Molecular systems: status and perspectives of ab initio calculations

E. Giner

Laboratoire de Chimie Theorique, CNRS, Paris, France

November 12, 2018, CEA Saclay

The mathematical problem

- Chemistry ⇔ mainly about electronic structure
- **Born-Oppenheimer** approximation \Rightarrow focus on $\Psi_{elec}(\mathbf{r}_1, \dots, \mathbf{r}_{N_e}, \{\mathbf{R}_J, Z_J\})$

The mathematical problem

- Chemistry ⇔ mainly about electronic structure
- Born-Oppenheimer approximation \Rightarrow focus on $\Psi_{elec}(\mathbf{r}_1, \dots, \mathbf{r}_{N_e}, {\mathbf{R}_J, Z_J})$

$$\hat{H} \Psi_{elec}(\mathbf{r}_{1}, \dots, \mathbf{r}_{N_{e}}, \{\mathbf{R}_{J}, Z_{J}\}) = E_{elec} \Psi_{elec}(\mathbf{r}_{1}, \dots, \mathbf{r}_{N_{e}}, \{\mathbf{R}_{J}, Z_{J}\})$$
$$\hat{H} = \sum_{i=1}^{N_{e}} -\frac{1}{2}\Delta_{i} + \underbrace{\sum_{J=1}^{N_{nucl}} \frac{Z_{J}}{|\mathbf{r}_{i} - \mathbf{R}_{J}|}}_{\psi_{ne} = \text{electron-nuclei}} + \underbrace{\sum_{i>j} \frac{1}{r_{ij}}}_{W_{ee} = \text{electron-electron}}$$

The mathematical problem

- Chemistry \Leftrightarrow mainly about electronic structure
- Born-Oppenheimer approximation \Rightarrow focus on $\Psi_{elec}(\mathbf{r}_1, \dots, \mathbf{r}_{N_e}, {\mathbf{R}_J, Z_J})$

$$\hat{H} \Psi_{elec}(\mathbf{r}_{1}, \dots, \mathbf{r}_{N_{e}}, \{\mathbf{R}_{J}, Z_{J}\}) = E_{elec} \Psi_{elec}(\mathbf{r}_{1}, \dots, \mathbf{r}_{N_{e}}, \{\mathbf{R}_{J}, Z_{J}\})$$
$$\hat{H} = \sum_{i=1}^{N_{e}} -\frac{1}{2} \Delta_{i} + \sum_{\substack{J=1 \\ V_{ne} = \text{electron-nuclei}}}^{N_{nucl}} \frac{Z_{J}}{|\mathbf{r}_{i} - \mathbf{R}_{J}|} + \sum_{\substack{i>j \\ W_{ee} = \text{electron-electron}}}^{1} \frac{1}{r_{ij}}$$

• Difference between QC calculations $\approx { {\bf R}_J, Z_J }$

The charm of having nuclei

Globally v_{ne} is larger W_{ee}

The charm of having nuclei

Globally v_{ne} is larger W_{ee}

Electrons are **bound** near the nuclei

• Large energy splitting between levels

- The shell model makes sense \Leftrightarrow mean-field approaches
- Most of the molecules exist at HF level
- Non mean-field part of W_{ee} is small (0.1 % of the Energy)
- Use hydrogen-like atom-centered basis (AOs basis set)
 - In practice use polynoms × gaussians
 - $\chi_i^J(\mathbf{r}) = (x X_J)^{a_x} (y Y_J)^{a_y} (z Z_J)^{a_z} e^{-\alpha_i (\mathbf{r} \mathbf{R}_J)^2}$
 - All Hamiltonian integrals are analytical in that basis
 "Fasy" to refine the basis set (e.g. degree of polynomial

The charm of having nuclei

Globally v_{ne} is larger W_{ee}

Electrons are **bound** near the nuclei

- Large energy splitting between levels
 - The shell model makes sense \Leftrightarrow mean-field approaches
 - Most of the molecules exist at HF level
 - Non mean-field part of W_{ee} is small (0.1 % of the Energy)
- Use hydrogen-like atom-centered basis (AOs basis set)

In practice use polynoms × gaussians

 $\chi_i^J(\mathbf{r}) = (x - X_J)^{a_x} (y - Y_J)^{a_y} (z - Z_J)^{a_z} e^{-\alpha_i (\mathbf{r} - \mathbf{R}_J)^2}$

All Hamiltonian integrals are analytical in that basis

"Easy" to refine the basis set (e.g degree of polynoms)

The charm of having nuclei

Globally v_{ne} is larger W_{ee}

Electrons are **bound** near the nuclei

- Large energy splitting between levels
 - The shell model makes sense \Leftrightarrow mean-field approaches
 - Most of the molecules exist at HF level
 - Non mean-field part of W_{ee} is small (0.1 % of the Energy)
- Use hydrogen-like atom-centered basis (AOs basis set)
 - In practice use **polynoms** × **gaussians**

$$\chi_i^J(\mathbf{r}) = (x - X_J)^{a_x} (y - Y_J)^{a_y} (z - Z_J)^{a_z} e^{-\alpha_i (\mathbf{r} - \mathbf{R}_J)^2}$$

