Towards LHC Phenomenology beyond Leading Order

Gudrun Heinrich

Institute for Particle Physics Phenomenology

GDR Terascale, Heidelberg, 16.10.09

on behalf of the

GOLEM collaboration

(General One-Loop Evaluator of Matrix elements)

T. Binoth, G. Cullen, J.-Ph. Guillet, GH, S. Karg, N. Kauer, E. Pilon, T. Reiter, M. Rodgers, I. Wigmore

The LHC ...

... has been planned long time ago ...

Linear Colliders also seem to have been supported ...

...so why do we say we are entering a New Era in Particle Physics?

...so why do we say we are entering a New Era in Particle Physics?

... because instead of hunting buffaloes, we are now hunting Higgs bosons ...

- will shed light on the origin of mass ("Higgs mechanism")
- may discover supersymmetry or extra dimensions
- provide information about dark matter

- will shed light on the origin of mass ("Higgs mechanism")
- may discover supersymmetry or extra dimensions
- provide information about dark matter
- 1 Terabyte of data every day
 - ⇒ new technologies for data aquisition and processing (e.g. GRID)

- will shed light on the origin of mass ("Higgs mechanism")
- may discover supersymmetry or extra dimensions
- provide information about dark matter
- 1 Terabyte of data every day
 - ⇒ new technologies for data aquisition and processing (e.g. GRID)
- $ightharpoonup \sim 1000$ hadronic tracks in detector per event
 - ⇒ strong interactions play key role: enormous backgrounds!

- will shed light on the origin of mass ("Higgs mechanism")
- may discover supersymmetry or extra dimensions
- provide information about dark matter
- 1 Terabyte of data every day
 - ⇒ new technologies for data aquisition and processing (e.g. GRID)
- $ightharpoonup \sim 1000$ hadronic tracks in detector per event
 - ⇒ strong interactions play key role: enormous backgrounds!

process	events/sec	
QCD jets $E_T > 150\mathrm{GeV}$	100	background
$W \to e \nu$	15	background
$t \overline{t}$	1	background
Higgs, $m_H \sim 130\text{GeV}$	0.02	signal
gluinos, $m\sim 1{\rm TeV}$	0.001	signal

LHC phases

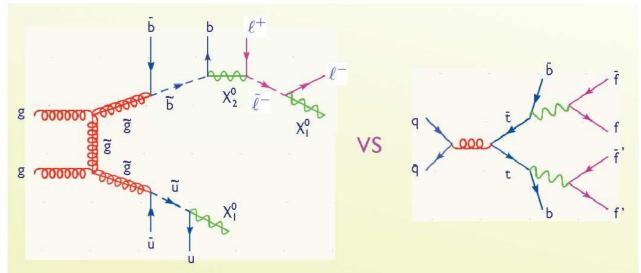
early phase: have to "rediscover" the Standard Model, control underlying event, jet energy scale, ... do we control the SM predictions well enough to claim a discovery soon?

LHC phases

- early phase: have to "rediscover" the Standard Model, control underlying event, jet energy scale, ... do we control the SM predictions well enough to claim a discovery soon?
- "model discrimination phase": have to measure particle masses, widths, couplings, CP properties, ... do we control the SM/MSSM predictions well enough?

(heavy) SUSY particles:

- decay through cascades emitting quarks and leptons
- ullet signatures: energetic jets and leptons, missing E_T
- QCD radiation generates additional hard jets
 multi-particle final states



F. Maltoni

peak: easy, backgrounds can be measured

- peak: easy, backgrounds can be measured
- shape: hard need signal/background shapes from theory shape in general well described by Monte Carlo tools combining (LO) matrix elements and parton shower (Sherpa, Alpgen, Helac, ...)

- peak: easy, backgrounds can be measured
- shape: hard need signal/background shapes from theory shape in general well described by Monte Carlo tools combining (LO) matrix elements and parton shower (Sherpa, Alpgen, Helac, ...)
- **Parameter** rate (e.g. $H o W^+W^-$): very hard need both shape and normalisation from theory ⇒ leading order (LO) is not sufficient!

