(Apache) Spark for physicists

C. Arnault, G. Barrand, J.E. Campagne, J. Peloton and S. Plaszczynski

LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

May 13,2019

UNIVERSITE
PARIS
sSw

.
universite
PARIS-SACLAY

History
(]

High Performance Computing (HPC)

since ~ 2 decades CPU freq was frozen (power consumption)

but more and more data...

°
°

@ —more and more complex computer architectures

@ multi core+machine parallelization often on super-computers
°

OpenMP, MPI, C++11/14/17, SIMD, GPU,FPGA...:

complicated...

S. Plaszczynski : Spark for physicists

History
(]

High Throughput Computing (HTC) aka "Big Data”

2004 Google: mapReduce programming model foundation of
distributed computing

2006 Hadoop open-source framework (ecosystem) HDFS ,Hive,
YARN. ..

2004 scala (java ecosystem)

2009 Spark: research project at UC. Berkeley
2015 Spark SQL (dataframes)

today: (Apache) Spark used by > 1000 companies

S. Plaszczynski : Spark for physicists

Histor:
(]

Meanwhile in cosmology...

Springel et al. (2006)

History Why spark? Analysis with Spark Developping with Spark References
(] o o] [e] o

BOSS O(10°) galaxies, DESI O(107)

S. Plaszczynski: Spark for physicists 5/44

History Why spark? Analysis with Spark Developping with Spark References
(] o o] [e] o

S. Plaszczynski: Spark for physici

History
(]

LSST

o start 2022 for 10 years
@ 8.4m primary mirror
o 3.2 Gpixels camera

e 18000 deg?

@ 15 TB raw data/night
°

+mocks...—big data

&
>

(may 2018, Cerro Pachén)

S. Plaszczynski : Spark for physicists

History Why spark? Analysis with Spark Developping with Spark References

(0] L] [o} (o} (o}

So what is Spark about?

A framework to work as close as possible to the data

in practice: a set of functions: scala, (java), python, R

data.transforml () .transform2()....action()

This is Functional Programming (but you don’t need to know it!)

S. Plaszczynski: Spark for physicists

History 'hy spark? Analysis with Spark 2vel with Spark

(] [o}

Distributed computing

executors
MAP filel file2 file...

max()
driver "—N—}'B filed
N:()
ax()

Why spark?

Advantage 1= simple parallelization

executors

REDUCE

driver

max=max(max_i)

dataframe.select(max("variable")) 0z

S. Plaszczynski : Spark for physicists

Why spark?

Advantage 2 ?

> data=spark.read. format("fits")\
.load("path/to/110GB/of/fits/files")

> data.show(5)

.80168]18.
.73839](18.
.7999918.
.4978318.
.57983(18

S. Plaszczynski : Spark for physicists

519966[2.4199903|
588171[2.4056022]2.
635067 | 2.396816]2.
57077612.41397862.

.638515(2.39950442.

2.414322]

2913096 |
3597262 |
3434482 |
3826954 |

Why spark?

Lazy evaluation —optimization

@ you are used to imperative languages (C/C++/FORTRAN...)

@ here lazy evaluation: code is an ‘expression-language’ that
allows to build a Direct Acyclic Graph (DAG)

o transformations (load,map,filter..) —update DAG

@ actions (count,collect, show..) —optimize DAG
(Catalyst) and run

S. Plaszczynski : Spark for physicists

Advantage 2= Automatic pipeline optimization

Analysis Logical Physical Code
Y Optimization ~ Planning Generation
SQLAST / 3
Unresolved 9 Optimized Physical Z— zo Selected
> Logical Plan gy Lozel i g Logical Plan — P)llans \ 3 o Physical Plan — R
DataFrame o
Catalog

the Machine does it better than you! —Spark reason of success

Why spark?