- All Hamiltonian integrals are analytical in that basis
- "Easy" to refine the basis set (e.g degree of polynoms)

The charm of having nuclei

Globally v_{ne} is larger W_{ee}

Electrons are **bound** near the nuclei

- Large energy splitting between levels
 - The shell model makes sense \Leftrightarrow mean-field approaches
 - Most of the molecules exist at HF level
 - Non mean-field part of W_{ee} is small (0.1 % of the Energy)
- Use hydrogen-like atom-centered basis (AOs basis set)
 - In practice use **polynoms** × **gaussians**

$$\chi_i^J(\mathbf{r}) = (x - X_J)^{a_x} (y - Y_J)^{a_y} (z - Z_J)^{a_z} e^{-\alpha_i (\mathbf{r} - \mathbf{R}_J)^2}$$

All Hamiltonian integrals are analytical in that basis
 "Ensuit to refine the basis set (a a degree of polymorphic)"

The charm of having nuclei

Globally v_{ne} is larger W_{ee}

Electrons are **bound** near the nuclei

- Large energy splitting between levels
 - The shell model makes sense \Leftrightarrow mean-field approaches
 - Most of the molecules exist at HF level
 - Non mean-field part of W_{ee} is small (0.1 % of the Energy)
- Use hydrogen-like atom-centered basis (AOs basis set)
 - In practice use **polynoms** × **gaussians**

$$\chi_i^J(\mathbf{r}) = (x - X_J)^{a_x} (y - Y_J)^{a_y} (z - Z_J)^{a_z} e^{-\alpha_i (\mathbf{r} - \mathbf{R}_J)^2}$$

- All Hamiltonian integrals are analytical in that basis
- "Easy" to refine the basis set (e.g degree of polynoms)

Then why QC is tedious ? the accuracy !

Ability of unraveling chemistry \Leftrightarrow Accuracy of ΔE

Then why QC is tedious ? the accuracy !

Ability of unraveling chemistry \Leftrightarrow Accuracy of ΔE

The famous chemical accuracy in quantum chemistry

- "Chemical accuracy" $\approx 1 \text{ kcal/mol} \approx 1.6 \ 10^{-3} \text{ a.u.} \approx 0.04 \text{ eV}$
 - accuracy of thermochemistry experiments
 - $\bullet~\approx 0.2$ of Bolzman probability ratio at 298 K
- Typical quantity of interest: atomization energy (AE)

 $\mathsf{AE}(AB) = \mathsf{E}(AB) - (\mathsf{E}(A) + \mathsf{E}(B))$

• 10^0 < AE < 10^2 kcal/mol

• Typical error at HF level: $pprox 10^1$ or even $pprox 10^2$ kcal/mol

Then why QC is tedious ? the accuracy !

Ability of unraveling chemistry \Leftrightarrow Accuracy of ΔE

The famous chemical accuracy in quantum chemistry

- "Chemical accuracy" $\approx 1 \text{ kcal/mol} \approx 1.6 \ 10^{-3} \text{ a.u.} \approx 0.04 \text{ eV}$
 - accuracy of thermochemistry experiments
 - $\bullet~\approx 0.2$ of Bolzman probability ratio at 298 K
- Typical quantity of interest: atomization energy (AE)

$$\mathsf{AE}(AB) = \mathsf{E}(AB) - (\mathsf{E}(A) + \mathsf{E}(B))$$

- $10^0 < AE < 10^2 \text{ kcal/mol}$
- Typical error at HF level: $\approx 10^1 \text{ or even } \approx 10^2 \text{ kcal/mol}$

Then why QC is tedious ? the accuracy !

Ability of unraveling chemistry \Leftrightarrow Accuracy of ΔE

The famous chemical accuracy in quantum chemistry

- "Chemical accuracy" $\approx 1 \text{ kcal/mol} \approx 1.6 \ 10^{-3} \text{ a.u.} \approx 0.04 \text{ eV}$
 - accuracy of thermochemistry experiments
 - $\bullet~\approx 0.2$ of Bolzman probability ratio at 298 K
- Typical quantity of interest: atomization energy (AE)

$$\mathsf{AE}(AB) = \mathsf{E}(AB) - (\mathsf{E}(A) + \mathsf{E}(B))$$

- $10^0 < AE < 10^2 \text{ kcal/mol}$
- Typical error at HF level: $\approx 10^1 \text{ or even } \approx 10^2 \text{ kcal/mol}$

What do we miss ? The correlation effects !

What tools for correlation ?

Two types of approaches

Density Functiona Theory (DFT)

- Uses the 1-body density and its derivatives: very cheap !
- Until the last years, clearly the most used tool
- Initially: trying to know $n^{(2)}(\mathbf{r}_1,\mathbf{r}_2)$ with $n^{(1)}(\mathbf{r})$
- Often fitted with experiments
- BUT: Problems with non-local correlation effects ...
- BUT: Hard to systematically improve the quality
- Alternative: mixing WFT and DFT ?