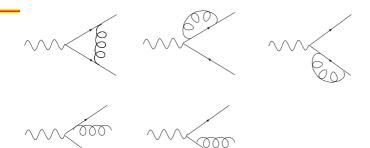
- peak: easy, backgrounds can be measured
- shape: hard need signal/background shapes from theory shape in general well described by Monte Carlo tools combining (LO) matrix elements and parton shower (Sherpa, Alpgen, Helac, ...)
- rate (e.g. $H \rightarrow W^+W^-$): very hard need both shape and normalisation from theory ⇒ leading order (LO) is not sufficient!
- ▶ problem: typically multi-particle final states
 ⇒ calculations of higher orders increasingly difficult
 until recently: LO tools highly automated, whereas
 NLO calculations tedious case-by case exercises

- peak: easy, backgrounds can be measured
- shape: hard need signal/background shapes from theory shape in general well described by Monte Carlo tools combining (LO) matrix elements and parton shower (Sherpa, Alpgen, Helac, ...)
- rate (e.g. $H \rightarrow W^+W^-$): very hard need both shape and normalisation from theory ⇒ leading order (LO) is not sufficient!
- ▶ problem: typically multi-particle final states
 ⇒ calculations of higher orders increasingly difficult
 until recently: LO tools highly automated, whereas
 NLO calculations tedious case-by case exercises
- now paradigm change: we are moving towards automated NLO tools

ingredients for m-particle observable at NLO

virtual part (one-loop integrals):

$$\mathcal{A}_{NLO}^{V} = A_2/\epsilon^2 + A_1/\epsilon + A_0^{(v)}$$
$$d\sigma^{V} \sim Re\left(\mathcal{A}_{LO}^{\dagger} \mathcal{A}_{NLO}^{V}\right)$$



real radiation part: soft/collinear emission of massless particles

⇒ need subtraction terms

$$\Rightarrow \int_{\text{sing}} d\sigma^S = -A_2/\epsilon^2 - A_1/\epsilon + A_0^{(r)}$$

$$\sigma^{NLO} = \underbrace{\int_{m+1} \left[d\sigma^R - d\sigma^S \right]_{\epsilon=0}}_{\text{numerically}} + \underbrace{\int_{m} \left[\frac{d\sigma^V}{\text{cancel poles}} + \int_{\text{sanalytically}} d\sigma^S \right]_{\epsilon=0}}_{\text{numerically}}$$

Modular structure

Tree Modules

One-Loop Module

IR Modules

$$|\mathcal{A}^{LO}|^2$$
 \in

$$\bigoplus$$

$$2 \operatorname{Re}(\mathcal{A}^{LO}^{\dagger}\mathcal{A}^{NLO,V})$$

$$\bigoplus$$

$$\sum_{j}\int_{j}\mathcal{S}_{j}$$

$$|\mathcal{A}^{NLO,R}|^2$$

$$\bigcirc$$

$$\sum_{j} \mathcal{S}_{j}$$

has been bottleneck in past years

- more efficient techniques to calculate loop amplitudes
 - unitarity-based methods
 e.g. BlackHat, Rocket, CutTools, analytic, ...
 - improved methods based on Feynman diagrams
 e.g. GOLEM, Denner et. al, ...

