Recent progress and open questions in ab initio simulations of nuclei

Vittorio Somà

IRFU, CEA Saclay, France

GDR RESANET - Working group 3 meeting
12-13 November 2018

Ab initio vs. effective approach

Ab initio approach

A-body Hamiltonian
$H=T+V^{2 \mathrm{~N}}+V^{3 \mathrm{~N}}+\ldots+V^{A \mathrm{~N}}$

\rightarrow Solve many-body Schrödinger equation in a controlled, systematically improvable way

Effective approach

Ab initio valence space

Simplify $\left|\Psi_{k}^{A}\right\rangle \rightarrow \quad$ Energy density
functional
Accuracy

Reach across the mass table Predictive power/error estimate

Evolution of ab initio nuclear chart

○ "Exact" approaches

- Since 1980's
- Monte Carlo, CI, ...
- Factorial/ exponential scaling

© Approximate approaches for closed-shell nuclei
- Since 2000's
- SCGF, CC, IMSRG
- Polynomial scaling

© Ab initio shell model

- Since 2014
- Effective interaction via CC/IMSRG
- Mixed scaling

Self-consistent Green's function approach

\odot Solution of the \boldsymbol{A}-body Schrödinger equation $H\left|\Psi_{k}^{A}\right\rangle=E_{k}^{A}\left|\Psi_{k}^{A}\right\rangle$ achieved by

1) Rewriting it in terms of $\mathbf{1 -}, \mathbf{2 -}, \ldots . . A$-body objects $G_{1}=G, G_{2}, \ldots G_{A}$ (Green's functions)
2) Expanding these objects in perturbation (in practise $\mathbf{G} \rightarrow$ one-body observables, etc..)

- Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions
\odot Self-energy expansion

\odot Access a variety of quantities
\circ One-body GF \rightarrow Ground-state properties of even-even $A+$ spectra of odd-even neighbours
- Two-body GF \rightarrow Excited spectrum of even-even A
- Self-energy \rightarrow Optical potential for nucleon-nucleus scattering

Chiral effective field theory \& nuclear interactions

\odot Chiral EFT aims to provide a systematic framework to construct $A \mathrm{~N}$ interactions ($A=2,3, \ldots$)
\bigcirc Main features:

- High-energy physics unresolved \rightarrow soft potentials \rightarrow improved many-body convergence
- Many-body forces and currents consistently derived
- A theoretical error can be, in principle, assigned to each order in the expansion

\Rightarrow Ideally: apply to the many-nucleon system (and propagate the theoretical error)

Chiral effective field theory \& nuclear interactions

\odot Renormalisability \leftrightarrow independence of UV physics
© Most commonly used power counting scheme (Weinberg PC) not renormalisable
© Two alternatives:

Fix-cutoff approach

- Phenomenological success
- A posteriori error estimate [e.g. Epelbaum et al. 2015]

Renormalisable approach

- Work in progress [van Kolck, Pavon Valderrama, Long, ...]
- Non-trivial impact on/from many-body approximations used [Drissi et al. in preparation]

First "standard" interaction [(EM) N3LO]

\checkmark Successful benchmarks

X Radii underestimated

Testing interactions, pt. 1

Testing interactions, pt. 2

Regulator artefacts

\bigcirc Regularisation scheme is a major source of variation among currently employed Hamiltonians

- Effects on 2 N phase space
- Effects on 3N phase space

[Dyhdalo, Furnstahl, Hebeler, Tews 2016]

Emergence of magic numbers "ab initio"

Doubly open-shell nuclei

© Currently, description of doubly open-shell nuclei quantitatively worsens with deformation

[Somà et al. in preparation]

Doubly open-shell nuclei

Currently, description of doubly open-shell nuclei quantitatively worsens with deformation
\Rightarrow Correlation with deformation parameter $\beta \quad$ [Hilaire \& Girod 2007]

[Somà et al. in preparation]

Doubly open-shell nuclei

Currently, description of doubly open-shell nuclei quantitatively worsens with deformation
\Rightarrow Correlation with deformation parameter $\beta \quad$ [Hilaire \& Girod 2007]

[Somà et al. in preparation]

Doubly open-shell nuclei

Currently, description of doubly open-shell nuclei quantitatively worsens with deformation
\Rightarrow Correlation with deformation parameter $\beta \quad$ [Hilaire \& Girod 2007]

[Somà et al. in preparation]

Doubly open-shell nuclei

Currently, description of doubly open-shell nuclei quantitatively worsens with deformation
\Rightarrow Correlation with deformation parameter $\beta \quad$ [Hilaire \& Girod 2007]

[Somà et al. in preparation]

Charge radii

The case of ${ }^{34} \mathrm{Si}$

© Unconventional depletion ("bubble") in the centre of $\rho_{\text {ch }}$ conjectured for certain nuclei
© Purely quantum mechanical effect