Advantage 3= in memory work (cache)

Put the data in cache as if you had a huge RAM

@ ex: 110 GB on a small cluster (8 workers)
e 1TB at NERSC

dataframe.cache()

Then you can work interactively

S. Plaszczynski : Spark for physicists

Advantage 4= scaling

103 i
== No cache
== Data cached, first iteration
Data cached, later iterations

i

7 102
) i
IS i
F i
c i
S 10! i
£~ i
© i
— 1
[J] i
= i
i
i
10° i
i
i

<4———in—memory... ... memory and disk —p
10! 10? 103

Volume of data (GB)

Analysis with Spark

A use-case in cosmology

o generate LSST 10Y of galaxies with fast sim
https://github.com/damonge/CoLoRe.git

e —110GB of FITS files. 6. 10° galaxies

@ goal is to have a quick interactive look at what was generated
(python)
o this is different from developing software (scala)

S. Plaszczynski : Spark for physicists

https://github.com/damonge/CoLoRe.git

Analysis with Spark

The U-PSUD cluster

@ 9 machines: 18 cores+ 32 GB
RAM each

o cache = 0.6 X mem = 144GB
—enough to hold our dataset

o HDFS

S. Plaszczynski : Spark for physicists

Analysis with Spark

Data sources

o Spark was rather developed to gfy study your habits: poorly
structured data (text, although avro, parquet)

@ need to develop support for more complex structures
@ popular formats in astronomy: FITS, HDF5
@ but no good native FITS/HDFS5 Spark reader exists...

spark-fits high performance connector (+1ib) Peloton et al. (2018)

S. Plaszczynski : Spark for physicists

Analysis with Spark

Reading a FITS file

Nothing to do on the user-side: just copy your standard FITS file to
your cluster and then

> df=spark.read.format("fits").option("hdu", 1)\
.load("hdfs:path/to/fits/dir/")

> df.printSchema ()

| -- TYPE: integer (nullable = true)
|-- RA: float (nullable = true)

| -- DEC: float (nullable = true)

|-- Z_COSMO: float (nullable = true)
| -- DZ_RSD: float (nullable = true)

Dataframe similar to R/pandas
(‘n-tuple’ in HEP since the 70’s, ‘binTable’ in FITS since the 80’s...) AL

S. Plaszczynski : Spark for physicists

Analysis with Spark

1. Selecting columns

> gal=df.select("RA","Dec", \
(col("Z_COSMO")+col("DZ_RSD")).alias("z"))

> gal.show(5)

[265.1168| -79.96222| 0.5590986|
| 258.0575| -79.84589(0.55854577|
[261.24503[-80.293274|0.56063706 |
[279.49026| -80.23766|0.56124765|
| 285.2853| -79.96391|0.56244487|

S. Plaszczynski : Spark for physicists

Analysis with Spark

2. Put them in cache

> gal.cache().count ()

5926764680

~100s

S. Plaszczynski : Spark for physicists

Analysis with Spark

3. A first quick look

> gal.describe(’z’).show()

count	11713638
mean	0.27755870587729775
stddev	0.1639140896858911

min | -0.0017737485|

max | 0.5673544 |

I — Fommmm e +
4s

S. Plaszczynski : Spark for physicists

Analysis with Spark

4 Histograms (the distributed way)

starting from z add a column of bin numbers

> zbin=gal.select("z"
(Cgal[’z’]-zmin-dz/2)/dz) .astype(’int’)\
.alias(’bin’))

| 0.5590986| 98]
[0.55854577| 97|
[0.56063706| 98]
[0.56124765| 98]
[0.56244487| 98|
[0.55902207| 98]

S. Plaszczynski : Spark for physicists

Analysis with Spark

Histograms (the distributed way) 2

GroupBy this column

> zbin=zbin.groupBy("bin")...