- more efficient techniques to calculate loop amplitudes
 - unitarity-based methods
 e.g. BlackHat, Rocket, CutTools, analytic, ...
 - improved methods based on Feynman diagrams
 e.g. GOLEM, Denner et. al, ...
- automatisation of IR modules

- more efficient techniques to calculate loop amplitudes
 - unitarity-based methods
 e.g. BlackHat, Rocket, CutTools, analytic, ...
 - improved methods based on Feynman diagrams
 e.g. GOLEM, Denner et. al, ...
- automatisation of IR modules
- use existing technology from leading order tools LO tools can provide:
 - event generation
 - phase space integration
 - histogramming tools
 - subtraction terms for soft/collinear radiation

- more efficient techniques to calculate loop amplitudes
 - unitarity-based methods
 e.g. BlackHat, Rocket, CutTools, analytic, ...
 - improved methods based on Feynman diagrams
 e.g. GOLEM, Denner et. al, ...
- automatisation of IR modules
- use existing technology from leading order tools LO tools can provide:
 - event generation
 - phase space integration
 - histogramming tools
 - subtraction terms for soft/collinear radiation
- matching NLO amplitudes with parton showers

2009 status of NLO wishlist for LHC

$$pp
ightarrow W \ ext{yet}$$
 $pp
ightarrow Z \ ext{z jet}$
 $pp
ightarrow t \overline{t} \ b \overline{b}$
 $pp
ightarrow t \overline{t} + 2 ext{jets}$
 $pp
ightarrow Z \ Z \ Z$
 $pp
ightarrow V \ V \ pp
ightarrow V \ V \ b \overline{b}$
 $pp
ightarrow V \ V + 2 ext{jets}$
 $pp
ightarrow V \ V + 3 ext{jets}$
 $pp
ightarrow b \overline{b} b \overline{b}$
 $pp
ightarrow t \ \overline{t} \ Z$
 $pp
ightarrow b \ \overline{b} \ Z \ , b \ \overline{b} \ W$

Denner/Dittmaier/Kallweit/Uwer,

Ellis/Campbell/Zanderighi

Binoth/Guillet/Karg/Kauer/Sanguinetti

Bredenstein/Denner/Dittmaier/Pozzorini

Lazopoulos/Melnikov/Petriello, Hankele/Zeppenfeld

Binoth/Ossola/Papadopoulos/Pittau, Zeppenfeld et al.

VBF: Bozzi/Jäger/Oleari/Zeppenfeld, VBFNLO coll.

BlackHat coll.; Ellis/Giele/Kunszt/Melnikov/Zanderighi*

Binoth/Guffanti/Guillet/Reiter/Reuter

Dittmaier/Uwer/Weinzierl

Lazopoulos/McElmurry/Melnikov/Petriello

Febres Cordero/Reina/Wackeroth

done
 partial results
 leading colour only

Interface

details worked out at Les Houches 2009 workshop on TeV colliders

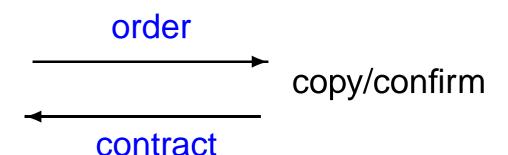
Monte Carlo tool (MC)

One-Loop-Provider (OLP)

initialisation:

process info CH summed model parameters fix scheme

. . .



runtime:

events

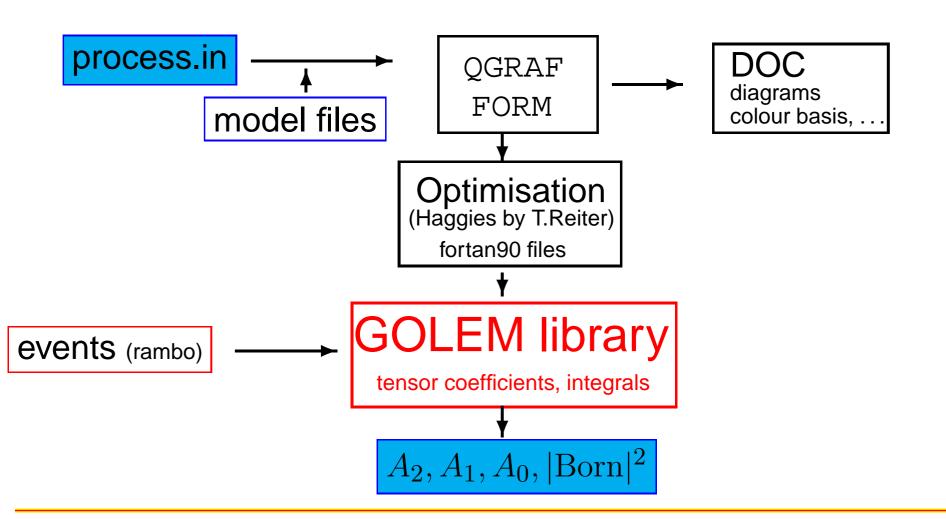
$$A_2, A_1, A_0, |Born|^2$$

standard interface

GOLEM

General One-Loop Evaluator of Matrix elements

[Binoth, Cullen, Guillet, GH, Karg, Kauer, Pilon, Reiter, Rodgers, Wigmore]



Golem strong points

- can deal with an arbitrary number of mass scales link LoopTools for finite massive boxes
- colour does not add additional complexity
- rational parts are "for free"
- efficient use of recursive structure caching system
- projection onto helicity states exploit spinor helicity techniques, gauge cancellations, smaller building blocks
- collaboration has several independent programs

 ⇒ strong checks

 alternatively based on FeynArts diagram generator ⇒ MSSM model file

 different levels of analytic simplifications
- can avoid spurious singularites from inverse Gram determinants

- $\det(G)$, $G_{ij} = 2 r_i \cdot r_j$, r_i external momenta can become very small in certain regions of phase space $\Rightarrow 1/\det(G)$ can lead to numerical instabilities
- reduction $N \ge 5 \to N = 4$: inverse Gram determinants completely absent

[Binoth, Guillet, GH, Pilon, Schubert '05, Denner/Dittmaier '05]

• reduction of $N \le 4$ tensor integrals: introduces spurious $1/\text{det}(G) \sim 1/B$

$$I_4^{n+2}(j) = \frac{1}{B} \left\{ b_j I_4^{n+2} + \frac{1}{2} \sum_k S_{jk}^{-1} I_3^{n,\{k\}} - \frac{1}{2} \sum_{k \in S \setminus \{j\}} b_k I_3^{n,\{k\}}(j) \right\}$$

$$I_4^{n+2}(j_1, j_2) \sim \frac{1}{B^2} , I_4^{n+2}(j_1, j_2, j_3) \sim \frac{1}{B^3} \dots$$

$$B = \det(G)/\det(S) (-1)^{N+1} ; S_{ij} = (r_i - r_j)^2 - m_i^2 - m_j^2$$

solution:

do not reduce if B is small

solution:

do not reduce if B is small

- calculate integral numerically
- special feature:
 - 1-dimensional integral representation for all massless basis integrals
 - ⇒ numerical integration fast

solution:

do not reduce if B is small

- calculate integral numerically
- special feature:
 - 1-dimensional integral representation for all massless basis integrals
 - ⇒ numerical integration fast
- under construction: same feature for integrals with internal masses

recent developments

- under construction:
 - allow for complex masses ⇒
 deal with unstable particles (SUSY!)
 - renormalisation

recent developments

- under construction:
 - allow for complex masses ⇒
 deal with unstable particles (SUSY!)
 - renormalisation
- done: implementation of all IR divergent integrals, scalar and tensor