- $\ell=0$ orbitals display radial distribution peaked at $r=0$
$\circ \ell \neq 0$ orbitals are instead suppressed at small r
- Vacancy of s states $(\ell=0)$ embedded in larger- ℓ orbitals might cause central depletion
© Conjectured associated effect on spin-orbit splitting
- Non-zero derivative at the interior
- Spin-orbit potential of "non-natural" sign
- Reduction of (energy) splitting of low- ℓ spin-orbit partners

๑ Bubbles predicted for hyper-heavy nuclei
[Dechargé et al. 2003]
\odot In light/medium-mass nuclei the most promising candidate is ${ }^{34} \mathbf{S i}$

[Todd-Rutel et al. 2004, Khan et al. 2008, ...]

The case of ${ }^{34} \mathrm{Si}$

\odot Good reproduction of g.s. properties

$E[\mathrm{MeV}]$	ADC(1)	ADC(2)	ADC(3)	Experiment
${ }^{34} \mathrm{Si}$	-84.481	-274.626	-282.938	-283.427
${ }^{36} \mathrm{~S}$	-90.007	-296.060	-305.767	-308.714

$\left\langle r_{\mathrm{ch}}^{2}\right\rangle^{1 / 2}$	$\mathrm{ADC}(1)$	$\mathrm{ADC}(2)$	$\mathrm{ADC}(3)$	Experiment
${ }^{34} \mathrm{Si}$	3.270	3.189	3.187	-
${ }^{36} \mathrm{~S}$	3.395	3.291	3.285	3.2985 ± 0.0024

\odot Mild central depletion predicted

h Charge density computed via folding with the finite charge of the proton
\Rightarrow Folding smears out central depletion
b) Excellent agreement with experimental charge distribution of ${ }^{36} \mathrm{~S}$

The case of ${ }^{34} \mathrm{Si}$

\odot Addition and removal spectra compared to transfer and knock-out reactions

One-neutron addition

[Thorn et al. 1984]
Exp. data: [Eckle et al. 1989]
[Burgunder et al. 2014]

One-proton knock-out

[Khan et al. 1985]
Exp. data: [Mutschler et al. 2016 (PRC)]
[Mutschler et al. 2016 (Nature Phys.)]

K spectra

$\Rightarrow K$ spectra show interesting g.s. spin inversion and re-inversion

Laser spectroscopy COLLAPS @ ISOLDE

Doubly open-shell nuclei

๑ Approximate/truncated methods capture correlations via an expansion in ph excitations \odot Open-shell nuclei are (near-)degenerate with respect to ph excitations

\odot Solution: multi-determinantal or symmetry-breaking reference state

- Symmetry-breaking solution allows to lift the degeneracy

Developed and implemented

Quadrupole correlations
Deformation
\uparrow
Breaking of $\mathrm{SU}(2)$

Doubly open-shells

Tensor decomposition of many-body formalism

\Rightarrow Many-body methods require the handling (computation \& storage) of large tensors
c) Matrix elements of 3-body interaction represent current memory bottleneck

Use tensor decomposition techniques
\bigcirc Two-body forces can be factorised as $v_{i j k l}=\sum_{a} \lambda_{a} g_{i k}^{a} g_{j l}^{a} \quad(\rightarrow$ Singular Value Decomposition)

Gain \#1: size $(\rightarrow$ storage and memory needs $)$

$$
\begin{aligned}
& \sum_{k l} v_{i j k l}=\sum_{a} \lambda_{a} \sum_{k} g_{i k}^{a} \sum_{l} g_{j l}^{a} \\
& \mathrm{~N}^{2} \quad \mathrm{~m} \quad(\mathrm{~N}+\mathrm{N})=\mathrm{mN} \\
& \text { Gain \#2: CPU speed-up }
\end{aligned}
$$

HF test: $\rightarrow 0.003 \%$ error and factor 10 speed-up
\odot Higher-order tensors: exploit techniques from applied maths (e.g. tensor hypercontraction)

Conclusions

© Not so good news

- Renormalisable approach \rightarrow still a long way to go?
- Fix-cutoff approach \rightarrow few issues hinder full phenomenological success
\bigcirc Good news
- Many-body methods mature for applications in medium-mass nuclei
- Promising ideas for extension to heavy nuclei
© Extension of ab initio simulations to heavy nuclei
- Extension to doubly open shell requires new formal developments
- Computational challenges ahead: work in progress and more smart ideas needed

○ Acknowledgements

- T. Duguet, F. Raimondi, A. Tichai (CEA Saclay)
- C. Barbieri, M. Drissi (University of Surrey)
- P. Navrátil (TRIUMF)

