Bottomonium Physics and a light CP-odd Higgs in the NMSSM¹

Florian Domingo (TTP - Karlsruhe)

In collaboration with U. Ellwanger, E. Fullana, C. Hugonie, M.A. Sanchis-Lozano

GDR Terascale - Heidelberg

October, 14th 2009

[[]F. Domingo, U. Ellwanger, E. Fullana, C. Hugonie and M. A. Sanchis-Lozano, JHEP 0901 (2009) 061 [arXiv:0810.4736 [hep-ph]].]

[[]F. Domingo, U. Ellwanger and M. A. Sanchis-Lozano, Phys. Rev. Lett. 103 (2009) 101802 arXiv:0907.0348 [hep-ph].]

A Light CP-odd Higgs in the NMSSM?

Next-to-Minimal SuperSymmetric Model (NMSSM)

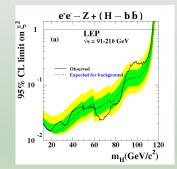
- MSSM + Gauge-Singlet superfield $\hat{S} = (S, \tilde{s})$
- [Fayet (1975)]
- Scale invariant Superpotential: $W = \frac{\kappa}{3}\hat{S}^3 + \lambda\hat{S}\hat{H}_u\hat{H}_d + \dots$
- Solution to the "µ-problem" of the MSSM

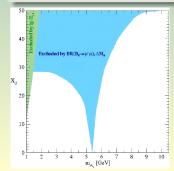
CP-odd Higgs sector in the NMSSM

$$\begin{pmatrix} \frac{2\lambda s(A_{\lambda}+\kappa s)}{\sin 2\beta} & \lambda v(A_{\lambda}-2\kappa s) \\ \lambda v(A_{\lambda}-2\kappa s) & -3\kappa sA_{\kappa}+\frac{\lambda v^{2}\sin 2\beta}{2s}(A_{\lambda}+4\kappa s) \end{pmatrix} \leftarrow \text{ Singlet}$$

- Light mass state: $A_1 = \cos \theta_A A_{MSSM} + \sin \theta_A A_S$
- Vanishing coupling to gauge bosons: Few Direct Constraints...
- ... Only indirect constraints via relations in the Higgs sector: Additional freedom due to the Singlet component!

CONCLUSION: Masses below the $B - \overline{B}$ threshold (10.5 GeV) can be achieved!

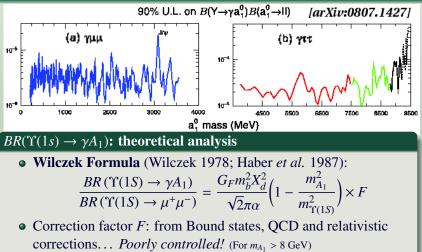

Constraints from CLEO


Mixing A_1/η_B

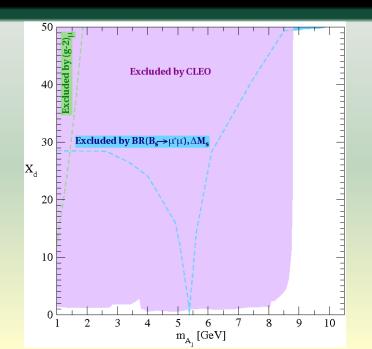
Advantages of the light A₁ scenario

 \rightarrow Allows for **unconventionnal decays** of the lightest CP-even Higgs: $h_1 \rightarrow A_1A_1 \rightarrow$ hard to see (since $A_1 \rightarrow b\bar{b}$ kinematically forbidden).

- Alleviates the Little Fine-Tuning Problem: m_{h1} ~ 90 GeV still consistent with LEP;
- Interpretation of the 2.3 σ excess in (LEP) $e^+e^- \rightarrow Z + (H \rightarrow b\bar{b})$ [Dermisek, Gunion 2006]: $m_{h_1} \sim 100$ GeV but reduced $BR(h_1 \rightarrow b\bar{b})$.
- \implies A Realistic (Favoured) NMSSM scenario.



Probing with the fermionic sector?


- → Scenario hard to observe at LHC: Alternative probe?
 - Coupling to b-quarks (leptons) $\propto \frac{m_b}{V} X_d$: $X_d \equiv \cos \theta_A \tan \beta;$
 - Low energy constraints (*B*-physics,(g 2)_μ) can be circumvented.
- ⇒ Coupling to *b*-quarks/leptons possibly enhanced.

Test in the bottomonium sector?

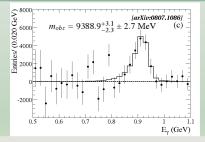
CLEO Bounds on Radiative <u>Y</u> Decays



- \Rightarrow Conservative approach: we keep *F* even if $F \rightarrow 0$ for $m_{A_1} \rightarrow 8.8$ GeV.
- No bound for $m_{A_1} \ge 8.8 \text{ GeV}...$ Mixing A_1/η_b significant?