+---- - +--- - e it +----+
| z | group | bin]|
R to—mm - B it L +---—+
| {0.5590986,0.56063706,0.56124765,...+ | 98 |
| {0.55854577. ... ool 97 |

and count by group

> zbin=zbin.groupBy("bin").count ()

| 98116607 |
| 971117410 ‘N

S. Plaszczynski : Spark for physicists

Analysis with Spark

Histograms (the distributed way) 3

@ sort in ”’bin” ascending order
@ add locations (bin centers)

> h=zbin.sort("bin",ascending=True)
> histo=h.select((zmin+dz/2+h[’bin’]*dz)\
.alias(’zbin’)\

, "count")
B i t---——- +
| zbin| count|
o m e +-—---- +

[0.001071892101317644|237445]|
[0.006763173397630453 178469 |
| 0.01245445469394326(132612]|
| 0.01814573599025607 102854 |
| 0.02383701728656888| 96153

S. Plaszczynski : Spark for physicists

le8

dN/dz

~]1s

9 ‘
on 6.107 data! imperative way (sequential): 45 mins AL

Analysis with Spark

5. User-Defined Functions (UDF)

binNum=udf(lambda z: int((z-zmin-dz/2)/dz))
zbin=gal.select(gal.z,\
binNum(gal.z).alias(’bin’))

115s !

@pandas_udf("float", PandasUDFType.SCALAR)
def binNumber(z):
return pandas.Series((z-zmin)/dz)

zbin=gal.select(gal.z,\
binNumber ("z").astype(’int’).alias(’bin’))

40s

S. Plaszczynski : Spark for physicists

Analysis with Spark

6. Tomography

e compute over-densities in redshift regions (shells)
@ project onto a map (HEALPix)
@ compute cross/auto power-spectra

@ P(k, z)+shear= powerful probe for cosmology (DES 1Y Troxel et al.
(2018))

S. Plaszczynski : Spark for physicists

Analysis with Spark

Implementation

@pandas_udf(’int’, PandasUDFType.SCALAR)
def Ang2Pix(ra,dec):
theta=np.radians (90-dec)
phi=np.radians(ra)
return pandas.Series(\
healpy.ang2pix(nside, theta,phi)
DA

shell=gal.filter(gal[’z’].between(zl,z2))
map=shell.select (Ang2Pix("RA","Dec")\

.alias("ipix"))\
.groupBy ("ipix") .count ()

S. Plaszczynski : Spark for physicists

Analysis with Spark
o

z€[0.0,0.1]

ki: Spark for physicists

s with Spark

Power spectra

0x9
1x8
2x7

3x6
4x5
4x4

i)
/)

T T T T
0 100 200 300 400 500

~30 s/shell

python or scala?

user time (s)

120

100 A

801

60

401

20 A

Em python
N scala

read+cache

statistics

histo(native)

histo(udf)

tomo (1 bin)

s with Spark

Do you need a supecomputer?

python
120
I UPSUD
I NERSC=UPSUD
100 I NERSC=UPSUD*2
80
C1
g
= 601
@
w
=1
40 1
201

0-
read+cache statistics df(native) df{ +udf) tomo (1 bin)

Developping with Spark
®

Machine
Learning

Streaming

S. Plaszczynski: Spark for physicists

B Asvavon

https://astrolabsoftware.github.io

[sparkits

FITS data source for Spark SGL and DataFrames

@scala K10 Ya

[spark-tutorials

PySpark notebooks to learn Apache Spark (WIP)

@ Jupyter Notebook % 5

I spark3D

Spark extension for processing large-scale 3D
data sets: Astrophysics, High Energy Physics,
Meteorology, ...

@scala K9 Y3

[scala-tutorials

Tutorials on functional programming & Scala

@ Dockerfile ¥ 2

Developping with Spark
®

[J fink-broker

Astronomy Broker based on Apache Spark

@python k2 Y3

[Interfaces

How to Intertace difterent languages Implied in
the process of sclentific programming especially
In the context of the AstroLab Sofware
organization, or developments using it.