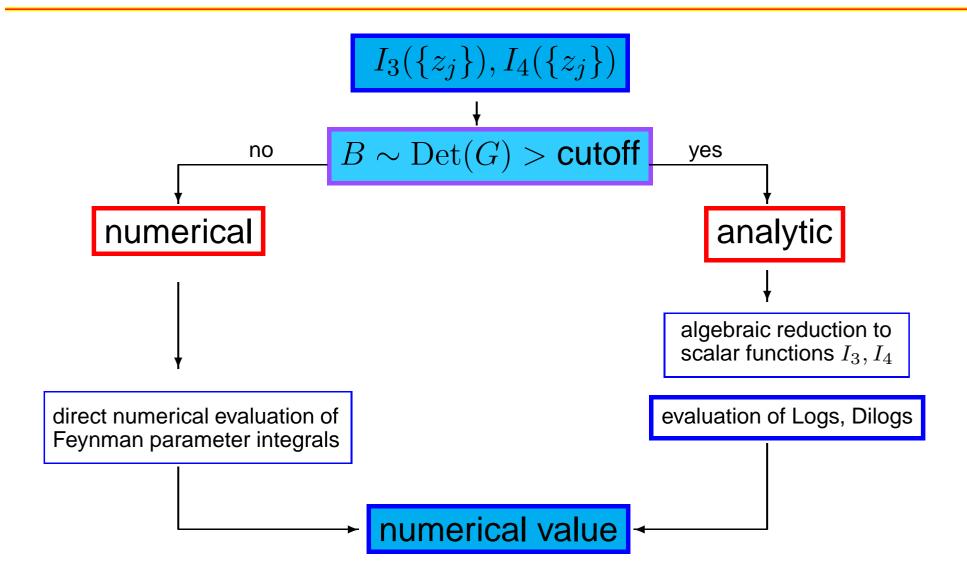
(massless propagators: publicly available; massive: will become public very soon)

note:

LoopTools: no dim.reg. for IR divergent integrals

QCDLoop: only scalar integrals

treatment of 3-and 4-point integrals



example six-photon amplitude

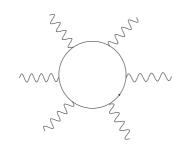
[Mahlon 94] (special helicity configurations only)

[Nagy, Soper 06; Gong, Nagy, Soper 08] (purely numerically)

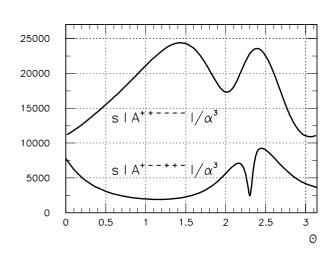
[Binoth, Gehrmann, GH, Mastrolia 07]

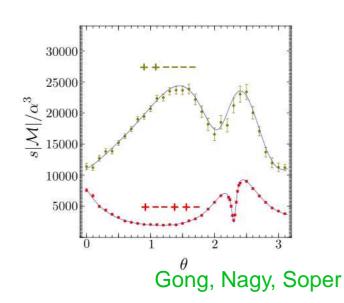
[Ossola, Pittau, Papadopoulos 07]

[Bernicot, Guillet 08]



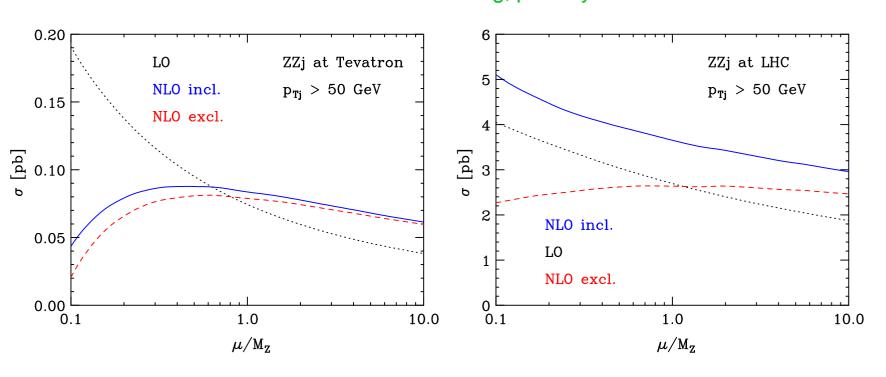
- rational parts shown to be zero [Binoth, Guillet, GH 06]
- used both unitarity cuts and Golem





