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Introduction

Most phenomenological studies of SUSY assume gaugino mass unification

This is the case in mSUGRA as well as in minimal gauge mediation (GMSB), 
although their squark and slepton spectra differ

Not the case in more general schemes though, and it is useful to study 
alternative theory-motivated relations:

• different signatures at colliders
• new possibilities for dark matter (very constrained in mSUGRA)
• fine-tuning of the MSSM can be improved (e.g. if gluino lighter)
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Example: gaugino masses from non-GUT-singlet F-term [e.g. Martin]

e.g. SU(5):

⇒ non-trivial gaugino mass relations:

Here we will combine GMSB with unification ⇒ departure from gaugino 
mass universality leading to non-standard SUSY spectra (e.g. light 
neutralino or gluino)

a, b = gauge indices

(24⊗ 24)s = 1⊕ 24⊕ 75⊕ 200

〈F ab〉
MP

λaλb + h.c.

3

SU(5) M1 : M2 : M3

1 1 : 1 : 1

24 −1
2 : −3

2 : 1

75 −5 : 3 : 1

200 10 : 2 : 1

TABLE I: Ratios of gaugino masses for F -terms in representations of SU(5), obtained in refs. [6],[8].

scale of each F -term VEV is an arbitrary input parameter, but the ratios of contributions
to M1, M2, and M3 are rational numbers fixed by the group theory. They were obtained in
refs. [6],[8], and are listed in Table I. Only the SU(5) singlet representation predicts universal
gaugino masses. Depending on the model, one might suppose that one of the other three
representations dominates the contribution to gaugino masses, or that two or more of the
representations contribute in comparable amounts. The resulting phenomenology has been
studied in many papers; for examples, see [12]-[31].

The purpose of this paper is to extend these results to the case of unified groups SO(10)
and E6, and all of their proper subgroups that embed SU(3)C × SU(2)L × U(1)Y in a way
consistent with the Standard Model chiral fermion content. In each case, the F -terms can be
classified by their transformation properties under both the full symmetry group and under
subgroups that can be used to distinguish different Standard Model singlets. Then the
object is to find the ratio of gaugino masses that can be produced by each distinct F -term
representation. It is important to note that the subgroups are used only for distinguishing
representations; they need not be the unbroken symmetry group for an effective theory at
any scale. It is also possible that the full gauge symmetry is only a subgroup of the unified
groups SU(5), SO(10) and E6 in which the Standard Model gauge group can be embedded.

The method used to obtain the results below is as follows. For any given unified symmetry
group, one starts with a field transforming as the symmetric product of the adjoint repre-
sentation with itself, Φab = 〈F ab〉/MPlanck. Under a gauge transformation corresponding to
a generator labeled by c, the VEV transforms by an amount proportional to:

δcΦ
ab = (tc)aa′

Φa′b + (tc)bb′Φab′ , (1.3)

where the adjoint representation generators are (ta)bc = −ifabc, and fabc are the structure
constants of the Lie algebra. Since Φab is required to be a Standard Model singlet, one can
require that δcΦab = 0 for each of the 12 generators c = 1, 2, . . . , 12 of SU(3)C × SU(2)L ×
U(1)Y . This reduces Φab from 300 independent entries to only 4 for SU(5), from 1035 entries
to 9 for SO(10), and from 3081 entries to 32 for E6. This identifies the subspace of VEVs
that are Standard Model singlets. Now, to decompose Φab into irreducible representations
of the full symmetry group, one can use the quadratic Casimir operator:

C(ab),(a′b′)Φa′b′ ≡
[

(tctc)aa′

δbb′ + δaa′

(tctc)bb′ + 2(tc)aa′

(tc)bb′
]

Φa′b′ . (1.4)



Quick review of gauge mediation

Supersymmetry breaking is parametrized by a spurion field X with

X couples to messenger fields in vector-like representations of the SM 
gauge group [often complete GUT representations, e.g.          of SU(5),     
in order to preserve gauge coupling unification]:

This gives a supersymmetric mass M as well as a supersymmetry breaking 
mass term                   for the scalar messengers:

                                                       ⇒  scalar masses 

This supersymmetry-breaking mass splitting gives rise to soft terms in the 
observable sector via gauge loops  

〈X〉 = M + Fθ2

Fφφ̃ + h.c.
(

φ∗ φ̃
) (

M2 −F ∗

−F M2

) (
φ
φ̃∗

)
M2 ± |F |

Wmess = λXXΦΦ̃

(5, 5̄)



Gaugino masses arise at one loop:

Ri = messenger representation, Ta(Ri) = Dynkin index, Nm = number of messengers

Scalar masses arise at two loops:

      = second Casimir coefficient for the superfield χ

Note:

B̃, W̃ , g̃

〈FS〉

〈S〉
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Ma(µ) =
αa(µ)

4π
Nm

∑

i

2Ta(Ri)
F

M

m2
χ = 2Nm

∑

a

Ca
χ

(αa

4π

)2 ∑

i

2Ta(Ri)
∣∣∣∣
F

M

∣∣∣∣
2

Ca
χ

Ma ∼ mχ ∼MGM ≡ α

4π

F

M
=⇒ F

M
∼ (10− 100) TeV



The A-terms and B-term are zero at the messenger scale, and are 
generated by the renormalization group equations

Main advantage of GMSB:  since gauge interactions are flavour blind, the  
induced soft terms do not violate flavour

                       ⇒ solves the SUSY flavour problem

Dark matter:  the LSP is the gravitino (unless M > αMP /4π):

(even for messengers as heavy as 10¹³ GeV, one still has m3/2 < 1 GeV)

If m3/2 >> 100 keV, the gravitino behaves as cold dark matter (CDM).         
Its abundance is proportional to the reheating temperature after inflation; 
it can constitute the dark matter, but contrary to the lightest neutralino, 
ΩDM depends on parameters that cannot be measured at colliders

m3/2 =
F√
3MP

" MGM ≡ α

4π

F

M



Combining gauge mediation with unification

Let us take seriously the fact that gauge couplings unify at

Since           are in a vector-like representation of GGUT, they can couple to  
the adjoint Higgs field     involved in gauge symmetry breaking:

Writing

and assuming                           , one obtains a GUT-induced mass splitting 
inside the messenger multiplets

                            ⇒ non-minimal gauge mediation

Not legitimate to omit          : generally X neutral under all symmetries  
but an R-symmetry that is broken by the messenger couplings [cf. ISS, 
O’Raighfeartaigh...], hence       neutral too 

⇒            always allowed for some n≤3 [assume n=1 in the following]

2× 1016 GeV

(Φ, Φ̃)
Σ

R⊗ R̄ = 1 ⊕ Adj. ⊕ · · ·

Wmess = λXXΦΦ̃ + λΣΣΦΦ̃

λX〈X〉 # λΣ〈Σ〉

ΦΦ̃

Σ ΦΦ̃

ΣnΦΦ̃



A first example: G = SU(5), Σ = 24

      breaks SU(5) down to the SM gauge group:

Assuming                          , this gives a mass splitting inside messenger 
multiplets:

for messengers in          and             representations, and more generally 

〈Σ〉 = V Diag (2, 2, 2,−3,−3) V ≈ 1016 GeV

Φ(5̄) =
{
φ3̄,1,1/3 , φ1,2,−1/2

}
, M = {2λΣv , −3λΣv} ,

Φ(10) =
{
φ3,2,1/6 , φ3̄,1,−2/3 , φ1,1,1

}
, M = {λΣv , −4λΣv , 6λΣv} ,

Mi = 6λΣV Yi

Wmess = λXXΦΦ̃ + λΣΣΦΦ̃

〈Σ〉

(5, 5̄) (10,10)

〈X〉 = X0 + FXθ2

λXX0 ! λΣ〈Σ〉



Gaugino masses:

⇒ bino mass:

Since Y is the generator of a simple gauge group, this gives:

 (up to corrections due to supergravity and to              )

The messengers are heavy ⇒ supergravity contributions to soft terms 
cannot be completely neglected

We therefore have

implying that the LSP is a mostly bino light neutralino

(RGE effects give                        at low energy)

m3/2

MGM
∼ λΣV

(α/4π)λXMP
∼ 10−2 for λΣ ∼

α

4π
λX

M1 ∼ m3/2 " (M2, µ) ∼MGM

M1 ∼ 0.5m3/2

M1 =
α1

4π

∑

i

2
3
5

Y 2
i

λXFX

6λΣV Yi
∝

∑

i

Yi

Ma(µ) =
αa(µ)

4π

∑

i

2Ta(Ri)
λXFX

Mi
Mi = 6λΣV Yi

M1 = 0

〈X〉 #= 0



Superpartner spectrum: while M1 = 0 is independent of the messenger 
representation, this is not the case for the ratios of the other superpartner 
masses, e.g. 

→ very different from minimal gauge mediation with SU(5)-symmetric 
messenger masses, in which the ratio of gaugino masses are independent  
of the representation (namely                                             , like in 
mSUGRA), as well as the ratios of the different scalar masses

(5, 5) :
∣∣∣∣
M3

M2

∣∣∣∣ =
3α3

2α2
(≈ 4 at µ = 1TeV)

(10, 10) :
∣∣∣∣
M3

M2

∣∣∣∣ =
7α3

12α2
(≈ 1.5 at µ = 1TeV)

M1 : M2 : M3 = α1 : α2 : α3



Metastability Mediation The rise of a light neutralino

Spectrum from hybrid mediation

Emilian Dudas, Stephane Lavignac, J.P. A light neutralino in hybrid models of supersymmetry breaking

Model 6

MGM = 160GeV, M1 = m3/2 = 85GeV,

N5 = 3, N10 = 1, tanβ = 15, µ > 0

(courtesy of
Jeanne Parmentier)
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Metastability Mediation The rise of a light neutralino

Spectrum from hybrid mediation

Emilian Dudas, Stephane Lavignac, J.P. A light neutralino in hybrid models of supersymmetry breaking

Allanach et al., hep-ph/0202233

SPS 1a Model 6

m0 = 100GeV, M1/2 = 250GeV,

A0 = −100 GeV, tanβ = 10, µ > 0
MGM = 160GeV, M1 = m3/2 = 85GeV,

N5 = 3, N10 = 1, tanβ = 15, µ > 0

(typical mSUGRA spectrum)



model 1 2 3 3 bis 4 5 6

N(5,5̄) 1 6 0 0 0 1 3

N(10,10) 0 0 1 1 4 1 1

MGM 1000 200 300 300 110 220 160
M1 50 50 50 85 80 85 85

tanβ 30 24 15 15 9 15 15

sign(µ) + + + + + + +

h 114.7 115.0 115.2 115.2 116.5 114.6 114.8
A 779.2 645.4 892.2 892.4 1015 735.8 662.7
H0 779.2 645.5 892.4 892.6 1015 735.9 662.8

H± 783.3 650.3 895.7 895.9 1018 740.1 667.5

χ̃±
1 259.4 305.0 560.2 560.3 676.7 408.0 223.9

χ̃±
2 747.8 636.8 693.9 694.0 970.4 590.4 597.5

χ̃0
1 24.5 23.5 23.2 42.9 38.1 43.0 42.9

χ̃0
2 259.4 305.0 560.1 560.3 677.1 408.0 223.9

χ̃0
3 743.3 629.8 596.9 597.1 691.0 570.8 589.2

χ̃0
4 745.7 634.7 693.8 693.9 970.4 590.4 596.3

|Z11| 0.9982 0.9975 0.9971 0.9971 0.9978 0.9968 0.9969
|Z13| 0.0599 0.0708 0.0750 0.0755 0.0648 0.0792 0.0772

g̃ 1064 1207 1097 1097 1527 1028 1063

t̃1 984.6 927.3 861.7 861.6 1080 795.7 809.5
t̃2 1156 1074 1240 1240 1468 1058 1002