@scala K4

https://astrolabsoftware.github.io

Developping with Spark
®

Spark-3D

Points

Shells

Data 3D
Source shapes

spark3D

0.2.1

Scala/Python

3D Parti

methods ning Onion
space

Octree

Developping with Spark
®

spark3D: K Nearest Neighbours

KNN: K=0(100), 1 billion points @ @
in few seconds on 150 cores...

S

clustering algorithm =k-Means —DBSCAN AL

Developping with Spark
®

Where do I start?

@ download and play with Spark on your laptop
@ read Plaszczynski et al. (2018) + notebook
https://github.com/astrolabsoftware/1807.03078

clusters:

e NERSC?

@ not at CCIN2P3 —ask!

e U-PSud

o CERN/openlab?

S. Plaszczynski : Spark for physicists

https://github.com/astrolabsoftware/1807.03078

openlab Big Data Analytics

in collab

Provides infrastructure, knowledge, consul-
,,,,,, ERVICE tancy and integration with the rest of the IT

SPArK™™ ITDB gervices

Ensures that industry, CERN IT and the

Experiments are effectively connected

CERN

openlab
Provides resources l ‘ Provides the relevant use
and consultancy on big data cases and physics
technologies and optimization analysis code

@ CMS

o
SCALABILITY TESTS Final Presentation

https://cernbox.cern.ch/index.php/s/6B89Z3wQgfZci7h /AL

39/44

https://cernbox.cern.ch/index.php/s/6B89Z3wQgfZci7h

Developping with Spark
®

CMS Data Reduction Facility - Motivation

Why Data Analytics & Reduction with Spark?

o Investigate new ways to analyse physics data

o Improve resource utilization and time-to-physics

o Adopt new technologies widely used in the industry

o Open the HEP field to a larger community
o Improve chance of researchers on the job market outside academia

https://cernbox.cern.ch/index.php/s/6B89Z3wQgfZci7h

Referen
(e}

Full refs

Peloton, J., Arnault, C., & Plaszczynski, S. 2018, ArXiv e-prints, arXiv:1804.07501

Plaszczynski, S., Peloton, J., Arnault, C., & Campagne, J. E. 2018, ArXiv e-prints, arXiv:1807.03078
Springel, V., Frenk, C. S., & White, S. D. M. 2006, Nature, 440, 1137, arXiv:astro-ph/0604561
Troxel, M. A., MacCrann, N., Zuntz, J., et al. 2018, Phys. Rev. D, 98, 043528, arXiv:1708.01538

http://arxiv.org/abs/1804.07501
http://arxiv.org/abs/1807.03078
http://arxiv.org/abs/astro-ph/0604561
http://arxiv.org/abs/1708.01538

References
L]

Login / Sign Up

BUI|d your own Unlverse

Interactive data analysis of massive cosmolog|ca| data W|thout any SQL knowledge

Billions of observed and Superfast queries means Features to.make you™" Onhne plottlng prewew
simulated galaxies superfast results work faster and easier and data download

Learn more

v

S. Plaszczynski : Spark for physici 42/44

References
L]

Performances

Benchmark (distribute and count)

70] B fits (10.080 s)
m csv (18.414 s)
60 B parquet (3.196 s)
50 |
40 §
30 ;
20 | -
10
0
5 10 15 20 25

Iteration time (second)

S. Plaszczynski: Spark for phy

History Why spark? Analysis with Spark Developping with Spark References
o (o] o] [e] L]

@ concepts from math logic theory (1—calculus): Curry-Howard
correspondence

o imperative languages rather developed (Turing machines)
e Lisp, Haskell..

@ scala used by some scientific communities (genomics)

main ideas:
o functions are fundamental basic types
o Referential transparency = f(x) + f(x) = 2f(x)
@ no idea of ‘state’ (but monades introduced in scala)
e immutability (no side-effect), recursivity...

quite clear /concise/robust codes but not very used until scala/Spark

S. Plaszczynski : Spark for physicists

	History
	Why spark?
	Analysis with Spark
	Developping with Spark
	References