Wave Function Theory (WFT)

- Uses the *N*-body wave function: **not cheap** ...
- Until recently, much less used than DFT ...
- Systematically improvable
- CCSD(T) very reliable for most of chemical situation
- BUT: CPU time
- BUT: WFT is smoothly taking over DFT ...

Quantum chemistry from outside: why so many acronyms

(Some) Acronyms for Wave Function Theory ...

- HF, MP2, CEPA-*n*, CISD(SC)², CCSD(T), BCCD(T), EOM-CCSD(T), PNO-CCSD(T), DLPNO-CCSD(T), ...
- CASCI, CASSCF, MCSCF, MRMP2, XMCQDPT, CASPT2, MS-CASPT2, NEVPT2, SC-NEVPT2, PC-NEVPT2, QD-NEVPT2, JMMRPT2, ...
- CIPSI, HBCI, MPS, DMRG, FCIQMC, *i*FCIQMC, ACI, SORCI, DDCI, FOBOCI, ...
- SS-MRCC, SU-MRCC, VU-MRCC, JM-MRCC, Mk-MRCCSDT, ic-MRCC, ...
- F12-MP2, F12-CCSD(T), F12-NEVPT2, F12-DLPNO-NEVPT2, RS-DFT, ...

Quantum chemistry from outside: why so many acronyms

(Some) Density Functional Theory acronyms ...

Molecular simulations: why so many acronyms ?

Mainly two answers ...

- Quantum chemists have a bigger ego issue
 - The researcher ego is quite uniformly distributed in science
 - Why bigger ego than mathematicians ?
- O The theoretical chemistry problem is very heterogeneous

Molecular simulations: why so many acronyms ?

Mainly two answers ...

- Quantum chemists have a bigger ego issue
 - The researcher ego is quite uniformly distributed in science
 - Why bigger ego than mathematicians ?
- ② The theoretical chemistry problem is very heterogeneous

Molecular simulations: why so many acronyms ?

Mainly two answers ...

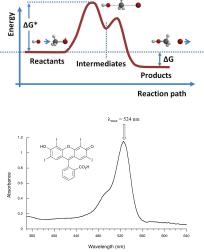
- Quantum chemists have a bigger ego issue
 - The researcher ego is quite uniformly distributed in science
 - Why bigger ego than mathematicians ?
- ② The theoretical chemistry problem is very heterogeneous

The main objectives of molecular simulation

- Predict and/or interpret molecular experiments
- Basically infinite possibilities at human scale !

Molecular simulation is as diverse as chemistry can be !

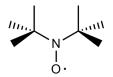
An overview of the heterogeneity of theoretical chemistry


Two main variables to define a chemistry experiment

- Types of molecular properties
 ⇒ Different objects to compute
- Types of **molecular systems**
 - \Rightarrow Different size of systems
 - \Rightarrow Different level of *e*-*e* correlation

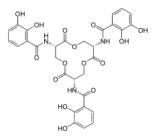
Different implications for the theoretician

A few examples of molecular properties


ΔG^* Different chemical problematics Reactants Formation of molecules Gd state energy Energy derivatives with R • UV/visible spectroscopy Excited states 1.2 Oscillation strength 0.8 Magnetic spectroscopy Absorbance 0.6 Open shell systems 0.4 Energy derivatives with B 0.2 Any combination ...

A few examples of molecular systems

Different types of systems


- Size of the system • from 10⁰ to 10² electrons
- Elements in the systems
 - "Easy" atoms • d or f atoms (Fe, Dy, ..) "Hard" atoms
- Electronic structure
 - Are there unpaired electrons ?
 - Is HF a good representation ?

A few examples of molecular systems

Different types of systems

- Size of the system
 from 10⁰ to 10² electrons
- Elements in the systems
 s or p atoms (H, C, N,...)
 "Fasy" atoms
 - d or f atoms (Fe, Dy, ..): "Hard" atoms
- Electronic structure
 - Are there unpaired electrons ?
 - Is HF a good representation ?

A few examples of molecular systems

Different types of systems

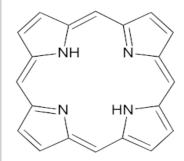
- Size of the system
 - ${\, \bullet \, }$ from 10^0 to 10^2 electrons

• Elements in the systems

- s or p atoms (H, C, N,..):
 "Fasy" atoms
- *d* or *f* atoms (Fe, Dy, ...): "Hard" atoms
- Electronic structure
 - Are there unpaired electrons ?
 - Is HF a good representation ?

A few examples of molecular systems

Different types of systems


- Size of the system
 - $\bullet~{\rm from}~10^0~{\rm to}~10^2~{\rm electrons}$
- Elements in the systems
 - s or p atoms (H, C, N,..): "Easy" atoms
 - *d* or *f* atoms (Fe, Dy, ..): "Hard" atoms
- Electronic structure
 - Are there unpaired electrons ?
 - Is HF a good representation ?