ZZ + jet production: scale dependence

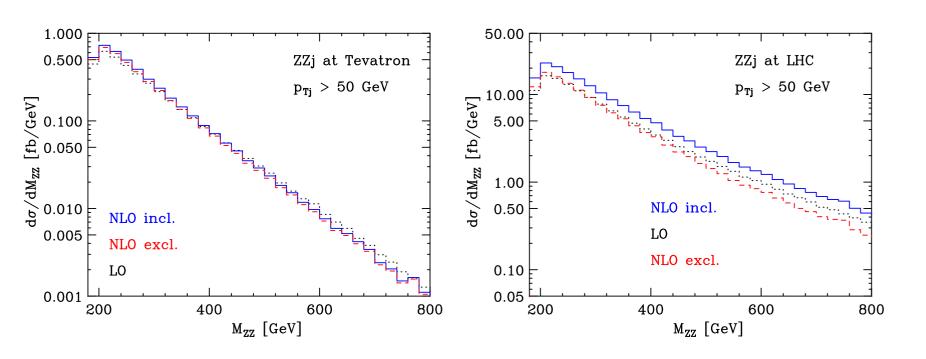
GOLEM collaboration +T. Gleisberg, plots by N. Kauer



NLO excl.: jet veto: no additional jets with $p_T > 50 \text{ GeV}$

ZZ + jet production

GOLEM collaboration +T. Gleisberg, plots by N. Kauer



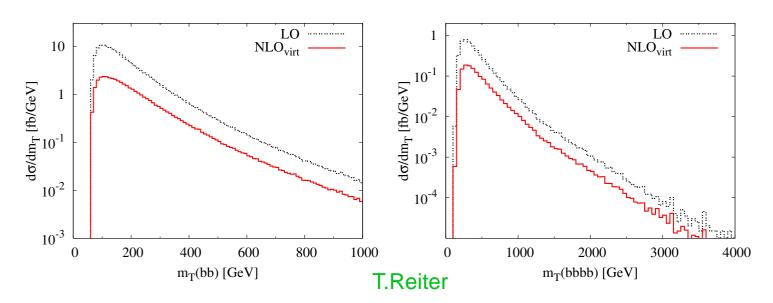
$pp \rightarrow b \bar{b} b \bar{b}$ one-loop amplitude

q ar q o b ar b b ar b completed [Ph.D. thesis of Thomas Reiter, Dec. '08]

gg
ightarrow bbbb virtual part completed [Binoth, Guillet, Reiter '09]

results for finite combination

 $\left|\mathcal{A}_{\mathrm{LO+NLOvirt}}
ight|^{2}$ — UV counterterms — IR subtraction terms



golem-2.0 demo (T. Reiter)

Summary

■ in order to understand "New Physics" at TeV colliders: ⇒ need accuracy beyond LO

Summary

- in order to understand "New Physics" at TeV colliders: ⇒ need accuracy beyond LO
- we are moving towards automated NLO tools GOLEM approach:
 - setup valid for massive and massless particles
 - keeps spin information
 - efficient extraction of IR singularities
 - numerically robust as inverse Gram determinants can be avoided
 - tensor integral library publicly available at http://lappweb.in2p3.fr/lapth/Golem/golem95.html
 - full package golem-2.0 available soon

backup slides

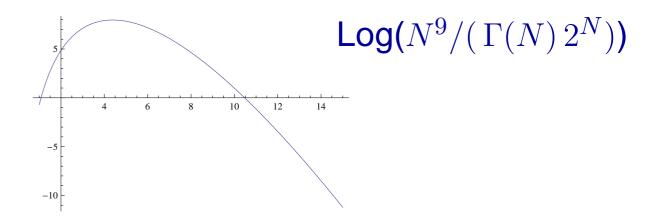
asymptotic complexity

unitarity based methods: complexity of colour ordered amplitudes:

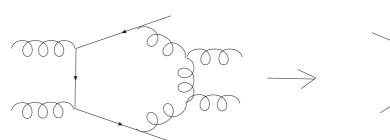
$$au_{\mathrm{tree}} imes au_{\mathrm{cuts}} \sim N^4 imes \left(egin{array}{c} N \\ 5 \end{array}
ight) \ \mbox{N large} \ \ N^9$$