ũ1, c̃1 1195 1087 1135 1135 1361 1006 987.9
ũ2, c̃2 1240 1115 1327 1327 1555 1118 1043

b̃1 1128 1040 1123 1123 1356 995.4 966.2

b̃2 1169 1079 1224 1224 1451 1038 987.1
d̃1, s̃1 1184 1085 1134 1134 1360 1005 987.1

d̃2, s̃2 1243 1117 1329 1329 1557 1121 1046

τ̃1 242.2 99.0 86.3 89.3 87.0 96.7 95.2

τ̃2 420.3 289.4 696.2 696.3 753.1 498.6 349.8
ẽ1, µ̃1 294.4 150.6 131.5 133.6 105.4 123.6 117.4

ẽ2, µ̃2 413.4 275.1 699.1 699.2 754.1 500.1 348.5
ν̃τ 396.6 260.5 691.4 691.5 749.0 491.4 337.6

ν̃e, ν̃µ 405.8 263.6 694.8 694.9 750.1 493.9 339.5

Ωχ̃0
1
h2 6.40 0.428 0.279 0.122 0.124 0.118 0.116

Table 1: Supersymmetric mass spectra obtained by running the soft terms from

Mmess = 1013 GeV down to low energy with the code SUSPECT (all masses in GeV).
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Spectrum depends on

MGM ≡ α3(Mmess)
4π

λXFX

λΣV
,

Mmess, M1, N5, N10, tanβ

Mmess = 1013 GeV



Phenomenology of the light neutralino scenario

Main distinctive features:

A neutralino lighter than 50 GeV does not contradict the LEP bound, since 
the latter assumes gaugino mass unification

The late decays of the gravitino into         will spoil the successful 
predictions of Big Bang nucleosynthesis, unless its abundance is suppressed 
by a low reheating temperature after inflation (                                    ). 
Such a constraints strongly disfavours baryogenesis at very high 
temperatures, like (non-resonant) thermal leptogenesis

A neutralino lighter than 50 GeV will generally overclose the Universe, 
unless the CP-odd Higgs boson A or sleptons are very light.  A light            
is easily obtained with messengers in             , but the relic density tends  
to exceed the WMAP value (                                        ) if 

• light neutralino LSP
• non-universal gaugino masses
• light singlet sleptons, especially for               

χ̃0
1 γ

TR ! (105 − 106) GeV

τ̃1

ΩDMh2 = 0.1099± 0.0062 Mχ̃0
1

! 40 GeV

(10,10)

(10,10)



Still a very light neutralino (few GeV) can be made consistent with WMAP 
if R-parity violation is assumed

Since                                , the SUSY flavour problem is alleviated, but not 
eliminated in the lepton sector (strong constraints from e.g. μ→eγ)

Hadron collider signatures of a light neutralino: not very different from the 
usual neutralino of e.g. SPS1a (97 GeV) – larger phase space, in general 
slightly increased cross sections (e.g. for                                   ), but no 
distinctive signature [Dreiner et al., arXiv:0905.2051 – also thanks to D. Zerwas 
and L. Duflot for a useful discussion]

m3/2/MGM ∼ 10−2

pp̄/pp→ χ̃0
1χ̃

0
1 + jet



Another SU(5) example: Σ = 75

The 75 contains a SM singlet and can be used to break SU(5)

It can couple to             messengers and split the masses of their 
components in the following way:

yielding the following gaugino mass ratios:

(10,10)

(
M1

α1
,
M2

α2
,
M3

α3

)
=

(
9
5
,−3,−1

)

4 Φ(3̄,1,−2/3)Φ̄(3,1,2/3) − 4 Φ(3,2,1/6)Φ̄(3̄,2,−1/6) + 12 Φ(1,1,1)Φ̄(1,1,−1)