н																	He
Li	Be											в	°c	7 N	o	° F	10 No
Na	12 Mg	1										A	14 Si	15 P	16 S	17 CI	10
ĸ	Ca	Sc	Ti	۳v	24 Cr	a Mn	Fe	Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	Ge	33 As	Se	35 Br	35 Ka
Rb	38 Sr	39 ¥	40 Zr	41 Nb	42 Mo	43 Tc	Ru	45 Rh	46 Pd	47 Ag	45 Cd	47 In	so Sn	51 Sb	52 Te	53 I	X
S Cs	56 Ba	ŕ	72 Hf	73 Ta	24 W	75 Re	76 Os	"Ir	78 Pt	79 Au	Hg	81 TI	Pb	83 Bi	Po	85 At	86 Rr
Fr	88 Ra	1	104 Rf	Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	Rg	Uut	Uut	Uuc	Uup	116 Uuh	117 Uus	118 Uu
* Lant Ser	hanide les	s7 La	SR Ce	59 Pr	∞ Nd	Pm	Sm	63 Eu	Gd	*5 Tb	55 Dv	67 Ho	68 Er	m	70 Yb	Zi Lu	
+ Ad Set	inide les	Ac	²⁰ Th	91 Pa	92	³³ Np	94 Pu	25 Am	% Cm	97 Bk	²⁸ Cf	77 Fs	100 Em	101 Md	No	103 Lr	

A few examples of molecular systems

Different types of systems

- Size of the system
 - $\bullet~{\rm from}~10^0~{\rm to}~10^2~{\rm electrons}$
- Elements in the systems
 - s or p atoms (H, C, N,..): "Easy" atoms
 - *d* or *f* atoms (Fe, Dy, ..): "Hard" atoms
- Electronic structure
 - Are there unpaired electrons ?
 - Is HF a good representation ?

A few examples of molecular systems

Different types of systems

- Size of the system
 - $\bullet~{\rm from}~10^0~{\rm to}~10^2~{\rm electrons}$

• Elements in the systems

- s or p atoms (H, C, N,..): "Easy" atoms
- *d* or *f* atoms (Fe, Dy, ..): "Hard" atoms

- Are there unpaired electrons ?
- Is HF a good representation ?

A few examples of molecular systems

Different types of systems

- Size of the system
 - $\bullet~{\rm from}~10^0~{\rm to}~10^2~{\rm electrons}$

• Elements in the systems

- s or p atoms (H, C, N,..): "Easy" atoms
- *d* or *f* atoms (Fe, Dy, ..): "Hard" atoms

- Are there unpaired electrons ?
- Is HF a good representation ?

A few examples of molecular systems

Different types of systems

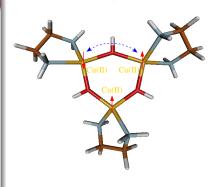
- Size of the system
 - ${\, \bullet \, }$ from 10^0 to 10^2 electrons

• Elements in the systems

- s or p atoms (H, C, N,..): "Easy" atoms
- *d* or *f* atoms (Fe, Dy, ..): "Hard" atoms

- Are there unpaired electrons ?
- Is HF a good representation ?

A few examples of molecular systems


Different types of systems

- Size of the system
 - $\bullet~{\rm from}~10^0~{\rm to}~10^2~{\rm electrons}$

• Elements in the systems

- s or p atoms (H, C, N,..): "Easy" atoms
- *d* or *f* atoms (Fe, Dy, ..): "Hard" atoms

- Are there unpaired electrons ?
- Is HF a good representation ?

Weak correlation effects: the basics

Predominance of the HF Slater determinant

$$|\Psi^{\text{FCI}}\rangle = |\text{HF}\rangle + \underbrace{\sum_{k} c_k |k\rangle}_{c_k \ll 1}$$

• Correlation does not change de HF picture

$$E^{\text{corr}} = \sum_{k} \underbrace{c_k \langle \text{HF} | H | k \rangle}_{\text{small quantities}}$$

• Total E^{corr} as a sum of many small contributions

Typical systems

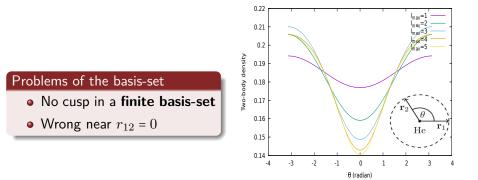
- Closed-shell molecules near their equilibrium geometries
- Open-shell systems in a high-spin state