Feynman diagram reduction:

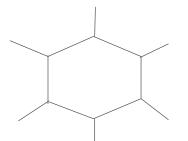
$$\tau_{\rm diagrams} \times \tau_{\rm form\,factors} \sim 2^N \times \Gamma(N)$$



reduction to basis integrals



non-trivial tensor structure



integrals with less legs

scalar 6-point function

$$= \sum_{i=1}^{6} b_i$$

 $=\sum_{i=1}^{6}b_{i}$... factorial growth in complexity!

reduction to set of basis integrals (4-, 3- and 2-point funcs.)

$$\mathcal{A} = C_4 + C_3 + C_2 + \mathcal{R}$$

form factor representation

$$I_{N}^{n,\mu_{1}\dots\mu_{r}}(S) = \sum_{l_{1}\dots l_{r}\in S} p_{l_{1}}^{\mu_{1}} \cdots p_{l_{r}}^{\mu_{r}} A_{l_{1}\dots,l_{r}}^{N,r}(S) + \sum_{l_{1}\dots l_{r-2}\in S} \left[g^{\cdot \cdot} p_{l_{1}} \cdots p_{l_{r-2}}\right]^{\{\mu_{1}\dots\mu_{r}\}} B_{l_{1}\dots,l_{r-2}}^{N,r}(S) + \sum_{l_{1}\dots l_{r-2}\in S} \left[g^{\cdot \cdot} g^{\cdot \cdot} p_{l_{1}} \cdots p_{l_{r-4}}\right]^{\{\mu_{1}\dots\mu_{r}\}} C_{l_{1}\dots,l_{r-4}}^{N,r}(S)$$

form factor representation

$$I_{N}^{n,\mu_{1}\dots\mu_{r}}(S) = \sum_{l_{1}\dots l_{r}\in S} p_{l_{1}}^{\mu_{1}} \cdots p_{l_{r}}^{\mu_{r}} A_{l_{1}\dots,l_{r}}^{N,r}(S)$$

$$+ \sum_{l_{1}\dots l_{r-2}\in S} \left[g^{\cdot \cdot} p_{l_{1}}^{\cdot} \cdots p_{l_{r-2}}^{\cdot}\right]^{\{\mu_{1}\dots\mu_{r}\}} B_{l_{1}\dots,l_{r-2}}^{N,r}(S)$$

$$+ \sum_{l_{1}\dots l_{r-2}\in S} \left[g^{\cdot \cdot} g^{\cdot \cdot} p_{l_{1}}^{\cdot} \cdots p_{l_{r-4}}^{\cdot}\right]^{\{\mu_{1}\dots\mu_{r}\}} C_{l_{1}\dots,l_{r-4}}^{N,r}(S)$$

important: more than two metric tensors $g^{\mu\nu}$ never occur!

for $N \geq 6$: simultaneous reduction of rank r and number of legs N

$$I_N^{n,\mu_1...\mu_r}(S) = -\sum_{j \in S} C_{j6}^{\mu_1} I_{N-1}^{n,\mu_2...\mu_r}(S \setminus \{j\})$$

$$S_{ij} = (r_i - r_j)^2 - m_i^2 - m_j^2$$

Gram determinants

to avoid spurious 1/det(G) terms: do not reduce

golem95:

define dimensionless quantity $\hat{B} = B \times \text{(largest entry of S)}$

if $\hat{B} < \hat{B}^{\mathrm{cut}}$: switch to direct numerical evaluation

(default: $\hat{B}^{\text{cut}} = 0.005$)

file demo_detg.f90 contains example where $\hat{B} \to 0$ in rank 3 box integral $I_4^{n+2}(1,2,2;S)$ with two massive legs

Real part for $B \rightarrow 0$

