Phenomenological Aspects of the

Next-to-Minimal Supersymmetric Standard Model

U. Ellwanger, LPT Orsay

Contents:

1) The NMSSM

2) Phenomenology of a Light Pseudoscalar

3) The NMSSM in mSUGRA

The NMSSM

The μ -term in the superpotential W of the MSSM is generated by the VEV of an additional gauge singlet superfield S:

 $W_{MSSM} = \mu H_u H_d + \dots \longrightarrow W_{NMSSM} = \lambda S H_u H_d + \frac{1}{3} \kappa S^3 + \dots$

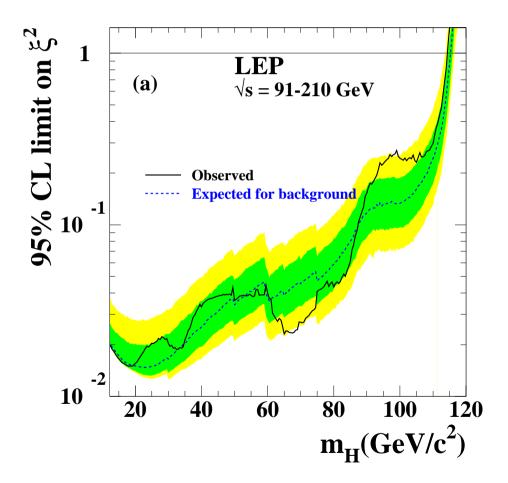
Soft SUSY breaking terms: $\mu B H_u H_d + \dots \rightarrow \lambda A_{\lambda} S H_u H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \dots$

→ 3 CP-even neutral Higgs scalars H_i , i = 1...3→ 2 CP-odd neutral Higgs scalars A_i , i = 1...2→ 5 neutralinos χ_i^0 , i = 1...5

The singlet-like states H_S , A_S and χ^0_S mix with the SU(2)-doublets, depending on λ , κ , A_{λ} , A_{κ}

The lightest CP-odd scalar A_1 can be quite light, notably in the case of an approximate *R*-symmetry in the Higgs sector $(A_{\lambda}, A_{\kappa} \rightarrow 0)$ or Peccei-Quinn-symmetry $(\kappa \rightarrow 0)$

Lessons/Hints from LEP


Search for $H \rightarrow b\bar{b}$, $\tau^+ \tau^-$ (comb. 4 exp., LEP-Higgs Working Group):

Light excess of events for $m_H \sim 95 - 100 \text{ GeV} (\sim 2.3 \sigma)$ If such an H exists:

 \rightarrow Either reduced coupling $g_{HZZ}/g_{HZZ_SM} \equiv \xi \lesssim 0.4 - 0.5$

 \rightarrow or reduced *BR* to $b\overline{b}, \tau^+ \tau^-$: *BR*($H \rightarrow b\overline{b}, \tau^+ \tau^-$)/*BR*_{SM} $\lesssim 0.2$

 $\rightarrow BR(H \rightarrow A_1A_1) \sim 80 - 90\%?$ (Dermisek, Gunion: solution of the "little finetuning problem" of the MSSM)

Search for $H \rightarrow A_1A_1$ at LEP:

- \rightarrow Strong bounds on $H \rightarrow A_1A_1 \rightarrow 4b$ for $m_H \sim 95 100$ GeV
- $\rightarrow M_{A_1}$ below $B\bar{B}$ threshold: $M_{A_1} < 2M_B \sim 10.5$ GeV
- $\rightarrow A_1$ decays dominantly into $A_1 \rightarrow \tau^+ \tau^-$
- \rightarrow Searches for $H \rightarrow A_1 A_1 \rightarrow 4\tau$: No bounds for $m_H \sim 95 100$ GeV!

$\frac{\text{Lessons/Hints from radiative } \Upsilon \text{ decays}}{(\text{See talk by F. Domingo})}$

If $M_{A_1} \lesssim 10.5$ GeV: decays $\Upsilon(nS) \to A_1 + \gamma$ are possible; BR depends on M_{A_1} and $g_{A_1 b\overline{b}}$ (possibly, for large $\tan \beta$: $g_{A_1 b\overline{b}} > g_{H b\overline{b}_SM}$) Constraints from CLEO: $M_{A_1} \gtrsim 8.8$ GeV (if $g_{A_1 b\overline{b}}$ large)

Note: for large $g_{A_1b\bar{b}}$, the η_b can mix with A_1 (same quantum numbers) \rightarrow Shift of the eigenvalues of the $\eta_b - A_1$ mass matrix?