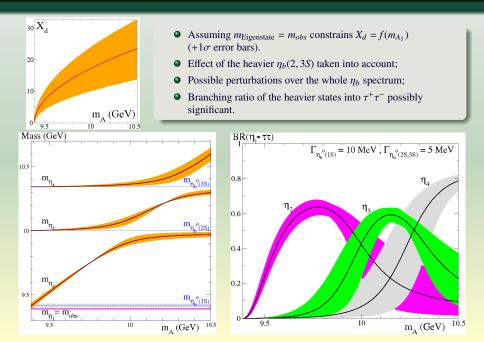
Mixing A_1/η_B

Mixing of A_1 with a η_b resonance


• Effective Mass Matrix ([Drees, Hikasa 1990]; [Fullana, Sanchis-Lozano 2007])

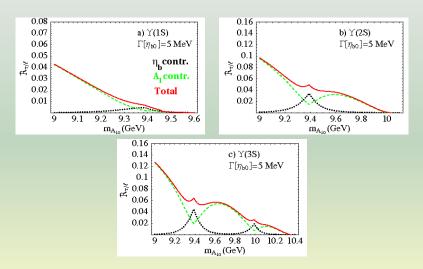
$$\mathcal{M}^{2} = \begin{pmatrix} m_{A_{10}}^{2} - im_{A_{10}}\Gamma_{A_{10}} & \delta m^{2} \\ \delta m^{2} & m_{\eta_{b0}}^{2} - im_{\eta_{b0}}\Gamma_{\eta_{b0}} \end{pmatrix} \xleftarrow{\leftarrow} A_{10} \quad , \quad \delta m^{2} = \left(\frac{3m_{\eta_{b}}^{3}}{8\pi v^{2}}\right)^{1/2} |R_{\eta_{b}}(0)| \times X_{d}$$

• Physical states:


$$\begin{cases} A_1 = \cos \alpha A_{10} + \sin \alpha \eta_{b0} \\ \eta_b = \cos \alpha \eta_{b0} - \sin \alpha A_{10} \end{cases}$$

Observed Mass State at BABAR

- Observed mass lower than what predicted in most QCD-based models for the hyperfine splitting (*[Recksiegel,Sumino* (2004)], *[Kniehl, Penin,Pineda,Smirnov,Steinhauser* (2004)], *[Penin* (2009)]) →*effect of a A*₁?
- **Predictions** of such models apply to the **diagonal entry** $m_{\eta_{b0}}$.
- **Observed mass = eigenvalue** of the 2×2 mass matrix:


$$m_{obs}^2 \simeq \frac{1}{2} \left[m_{A_{10}}^2 + m_{\eta_{b0}}^2 \pm \sqrt{(m_{A_{10}}^2 - m_{\eta_{b0}}^2)^2 + 4\,\delta m^4} \right] \implies m_{\eta_{b0}}^2 = m_{obs}^2 + \frac{\delta m^4}{m_{A_{10}}^2 - m_{obs}^2}$$

Lepton Universality: A possible Signal for a light A_1 ?

	$\mathcal{B}(e^+e^-)$	$\mathcal{B}(\mu^+\mu^-)$	$\mathcal{B}(au^+ au^-)$	$R_{\tau/e}(nS)$	$R_{\tau/\mu}(nS)$
$\Upsilon(1S)$	2.38 ± 0.11	2.48 ± 0.05	2.60 ± 0.10	0.09 ± 0.06	0.05 ± 0.04
$\Upsilon(2S)$	1.91 ± 0.16	1.93 ± 0.17	2.00 ± 0.21	0.05 ± 0.14	0.04 ± 0.06
$\Upsilon(3S)$	2.18 ± 0.21	2.18 ± 0.21	2.29 ± 0.30	0.05 ± 0.16	0.05 ± 0.16

- Inclusive leptonic decays of Υ : photon undetected \Rightarrow possible excess in $\Upsilon \rightarrow \tau \tau$ due to $\Upsilon \rightarrow \gamma A_1$;
- Experimental status \rightarrow a general trend: ~ 1 σ excess in $\Upsilon \rightarrow \tau \tau$?
- Correction factor F? Optimistic estimate $F \sim 1/2...$
- Expecting improved data from (Super-)B factories!

 $X_d = 12$, $m_{\eta_{b0}(1S,2S,3S)} = 9.389, 9.997, 10.32 \text{ GeV}$, $\Gamma_{\eta_{b0}(1S,2S,3S)} = 5 \text{ MeV}$

Conclusion

- Light CP-odd Higgs in the NMSSM: well-motivated scenario (2.3σ) excess at LEP! \Rightarrow Test it at *B*-factories.
- Strong constraints from CLEO in $\Upsilon \to \gamma A_1$: focus on the region where $m_{A_1} \sim m_{\eta_b}$.
- $m_{A_1} \sim m_{\eta_b}$: Mixing A_1/η_b relevant. \rightarrow Possible explanation for the "light" mass observed at BABAR? \Rightarrow Consequences over the whole η_b spectrum...
- For future searches of the light A_1 , the Breakdown of Lepton Universality in Inclusive $\Upsilon \rightarrow \tau \tau$ could be an interesting signal.