Perturbative analysis of weak correlation effects

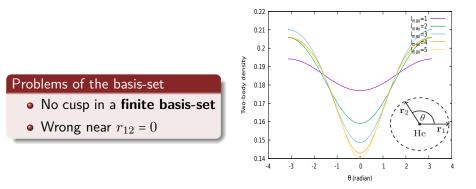
$$E^{\text{corr}} = \sum_{iajb} c_{ij}^{ab} V_{ij}^{ab} = \sum_{iajb} e_{ij}^{ab}$$
$$c_{ij}^{ab} \approx \frac{V_{ij}^{ab}}{\epsilon_i - \epsilon_a + \epsilon_j - \epsilon_b}$$
$$V_{ij}^{ab} = \int d\mathbf{r}_1 d\mathbf{r}_2 \phi_i(\mathbf{r}_1) \phi_a(\mathbf{r}_1) \frac{1}{r_{12}} \phi_j(\mathbf{r}_2) \phi_b(\mathbf{r}_2)$$

Weak correlation effects $\Leftrightarrow c_{ij}^{ab} \ll 1$:

- V_{ij}^{ab} is small
- and/or $\epsilon_i + \epsilon_j \epsilon_a \epsilon_b$ is large


Two main regimes: long-range and short-range correlation

Weak long-range correlation effects: V_{ij}^{ab} is small


$$V_{ij}^{ab} = \int d\mathbf{r}_1 d\mathbf{r}_2 \underbrace{\phi_i(\mathbf{r}_1)\phi_a(\mathbf{r}_1)}_A \frac{1}{r_{12}} \underbrace{\phi_j(\mathbf{r}_2)\phi_b(\mathbf{r}_2)}_B$$

- $r_{12} \propto R \Leftrightarrow V_{ij}^{ab} \propto \frac{1}{R^3}$
- $E^{\mathsf{MP2}} \propto \left(V_{ij}^{ab}\right)^2 \propto -\frac{1}{R^6} \Leftrightarrow$ attractive dispersion forces
- Scales as the pairs of atoms and depends on $\{\mathbf{R}_J\}$
 - Hydrogen bonds (DNA)
 - Molecular-surface interaction (solid state)

WFT in a finite basis set and Kato's cusp condition

WFT in a finite basis set and Kato's cusp condition

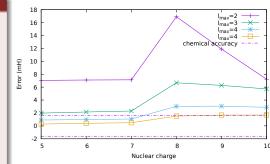

Affects local properties of Ψ Is it really a problem for ΔE ?

Illustration of the impact of short-range correlation effects

FCI Atomic ionization potentials

 $\mathsf{IP}(A) = \mathsf{E}(A) - \mathsf{E}(A^+)$

- Only short-range effects
- Slow convergence $\propto \frac{1}{(l_{max})^3}$
- Require large basis-set
- Impact energy differences
- Favours the less correlated

Impacts also molecular properties

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

- Treat bigger systems
 - The correlation effects are essentially local
 - Use localized molecular orbitals to treat dispersion forces Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)
- Smaller basis-set error
 - The wave function should satisfy Kato's cusp condition
 - Use explicit correlation factor (F12) to reduce basis-set error
 Ψ_{f12}(**r**₁, **r**₂) = e^{-γr₁₂}Ψ(**r**₁, **r**₂)

 F12-MP2, F12-CCSD, F12-CCSD(T)
- Combine these two approaches to reach big systems DLPNO-F12-MP2, DLPNO-F12-CCSD(T)
- Compute Energy derivatives Geometry optimization, molecular properties etc ...

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

- Treat bigger systems
 - The correlation effects are essentially local
 - Use **localized molecular orbitals** to treat dispersion forces Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)
- Smaller basis-set error
 - The wave function should satisfy Kato's cusp condition
 - Use explicit correlation factor (F12) to reduce basis-set error $\Psi_{f12}(\mathbf{r}_1, \mathbf{r}_2) = e^{-\gamma r_{12}} \Psi(\mathbf{r}_1, \mathbf{r}_2)$ F12-MP2, F12-CCSD, F12-CCSD(T)
- **Combine these two approaches** to reach big systems DLPNO-F12-MP2, DLPNO-F12-CCSD(T)
- Compute Energy derivatives Geometry optimization, molecular properties etc ...

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

- Treat bigger systems
 - The correlation effects are essentially local
 - Use **localized molecular orbitals** to treat dispersion forces Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)
- Smaller basis-set error
 - The wave function should satisfy Kato's cusp condition
 Use explicit correlation factor (F12) to reduce basis-set error
 Ψ_{f12}(**r**₁, **r**₂) = e^{-γr12}Ψ(**r**₁, **r**₂)

 F12-MP2, F12-CCSD, F12-CCSD(T)
- Combine these two approaches to reach big systems DLPNO-F12-MP2, DLPNO-F12-CCSD(T)
- **Compute Energy derivatives** Geometry optimization, molecular properties etc ...