BaBar (2008): Discovery of η_b : $M_{\eta_b} \sim 9.39$ GeV Compare to predictions for M_{η_b} (lattice/quark models): M_{η_b} too low, $M_{\Upsilon(1S)} - M_{\eta_b} = 71.4 \pm 4.1$ MeV (expect 39 ± 14 MeV) \rightarrow Mixing with A_1 ? ($\rightarrow M_{A_1} \gtrsim 9.4$ GeV) Higgs Searches at the LHC

with dominant $H \rightarrow A_1 A_1$ decays, $M_{A_1} < 10.5 \text{ GeV} \rightarrow A_1 \rightarrow \tau^+ \tau^-$ dominant

- 4 neutrinos (at least), no narrow peaks in invariant masses;

- 2 τ 's (of the same A_1) nearly collinear, low invariant masses, low p_T ;
- Backgrounds: Υ production, heavy flavour jets, ...

Forshaw et al. (0712.3510): via diffractive Higgs Production $pp \rightarrow pp + H$ (\rightarrow additional forward proton detectors at ATLAS and/or CMS)

Belyaev et al. (0805.3505): via $A_1A_1 \rightarrow 4\tau \rightarrow 2\mu + 2$ jets Rates with 100 fb^{-1} after cuts: $\sim 8 \cdot 10^3$ from H from Vector Boson Fusion (VBF), $\sim 10^3$ from H from Higgs Strahlung $W^{\pm} * \rightarrow H + W^{\pm}$ (HS) (trigger on lepton from W^{\pm})

(but: no background studies, no detector performances)

Current ATLAS studies: $A_1A_1 \rightarrow 4\tau \rightarrow 4\mu$ (VBF) Current CMS studies: $A_1A_1 \rightarrow 4\tau \rightarrow 2\mu + 2$ jets (HS)

Or: use subdominant A_1 decays:

 $BR(A_1 \to \mu^+ \mu^-) \sim 3 \cdot 10^{-3}$ would be clean $(BR(A_1 \to \gamma \gamma) \lesssim 10^{-4}$ would be too low)

Lisanti, Wacker (0903.1377): $A_1A_1 \rightarrow 2\tau + 2\mu$ from H via gg fusion Rates at Tevatron (20 fb^{-1} , D0+CDF): up to 300 events Rates at the LHC (500 pb^{-1}): up to 250 events per experiment

The cNMSSM (with A. Djouadi, A.M. Teixeira)

 $M_{1/2}$, A_0 , m_0 (incl. m_S , A_{κ}) universal at $M_{GUT} \sim M_{Planck}$

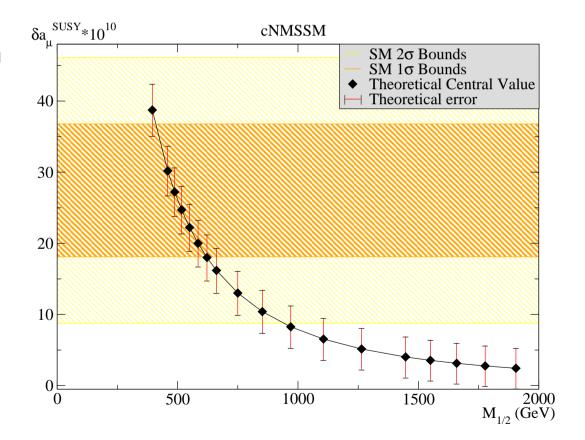
Same number of free parameters as the cMSSM: $\mu,~B \rightarrow \lambda,~\kappa$

The allowed range for $M_{1/2}$, A_0 , m_0 is very different from the cMSSM!

