Recent progress and open questions in ab initio simulations of nuclei

Vittorio Somà IRFU, CEA Saclay, France

GDR RESANET - Working group 3 meeting 12-13 November 2018

Ab initio vs. effective approach

Ab initio approach

A-body Hamiltonian
$$H = T + V^{2N} + V^{3N} + \dots + V^{AN}$$

Two main options

$$H|\Psi_k^A\rangle = E_k^A|\Psi_k^A\rangle \qquad ----$$

A-body wave-function

→ Solve many-body Schrödinger equation in a controlled, systematically improvable way

Effective approach

Effective approach

Interacting shell model

Simplify $|\Psi_k^A\rangle$ \rightarrow Energy density functional

Reduce active

Hilbert space

Ab initio valence space

$$H^{\text{eff}}|\Psi^{\text{eff}}\rangle = E|\Psi^{\text{eff}}\rangle$$

	Ab initio	Shell model	EDF	
Accuracy				
Reach across the mass table				
Predictive power/error estimate				

Evolution of ab initio nuclear chart

Self-consistent Green's function approach

- \odot Solution of the A-body Schrödinger equation $H|\Psi_k^A\rangle=E_k^A|\Psi_k^A\rangle$ achieved by
 - 1) Rewriting it in terms of 1-, 2-, *A*-body objects $G_1=G$, G_2 , ... G_A (Green's functions)
 - 2) Expanding these objects in perturbation (in practise **G** → **one-body observables**, etc..)
 - Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions

Self-energy expansion

Access a variety of quantities

- \circ One-body GF \rightarrow Ground-state properties of even-even A + spectra of odd-even neighbours
- \circ Two-body GF \rightarrow Excited spectrum of even-even A
- Self-energy → Optical potential for nucleon-nucleus scattering

Chiral effective field theory & nuclear interactions

- \odot Chiral EFT aims to provide a **systematic** framework to construct AN interactions (A=2, 3, ...)
- Main features:
 - \circ High-energy physics unresolved \rightarrow **soft potentials** \rightarrow improved many-body convergence
 - Many-body forces and currents consistently derived
 - A **theoretical error** can be, in principle, assigned to each order in the expansion

□ Ideally: apply to the many-nucleon system (and propagate the theoretical error)

Chiral effective field theory & nuclear interactions

- Renormalisability ← independence of UV physics
- Most commonly used power counting scheme (Weinberg PC) not renormalisable
- Two alternatives:

Fix-cutoff approach

- Phenomenological success
- o *A posteriori* error estimate [e.g. Epelbaum et al. 2015]

Renormalisable approach

- O Work in progress [van Kolck, Pavon Valderrama, Long, ...]
- Non-trivial impact on/from many-body approximations used [Drissi et al. in preparation]

First "standard" interaction [(EM) N3LO]

Testing interactions, pt. 1

Testing interactions, pt. 2

 ^{A}K

- New interactions correct for overbinding
- Radii OK when fitted!
- NNLO_{sat} not great e.g. in pf shell
- Producing N3LO_{sat} not straightforward

Regulator artefacts

• Regularisation scheme is a major source of variation among currently employed Hamiltonians

• Effects on 2N phase space

• Effects on 3N phase space

[Dyhdalo, Furnstahl, Hebeler, Tews 2016]

• Currently, description of doubly open-shell nuclei quantitatively worsens with deformation

[Somà et al. in preparation]

• Currently, description of doubly open-shell nuclei quantitatively worsens with deformation

□ Correlation with deformation parameter β [Hilaire & Girod 2007]

• Currently, description of doubly open-shell nuclei quantitatively worsens with deformation

□ Correlation with deformation parameter β [Hilaire & Girod 2007]

[Somà et al. in preparation]

• Currently, description of doubly open-shell nuclei quantitatively worsens with deformation

 $N3LO_{lnl}$

 \triangleleft Correlation with deformation parameter β [Hilaire & Girod 2007]

• Currently, description of doubly open-shell nuclei quantitatively worsens with deformation

□ Correlation with deformation parameter β [Hilaire & Girod 2007]

[Somà et al. in preparation]