G = SO(10), messengers in 

Both a 45 and a 54 can be used to break SO(10) [often in combination]. 
The case Σ = 54 is the simplest, since

Since                  under SU(5), this is equivalent to a pair of          of SU(5) 
coupled to a 24 and gives the same SUSY spectrum 

The 45 has two SM singlet vevs, in the B-L and T3R directions respectively. 
The first one is often used to break SO(10) and for the doublet-triplet 
splitting (missing vev mechanism). Both can be used for obtaining realistic 
fermion masses.

Viable spectra are difficult to obtain from 45B-L (tachyons)

10

10⊗ 10 = 1s ⊕ 45a ⊕ 54s

〈54〉 = V

(
2 I6×6 06×4

04×6 −3 I4×4

)

10 = 5⊕ 5̄ (5, 5̄)



Messenger superpotential:

Two 10’s are necessary, since  

The vev                       does not contribute to the masses of the colour 
triplets/anti-triplets in 10 and 10’, thus suppressing the wino mass with 
respect to the bino and gluino masses (in the limit                          ):

⇒ wino NLSP (gravitino LSP)

Since                 , potentially serious problems with BBN 

Wmess = λXX10 10′ + λ4510 45 10′

45 = (10⊗ 10)a

〈45〉 = VR T3R

M2 ∝ FX

X0

(
λXX0

λ54VR

)2

M1, M3 ∝ FX

X0

λXX0 ! λ45VR

χ̃0
1 → γ G̃



MGM = 775GeV, VR = 6X0, tanβ = 20, µ > 0

10 - 45 (T3R) - 10’

(courtesy of Jeanne Parm
entier)



G = SO(10), messengers in            , Σ = 45

Most interesting case: 

The mass of each component of the 16 is fixed by its B-L charge. As a 
result, a cancellation occurs in the formula for the gluino mass:

A nonzero gluino mass arises from SUGRA (and possibly from            )

⇒ gluino NLSP (gravitino LSP)

Since the gluino decays gravitationally (              ), it is very long lived

                                                                               (                 )

(16,16)

〈45〉 = VB−L TB−L

Ma(µ) =
αa(µ)

4π

∑

i

2Ta(Ri)
λXFX

Mi
Mi = (B − L)i λ45VB−L

M3 =
α3

4π

λXFX

λ45VB−L

(
2× 1

1/3
+

1
−1/3

+
1

−1/3

)
= 0

X0 != 0

g̃ → g G̃

1/τg̃ ≈
m5

g̃

48π(m3/2MP )2
=⇒ τg̃ ∼ 107 s for mg̃ ∼ 250 GeV

M3 = m3/2



MGM = 150GeV, M3 = m3/2 = 60GeV, tanβ = 20, µ > 0

16* - 45 (B-L) - 16

(courtesy of Jeanne Parm
entier)



BBN constraints

A long-lived relic decaying hadronically can spoil BBN

Figure 38: Upper bounds on mXYX at 95% C.L. for Bh = 1 and mX = 100 GeV. The
horizontal axis is the lifetime of X. Here, the lines with “D/H (low)” and “D/H (high)”
are for the constraints (2.1) and (2.2), respectively. The straight dashed line is the upper
bound by the deviation from the Planck distribution of the CMB.

where x̄th
i and x̄obs

i are the center values of xi determined from the theoretical calculation
and observations, while σth

i and σobs
i are their errors, respectively. In our analysis, (σth

i )2

is calculated by the Monte Carlo analysis. Notice that the χ2 depends on the model
parameters through xth

i and σth
i . For xi = r3,2 (n6Li/nH) and log10[(n7Li/nH)] we only use

the upper bound. In this case case, we define χ2
i as

χ2
i =



















(x̄th
i − x̄obs

i )2

(σth
i )2 + (σobs

i )2
: x̄th

i < x̄obs
i

0 : otherwise

for xi = r3,2, (n6Li/nH) and log10[(n7Li/nH)]. (9.7)

Notice that, contrary to the case of SBBN, we do not use the lower bound on (n7Li/nH).
This is because we do not include the non-thermal 7Li production processes through α-α
collisions. All the observational constraints on primordial abundances of the light elements
have been summarized in Section 2.

