?'l
e Tends to break pairs A i

e Tends to localize electrons

o Short-range < long-range A A H, _T_l,

@ Correlation effects in d elements: d d
Tz

o A lot of e on a site
o Very polarizable !

v
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Strong correlation effects

Qualitative description of strongly correlated systems

e Unpaired electrons and low-spin
o Covalent bond breakings: AB — A.--B
o Magnetic systems:

o Rapidly large expansion for [U(%)) 1
103_106

@@= > el

I=1
o The ratios 5—; drive most of the physical properties

e Between the [I) and |J)
o Large interactions

o Energetic degeneracies

(JIHIL)
ABy 1

e Non perturbative
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Strong correlation effects

Quantitative description: the physics beyond [¥(?))

[B) = [U) + 3 ¢ |gs)

%

In general |¢;| << 1 < Perturbative

Standard weak correlation (cusp, dispersion forces)
o Week differential correlation effects

Differential correlation effects
o The [I) are different
o Correlation effects depend on |I)

Change |¥(?))
o Affects the (J|H|I) and AFEy;
o Renormalization of H

o Size consistency
o Able to break bonds
o Correct scaling of the energy with N
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Strong correlation effects

The Complete Active Space based approach

e CAS-Cl(n,m) approach
o All determinants within n e and m orbitals
e Variational energy <> no divergences

[w@) =3 e )

I
By = min(w©|H[w®) R 2
{CI} %a —_—
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Strong correlation effects

The Complete Active Space based approach

e CAS-Cl(n,m) approach
o All determinants within n e and m orbitals
e Variational energy <> no divergences

[w@) =3 e )

I
By = min(w©|H[w®) R 2
{CI} %a —_—

o Add the orbital optimization i

e CAS-SCF approach j H
2

W) =3 e D)
I

Egwo = {mip}(\II(O)|H|\II(O))
C1,R
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Strong correlation effects

Selected Cl: Breaking the exponential wall

Some problems of the CAS
@ Exponential scaling : max is CAS(20,20) (Heroic calculation)

@ Cannot take into account weak correlation effects ...
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Strong correlation effects

Selected Cl: Breaking the exponential wall

Some problems of the CAS

e Exponential scaling : max is CAS(20,20) (Heroic calculation)

@ Cannot take into account weak correlation effects ...

v

A CAS-ClI space is full of dead-wood

o Expensive step in CAS-CI: the variational step

@ Treating all |I) at same footing is useless
@ Only a few percent are really needed in a variational way

@ Many of them can be treated in perturbation

\
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Strong correlation effects

Selected Cl: Breaking the exponential wall

Some problems of the CAS

e Exponential scaling : max is CAS(20,20) (Heroic calculation)

@ Cannot take into account weak correlation effects ...

A CAS-ClI space is full of dead-wood

o Expensive step in CAS-CI: the variational step

@ Treating all |I) at same footing is useless
@ Only a few percent are really needed in a variational way

@ Many of them can be treated in perturbation

One key question
@ How to know a priori which are the important ones ?
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Strong correlation effects

The CIPSI algorithm: selection based on perturbation

Q Given a zeroth-order wave function |¥(?)) and Ey o)
@ Estimate the coefficient of |u) not in [T(0)):

L) (pulH|T®)
Eg) - (| H | pe)

© On the fly, estimate the E(2)

({plHIW®))*

£
7 Ego — (U H|p)

i Ecipsi = By + E®

@ Select the most important ones and add them to ¥(?)
@ Check the convergence or GOTO (1)
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Strong correlation effects

A brief review

Revival of an old idea (Malrieu, 1973)

o | rediscovered it in 2011 (ironically in Malrieu’s lab)

o Converge extremely fast: CAS(40,80), CAS(20,100) !

@ Many times rediscovered (from 2011 at least 4 versions)
o Examples: HCI, MC-CI, A-Cl, AdClI, ...

o We did not renamed it :)

v

Alternatives

@ DMRG: use matrix product states

@ FCI-QMC : use a stochastic sampling of the Cl equations

\

E. Giner Molecular systems: status and perspectives of ab initio calculatio



Strong correlation effects

Trial of conclusion for WFT

The weak correlation problems: WFT begins to compte DFT!

e Mathematically solved : CCSD(T) !!
@ The main issue : CPU time

o System size <> Use local orbitals (PNO)
o Basis set < Use explicit correlation (F12)
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Strong correlation effects

Trial of conclusion for WFT

The weak correlation problems: WFT begins to compte DFT!
e Mathematically solved : CCSD(T) !!

@ The main issue : CPU time

o System size < Use local orbitals (PNO)
o Basis set < Use explicit correlation (F12)

The strong correlation problems: a lot of work ...
@ Selected ClI (SCI) have pushed away the limits of CAS-CI

@ Not the end of the story: the exponential wall is just farther ...

@ Alternatives: MRCC, MRPT based on large SCI
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Strong correlation effects

Trial of conclusion for WFT

The weak correlation problems: WFT begins to compte DFT!
e Mathematically solved : CCSD(T) !!

@ The main issue : CPU time

o System size < Use local orbitals (PNO)
o Basis set < Use explicit correlation (F12)

The strong correlation problems: a lot of work ...
@ Selected ClI (SCI) have pushed away the limits of CAS-CI

@ Not the end of the story: the exponential wall is just farther ...

@ Alternatives: MRCC, MRPT based on large SCI

The complexity of QC relies in the diversity of chemistry !
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