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

- Treat bigger systems
 - The correlation effects are essentially local
 - Use localized molecular orbitals to treat dispersion forces Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)

• Smaller basis-set error

• The wave function should satisfy Kato's cusp condition

• Use explicit correlation factor (F12) to reduce basis-set error $\Psi_{f12}(\mathbf{r}_1, \mathbf{r}_2) = e^{-\gamma r_{12}} \Psi(\mathbf{r}_1, \mathbf{r}_2)$ F12-MP2, F12-CCSD, F12-CCSD(T)

- **Combine these two approaches** to reach big systems DLPNO-F12-MP2, DLPNO-F12-CCSD(T)
- **Compute Energy derivatives** Geometry optimization, molecular properties etc

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

- Treat bigger systems
 - The correlation effects are essentially local
 - Use **localized molecular orbitals** to treat dispersion forces Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)
- Smaller basis-set error
 - The wave function should satisfy Kato's cusp condition
 - Use explicit correlation factor (F12) to reduce basis-set error $\Psi_{f12}(\mathbf{r}_1, \mathbf{r}_2) = e^{-\gamma r_{12}} \Psi(\mathbf{r}_1, \mathbf{r}_2)$ F12-MP2, F12-CCSD, F12-CCSD(T)
- **Combine these two approaches** to reach big systems DLPNO-F12-MP2, DLPNO-F12-CCSD(T)
- Compute Energy derivatives

Geometry optimization, molecular properties etc ...

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

- Treat bigger systems
 - The correlation effects are essentially local
 - Use **localized molecular orbitals** to treat dispersion forces Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)
- Smaller basis-set error
 - The wave function should satisfy Kato's cusp condition
 - Use **explicit correlation factor** (F12) to reduce basis-set error $\Psi_{f12}(\mathbf{r}_1, \mathbf{r}_2) = e^{-\gamma r_{12}} \Psi(\mathbf{r}_1, \mathbf{r}_2)$ F12-MP2, F12-CCSD, F12-CCSD(T)
- Combine these two approaches to reach big systems DLPNO-F12-MP2, DLPNO-F12-CCSD(T)
- Compute Energy derivatives

Geometry optimization, molecular properties etc ..

Challenges in WFT for weak correlation effects ?

Nowadays challenge : push CCSD(T) to the limit !

- Treat bigger systems
 - The correlation effects are essentially local
 - Use **localized molecular orbitals** to treat dispersion forces Pair Natural Orbitals (PNO) and Local Domains (DL-PNO)
- Smaller basis-set error
 - The wave function should satisfy Kato's cusp condition
 - Use **explicit correlation factor** (F12) to reduce basis-set error $\Psi_{f12}(\mathbf{r}_1, \mathbf{r}_2) = e^{-\gamma r_{12}} \Psi(\mathbf{r}_1, \mathbf{r}_2)$ F12-MP2, F12-CCSD, F12-CCSD(T)
- Combine these two approaches to reach big systems DLPNO-F12-MP2, DLPNO-F12-CCSD(T)
- Compute Energy derivatives

Geometry optimization, molecular properties etc ...

Chemical examples of strong correlation

Low-spin open-shell

- Covalent bond breakings: $AB \rightarrow \dot{A} \cdots \dot{B}$
- d and f elements:
 - Single center: e.g. Iron-porphiryn
 - Multi center: *e.g.* Tris-OH
- **On-site repulsion** *U*:
 - Tends to break pairs
 - Tends to localize electrons
 - Short-range \leftrightarrow long-range
- Correlation effects in *d* elements:
 - A lot of e on a site
 - Very polarizable

Chemical examples of strong correlation

Low-spin open-shell

Covalent bond breakings:
 AB → Å…B

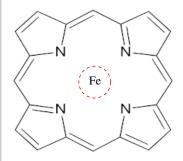
• *d* and *f* elements:


- Single center: *e.g.* Iron-porphiryn
- Multi center: *e.g.* Tris-OH

• **On-site repulsion** *U*:

- Tends to break pairs
- Tends to localize electrons
- Short-range \leftrightarrow long-range

• Correlation effects in *d* elements:

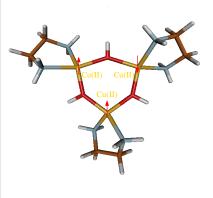

- A lot of *e* on a site
- Very polarizable

Chemical examples of strong correlation

Low-spin open-shell

- Covalent bond breakings:
 AB → Å…B
- d and f elements:
 - Single center: e.g. Iron-porphiryn
 - Multi center: e.g. Tris-OH
- **On-site repulsion** *U*:
 - Tends to break pairs
 - Tends to localize electrons
 - Short-range \leftrightarrow long-range
- Correlation effects in *d* elements:
 - A lot of *e* on a site
 - Very polarizable

Chemical examples of strong correlation


Low-spin open-shell

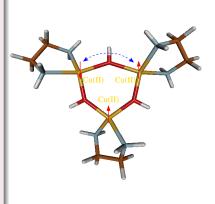
• Covalent bond breakings:

- d and f elements:
 - Single center: e.g. Iron-porphiryn
 - Multi center: e.g. Tris-OH
- **On-site repulsion** *U*:
 - Tends to break pairs
 - Tends to localize electrons
 - Short-range \leftrightarrow long-range
- Correlation effects in *d* elements:

E. Giner

- A lot of e on a site
- Very polarizable

Chemical examples of strong correlation


Low-spin open-shell

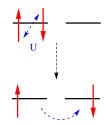
Covalent bond breakings:

- d and f elements:
 - Single center: e.g. Iron-porphiryn
 - Multi center: e.g. Tris-OH
- **On-site repulsion** *U*:
 - Tends to break pairs
 - Tends to localize electrons
 - Short-range ↔ long-range
- Correlation effects in *d* elements:

E. Giner

- A lot of e on a site
- Very polarizable

Chemical examples of strong correlation


Low-spin open-shell

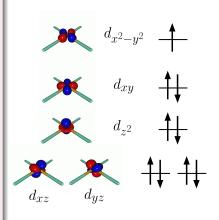
Covalent bond breakings:

- d and f elements:
 - Single center: e.g. Iron-porphiryn
 - Multi center: e.g. Tris-OH
- **On-site repulsion** *U*:
 - Tends to break pairs
 - Tends to localize electrons
 - Short-range \leftrightarrow long-range

• Correlation effects in *d* elements:

- A lot of *e* on a site
- Very polarizable !

Chemical examples of strong correlation


Low-spin open-shell

• Covalent bond breakings:

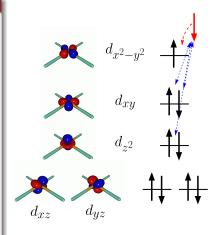
- d and f elements:
 - Single center: e.g. Iron-porphiryn
 - Multi center: e.g. Tris-OH
- **On-site repulsion** *U*:
 - Tends to break pairs
 - Tends to localize electrons
 - Short-range \leftrightarrow long-range
- Correlation effects in *d* elements:

E. Giner

- A lot of e on a site
- Very polarizable !

Chemical examples of strong correlation

Low-spin open-shell


• Covalent bond breakings:

$$AB \rightarrow \dot{A} \cdots \dot{B}$$

- d and f elements:
 - Single center: e.g. Iron-porphiryn
 - Multi center: e.g. Tris-OH
- **On-site repulsion** *U*:
 - Tends to break pairs
 - Tends to localize electrons
 - Short-range \leftrightarrow long-range
- Correlation effects in *d* elements:

E. Giner

- A lot of e on a site
- Very polarizable !

Qualitative description of strongly correlated systems

- Unpaired electrons and low-spin
 - Covalent bond breakings: $AB \to \dot{A} \cdots \dot{B}$
 - Magnetic systems:
- Rapidly large expansion for $|\Psi^{(0)}\rangle$!

$$|\Psi^{(0)}\rangle = \sum_{\rm I=1}^{10^3 - 10^6} c_{\rm I} |{\rm I}\rangle$$

- The ratios $\frac{c_{\rm I}}{c_{\rm J}}$ drive most of the physical properties
- \bullet Between the $|I\rangle$ and $|J\rangle$
 - Large interactions
 - Energetic degeneracies

•
$$\frac{\langle \mathbf{J}|H|\mathbf{l}\rangle}{\Delta E_{\mathrm{IJ}}} \gg 1$$

• Non perturbative

Quantitative description: the physics beyond $|\Psi^{(0)}
angle$

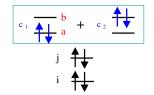
$$|\Psi\rangle = |\Psi^{(0)}\rangle + \sum_{i} c_{i} |\phi_{i}\rangle$$

- In general $|c_i| \ll 1 \Leftrightarrow$ Perturbative
- Standard weak correlation (cusp, dispersion forces)
 - Week differential correlation effects
- Differential correlation effects
 - $\bullet~$ The $|I\rangle$ are different
 - Correlation effects depend on $\left| I \right\rangle$
- Change $|\Psi^{(0)}\rangle$
 - Affects the $\langle {\rm J} | H | {\rm I} \rangle$ and $\Delta E_{\rm IJ}$
 - Renormalization of H

• Size consistency

- Able to break bonds
- $\bullet\,$ Correct scaling of the energy with N

The Complete Active Space based approach


• CAS-CI(n,m) approach

- $\bullet\,$ All determinants within $n\ e$ and m orbitals
- Variational energy ⇔ no divergences

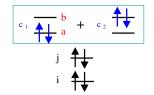
$$\begin{split} |\Psi^{(0)}\rangle &= \sum_{\rm I}^{\rm o} c_{\rm I} |{\rm I}\rangle \\ E_{\Psi^{(0)}} &= \min_{\{c_{\rm I}\}} \langle \Psi^{(0)} | H | \Psi^{(0)} \rangle \end{split}$$

- CAS-SCF approach
 - Add the orbital optimization

$$\begin{split} |\Psi^{(0)}\rangle &= e^{\hat{\kappa}} \sum_{\mathbf{I}} c_{\mathbf{I}} |\mathbf{I}\rangle \\ E_{\Psi^{(0)}} &= \min_{\{c_{\mathbf{I}},\hat{\kappa}\}} \langle \Psi^{(0)} | H | \Psi^{(0)} \rangle \end{split}$$