Charge radii

The case of 34Si

- \odot **Unconventional depletion** ("bubble") in the centre of ρ_{ch} conjectured for certain nuclei
- Purely quantum mechanical effect
 - $\circ \ell = 0$ orbitals display radial distribution peaked at r = 0
 - $\circ \ell \neq 0$ orbitals are instead suppressed at small r
 - \circ Vacancy of s states ($\ell = 0$) embedded in larger- ℓ orbitals might cause central depletion
- Conjectured associated effect on spin-orbit splitting
 - Non-zero derivative at the interior

Spin-orbit potential of "non-natural" sign

○ Reduction of (energy) splitting of low-ℓ spin-orbit partners

[Dechargé et al. 2003]

● In light/medium-mass nuclei the most promising candidate is ³⁴Si

[Todd-Rutel et al. 2004, Khan et al. 2008, ...]

The case of ³⁴Si

Good reproduction of g.s. properties

$E [\mathrm{MeV}]$	ADC(1)	ADC(2)	ADC(3)	Experiment
$^{34}\mathrm{Si}$	-84.481	-274.626	-282.938	-283.427
^{36}S	-90.007	-296.060	-305.767	-308.714

$\langle r_{ m ch}^2 angle^{1/2}$	ADC(1)	ADC(2)	ADC(3)	Experiment
$^{34}\mathrm{Si}$	3.270	3.189	3.187	-
$^{36}\mathrm{S}$	3.395	3.291	3.285	3.2985 ± 0.0024

Mild central depletion predicted

- ⇔ Charge density computed via folding with the finite charge of the proton
- ⇒ Excellent agreement with experimental charge distribution of ³⁶S

[Duguet et al. 2017]

The case of ³⁴Si

Addition and removal spectra compared to transfer and knock-out reactions

One-neutron addition

One-proton knock-out

[Thorn *et al.* 1984]

Exp. data: [Eckle *et al.* 1989]

[Burgunder et al. 2014]

[Khan *et al.* 1985]

Exp. data: [Mutschler et al. 2016 (PRC)]

[Mutschler et al. 2016 (Nature Phys.)]

Reduction of $E_{1/2}$ - $E_{3/2}$ spinorbit splitting well reproduced

Agreement gets worse for oneproton removal → deformation?

K spectra

□ K spectra show interesting g.s. spin inversion and re-inversion

Laser spectroscopy COLLAPS @ ISOLDE

- Approximate/truncated methods capture correlations via an expansion in **ph excitations**
- Open-shell nuclei are (near-)degenerate with respect to ph excitations

- Solution: multi-determinantal or **symmetry-breaking** reference state
 - Symmetry-breaking solution allows to **lift the degeneracy**

Developed and implemented

To be developed and implemented

Tensor decomposition of many-body formalism

- □ Many-body methods require the handling (computation & storage) of large tensors
- □ Matrix elements of 3-body interaction represent current memory bottleneck

Use tensor decomposition techniques

• Two-body forces can be factorised as $v_{ijkl} = \sum_a \lambda_a g_{ik}^a g_{jl}^a$ (\rightarrow Singular Value Decomposition)

Gain #1: **size** (→ storage and memory needs)

$$\sum_{kl} v_{ijkl} = \sum_{a} \lambda_a \sum_{k} g_{ik}^a \sum_{l} g_{jl}^a$$

 N^2 m (N + N) = mN

Gain #2: CPU speed-up

HF test: → 0.003% error and factor 10 speed-up

• **Higher-order tensors:** exploit techniques from applied maths (e.g. tensor hypercontraction)

Conclusions

Not so good news

- Renormalisable approach → still a long way to go?
- Fix-cutoff approach → few issues hinder full phenomenological success

Good news

- Many-body methods mature for applications in medium-mass nuclei
- Promising ideas for extension to heavy nuclei

• Extension of ab initio simulations to heavy nuclei

- Extension to doubly open shell requires new formal developments
- Computational challenges ahead: work in progress and more smart ideas needed

Acknowledgements

- o T. Duguet, F. Raimondi, A. Tichai (CEA Saclay)
- C. Barbieri, M. Drissi (University of Surrey)
- ∘ P. Navrátil (TRIUMF)