In Figs. 38, 39 and 40, we plot the results of the χ2 analysis at 95 % C.L. (i.e., χ2
i = 3.84

for xi = (nD/nH) and Y ; χ2
i = 2.71 for xi = r3,2, (n6Li/nH) and log10[(n7Li/nH)]) on the

τX vs. EvisYX plane for mX = 100 GeV, 1 TeV, and 10 TeV, respectively. Here, the
hadronic branching ratio is unity, and X decays into two hadronic jets with the energy
2Ejet = mX . As mentioned in Section 2, the constraint with use of the highest observed
value of D/H (Eq. (2.2)) is shown together with that obtained by taking our standard
value (Eq. (2.1)). One can see that the constraint from D/H changes by a factor 2− 3 by

60

Kawasaki, Kohri, Moroi,
astro-ph/0408426

YXmX ! 10−14 GeV

for τX ∼ 107 s



For                        , the condition                                is satisfied even 
without a strong enhancement of the annihilation cross section due to 
bound state effects 
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Figure 1: Gluino abundance per co-moving volume as a function of mass. Three curves are
shown. In the first (solid), the annihilation cross section is assumed to be simply given by
the perturbative cross section of Eqn. 3. The other curves correspond to a cross section that
saturates s-wave (dashed) and s-wave plus p-wave unitarity (dot-dashed).

the relative velocity of the two hadrons. For T ∼ ΛQCD, we find

Erad ∼

(

ΛQCD

mg̃

)3/2

ΛQCD. (6)

Thus, radiation from the gluinos is small, in fact, much less than the mass gap to the
lightest possible state that could be radiated (the pion). This agrees with the intuition that
heavy objects do not radiate. We should note that we could have applied a similar Larmor
argument prior to the QCD phase transition. In this case, the relevant force is not due to
a QCD string, but rather to a QCD Coulomb potential. In this case, the radiation will be
further suppressed by perturbative powers of αs, again arguing against a large rate for the
formation of bound states. Light QCD degrees of freedom do not carry the momentum or
angular momentum of the system. Radiation from the cloud therefore is not able to reduce
the relative angular momentum of the heavy gluinos, so they remain incapable of direct
annihilation.

4

Arvanitaki et al., hep-ph/0504210

mg̃ ∼ 250 GeV Yg̃ mg̃ ! 10−14 GeV



Collider signatures?

Being very long-lived (even worse than split SUSY), the gluino will not 
decay but hadronize and form R-hadrons

If the lightest R-hadron is neutral, it will escape the detector leaving only    
a small fraction of the event energy

The corresponding signature is monojet + missing energy (from gluino   
pair production in association with a high pT jet). This allows to set a   
lower bound from Tevatron Run II data:

LHC should probe masses up to 1.1 TeV [Hewett et al., hep-ph/0408248, 
Kilian et al., hep-ph/0408088]

Any hope from associated neutralino-gluino production?

Input from experts very much welcome!

mg̃ > 210 GeV



Conclusions

In gauge-mediated scenarios with an underlying GUT structure, the 
messengers fields can in principle couple to Higgs fields with GUT-scale 
vevs (no obvious symmetry to forbid such couplings)

This leads to a hybrid gauge-gravity mediation of supersymmetry breaking 
in which supergravity contributions are subdominant, thus alleviating the 
supersymmetric flavour problem

The resulting spectrum is a non-minimal GMSB spectrum which is mainly 
determined by the choice of the unified gauge group and of the messenger 
representations

Some of these spectra exhibit striking features such as a light neutralino   
or a gluino NLSP with a gravitino LSP