The Complete Active Space based approach

• CAS-CI(n,m) approach


- $\bullet\,$ All determinants within $n\ e$ and m orbitals
- Variational energy ⇔ no divergences

$$\begin{split} |\Psi^{(0)}\rangle &= \sum_{\mathrm{I}}^{\mathrm{O}} c_{\mathrm{I}} |\mathrm{I}\rangle \\ E_{\Psi^{(0)}} &= \min_{\{c_{\mathrm{I}}\}} \langle \Psi^{(0)} | H | \Psi^{(0)} \rangle \end{split}$$

• CAS-SCF approach

• Add the orbital optimization

$$\begin{split} |\Psi^{(0)}\rangle &= e^{\hat{\kappa}} \sum_{\mathbf{I}} c_{\mathbf{I}} |\mathbf{I}\rangle \\ E_{\Psi^{(0)}} &= \min_{\{c_{\mathbf{I}},\hat{\kappa}\}} \langle \Psi^{(0)} | H | \Psi^{(0)} \rangle \end{split}$$

Selected CI: Breaking the exponential wall

Some problems of the CAS

- Exponential scaling : max is CAS(20,20) (Heroic calculation)
- Cannot take into account weak correlation effects ...

Selected CI: Breaking the exponential wall

Some problems of the CAS

- Exponential scaling : max is CAS(20,20) (Heroic calculation)
- Cannot take into account weak correlation effects ...

A CAS-CI space is full of dead-wood

- Expensive step in CAS-CI: the variational step
- \bullet Treating all $|I\rangle$ at same footing is useless
- Only a few percent are really needed in a variational way
- Many of them can be treated in perturbation

Selected CI: Breaking the exponential wall

Some problems of the CAS

- Exponential scaling : max is CAS(20,20) (Heroic calculation)
- Cannot take into account weak correlation effects ...

A CAS-CI space is full of dead-wood

- Expensive step in CAS-CI: the variational step
- Treating all $|I\rangle$ at same footing is useless
- Only a few percent are really needed in a variational way
- Many of them can be treated in perturbation

One key question

• How to know a priori which are the important ones ?

The CIPSI algorithm: selection based on perturbation

- $\textbf{0} \quad \text{Given a zeroth-order wave function } |\Psi^{(0)}\rangle \text{ and } E_{\Psi^{(0)}}$
- **2** Estimate the coefficient of $|\mu\rangle$ not in $|\Psi^{(0)}\rangle$:

$$c_{\mu}^{(1)} = \frac{\langle \mu | H | \Psi^{(0)} \rangle}{E_{\Psi^{(0)}} - \langle \mu | H | \mu \rangle}$$

③ On the fly, estimate the $E^{(2)}$

$$E^{(2)} = \sum_{\mu} \frac{\left(\langle \mu | H | \Psi^{(0)} \rangle \right)^2}{E_{\Psi^{(0)}} - \langle \mu | H | \mu \rangle}; E_{\mathsf{CIPSI}} = E_{\Psi^{(0)}} + E^{(2)}$$

- **③** Select the most important ones and add them to $\Psi^{(0)}$
- Solution Check the convergence or GOTO (1)

A brief review

Revival of an old idea (Malrieu, 1973)

- I rediscovered it in 2011 (ironically in Malrieu's lab)
- Converge extremely fast: CAS(40,80), CAS(20,100) !
- Many times rediscovered (from 2011 at least 4 versions)
- Examples: HCI, MC-CI, A-CI, AdCI, ...
- We did not renamed it :)

Alternatives

- DMRG: use matrix product states
- FCI-QMC : use a stochastic sampling of the CI equations

Trial of conclusion for WFT

The weak correlation problems: WFT begins to compte DFT!

- Mathematically solved : CCSD(T) !!
- The main issue : CPU time
 - System size \Leftrightarrow Use local orbitals (PNO)
 - Basis set \Leftrightarrow Use explicit correlation (F12)

Trial of conclusion for WFT

The weak correlation problems: WFT begins to compte DFT!

- Mathematically solved : CCSD(T) !!
- The main issue : CPU time
 - System size ⇔ Use local orbitals (PNO)
 - Basis set \Leftrightarrow Use explicit correlation (F12)

The strong correlation problems: a lot of work ...

- Selected CI (SCI) have pushed away the limits of CAS-CI
- Not the end of the story: the exponential wall is just farther ...
- Alternatives: MRCC, MRPT based on large SCI

Trial of conclusion for WFT

The weak correlation problems: WFT begins to compte DFT!

- Mathematically solved : CCSD(T) !!
- The main issue : CPU time
 - System size ⇔ Use local orbitals (PNO)
 - Basis set \Leftrightarrow Use explicit correlation (F12)

The strong correlation problems: a lot of work ...

- Selected CI (SCI) have pushed away the limits of CAS-CI
- Not the end of the story: the exponential wall is just farther ...
- Alternatives: MRCC, MRPT based on large SCI

The complexity of QC relies in the diversity of chemistry !