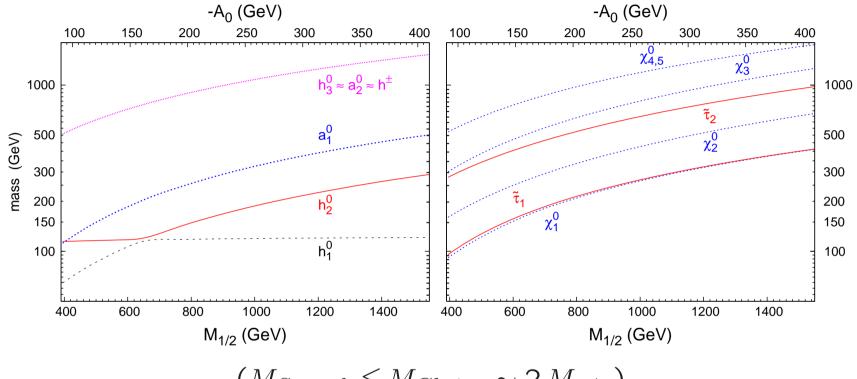
From $\langle S \rangle \neq 0$: m_S^2 must be small (possibly $m_S = 0$), and $m_S^2 \sim m_0^2$!

- → In the cMSSM: the lightest $\tilde{\tau}_1$ would be the LSP, ruled out → In the cNMSSM: the singlino-like neutralino χ_1^0 must be the LSP → Correct χ_1^0 relic density Ωh^2 : $M_{\chi_1^0}$ must be just a few GeV below $M_{\tilde{\tau}_1}$ → χ_1^0 relic density reduced via coannihilation with $\tilde{\tau}_1$ (→ A_0 small)
- → Each sparticle decay cascade produces first a $\tilde{\tau}_1$ NLSP; only subsequently the $\tilde{\tau}_1$ NLSP decays into $\tilde{\tau}_1 \rightarrow \tau + \chi_1^0$

 \rightarrow Each sparticle decay cascade contains a τ !


For $M_{\tilde{\tau}_1} - M_{\chi_1^0}$ very small and/or λ small: the $\tilde{\tau}_1$ decay vertex can be displaced up to $\mathcal{O}(\text{mm-cm})!$ (cf. GMSB with gravitino LSP: displaced vertices $\geq \mathcal{O}(\text{m})$)

Due to m_0 , $A_0 \ll M_{1/2}$, the spectrum depends essentially on $M_{1/2}$ only "Best value" for $M_{1/2}$ from $(g-2)_{\mu}$ (with F. Domingo):


Try to explain the $\sim 3\sigma$ deviation of the measured $(g-2)_{\mu}$ w.r.t. the SM by chargino/sneutrino contributions

 $ightarrow M_{1/2} \lesssim 1 {
m TeV}$ ($M_{1/2} \approx 500 {
m GeV?}$)

 $(M_{1/2} \lesssim 400 \text{ GeV}:$ $M_{\widetilde{ au}_1} \lesssim 100 \text{ GeV},$ excluded by LEP)

Higgs, neutralino and slepton spectrum as function of $M_{1/2}$:

 $(M_{Squark} \lesssim M_{Gluino} \sim 2 M_{1/2})$

Note: For $M_{1/2} \lesssim 640$ GeV, the lightest CP-even scalar h_1 is singlet-like; the mass of the SM-like CP-even scalar h_2 is $\gtrsim 115$ GeV Possibly (for $M_{1/2} \sim 570$ GeV): $M_{h_1} \sim 95 - 100$ GeV, $\xi_{h_1ZZ} \sim 0.4$ \rightarrow explanation of the excess of events at LEP? Now: no light CP-odd scalar; h_2 behaves like a SM Higgs

Summary

Assuming that a single SUSY breaking scale M_{SUSY} generates the weak scale $\sim M_Z$ (no explicit μ -term), the NMSSM is the most natural supersymmetric extension of the Standard Model

The simplest version, the cNMSSM (mSUGRA), could explain the 2.3 σ excess of events in Higgs searches at LEP (in contrast to the cMSSM). Due to m_0 , $A_0 \ll M_{1/2}$, its sparticle spectrum would be very different from the cMSSM! Notably: $\tilde{\tau}_1$ decays in every sparticle decay chain Possibly: displaced vertices from $\tilde{\tau}_1$ decays

In the general NMSSM, a light CP-odd scalar $A_{\rm 1}$ with $M_{A_{\rm 1}} < 10.5~{\rm GeV}$ could

- explain the 2.3 σ excess of events at LEP
- alleviate the "little finetuning problem"
- explain a low η_b mass, but:

A challenging scenario for Higgs searches!