

- Introduction to the IXPE mission
- Scientific case
- > The detector
 - > How it works
 - > Assembly and test

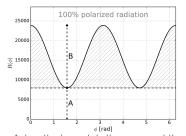
 - > Performance
 - Construction status
 - > Construction status

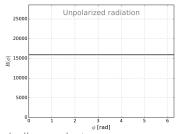
▷ The Imaging X-ray Polarimetry Explorer (IXPE)

- ▷ Imaging and polarimetry in the 2–8 keV band
- ➤ The observation technique and the mission were made possible by the introduction of a polarization-sensitive detector developed at INFN-Pisa
- - > Launch in early 2021
 - > 2-year mission (baseline), +1 year extension
 - ightarrow Equatorial circular orbit at \geq 540 km altitude
- > International partnership:

- > X-ray Mirror by NASA/MSFC
- X-ray Instruments by INFN, IAPS/INAF and ASI
- Spacecraft, payload structure and integration by Ball Aerospace

Carmelo Sgrò (INFN) May 6, 2019 Page 2/36


A new exploration window



- Spectroscopy, imaging and timing are routine techniques in X-ray astronomy
- > Polarimetry adds two parameters to the phase space:
 - > (linear) polarization degree
 - > polarization angle (phase)
- Significant X-ray linear polarization expected in most classes of non-thermal X-ray sources:
 - - > Synchrotron radiation and Inverse Compton
 - > Acceleration phenomena (supernova remnants, pulsar wind nebulae, jets)
 - - > Photon scattering in aspherical geometries (accretion disks, X-ray reflection nebulae)
 - ▶ Photon propagation in magnetized plasmas (accreting pulsars, magnetars)
 - > Fundamental physics
 - Quantum electrodynamics (photon propagation in strong magnetic fields)

Carmelo Sgrò (INFN) May 6, 2019 Page 3/

Measuring X-ray linear polarization

ightarrow Azimuthal modulation around the polarization angle ϕ_0 :

$$R(\phi) = A + B\cos^2(\phi - \phi_0)$$

▶ Modulation factor: response to 100% polarized radiation:

$$\mu = \frac{R_{\text{max}} - R_{\text{min}}}{R_{\text{max}} + R_{\text{min}}} = \frac{B}{B + 2A}$$

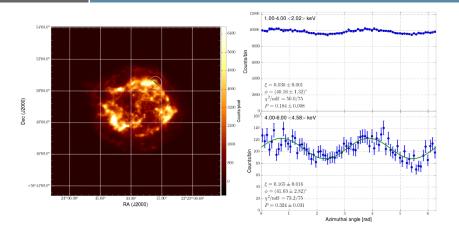
- \triangleright Polarization degree is $p = m/\mu$ (angle is obviously ϕ_0)
- Notice that p is always positive!
 - > You will get a number even in case of non-polarized beam
 - Need to understand the sensitivity

- Minimum Detectable Polarization (MDP): (at 99% CL) is the degree of polarization corresponding to the amplitude of modulation that has a 1% probability of being detected by chance
 - See e.g. M. Weisskopf 2010, https://arxiv.org/pdf/1006.3711.pdf

$$\textit{MDP} = \frac{4.29}{\mu \textit{S}} \sqrt{\frac{\textit{B} + \textit{S}}{\textit{T}}}$$

- S: source rate B: background rate T: observation time
- ▷ In case of negligible background:

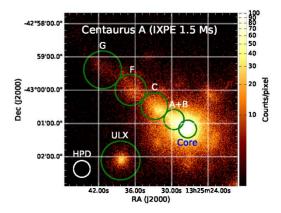
$$MDP = \frac{4.29}{\mu\sqrt{ST}} = \frac{4.29}{\mu\sqrt{N}}$$


with N: total number of collected events

- ▷ Inverting the formula we can estimate how many event are needed:
 - \triangleright Assuming $\mu = 0.5$ and a MDP = 1%, $N \approx 7.36 \times 10^5$
- Polarimetry requires a lot of events (much more than spectroscopy of imaging)
 - \triangleright Large optics, long observation time, large μ

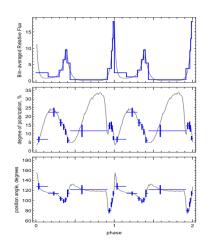
Map magnetic field of bright extended source

Example: Cassiopeia A (Cas A) Supernova Remnant (SNR)

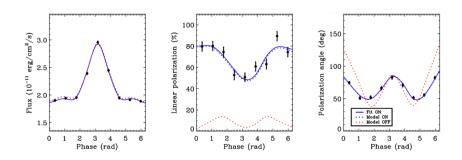


- ▷ Probe sites of cosmic-ray acceleration

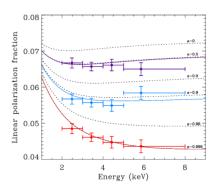
 - > Non-thermal emission dominates 4-6 keV

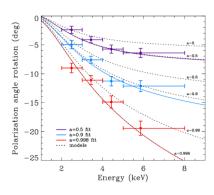

Carmelo Sgrò (INFN) May 6, 2019 Page

Polarization properties of bright AGN jets


Region	MPD ₉₉
Core Jet Knot A+B Knot C Knot F Knot G ULX	<7.0% 10.9% 17.6% 16.5% 23.5% 30.9% 14.8%

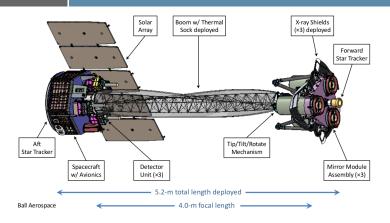
Example: Crab Pulsar


- ▷ Isolated pulsar in pulsar wind nebula (PWNe)
- > 34-ms period
- ≥ 140 ks of simulated observation
- The geometry of the system determines the polarization pattern
 - ▷ Adding 2 more panels to the phasogram


Example: 1RXS J170849.0-400910

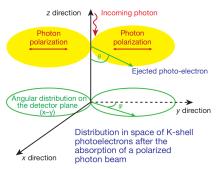
- \triangleright Magnetar is a neutron star with magnetic field up to 10^{15} Gauss
- Non-linear QED predicts birefringence in magnetized vacuum
 Impacts polarization and position angle as functions of pulse phase
- > 250 ks simulated IXPE observation to exclude QED-off

Example: GRX1915+105



Page 10/36

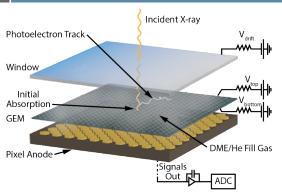
- - > Scattering polarizes the thermal disk
 - > Polarization rotation is greatest for emission from inner disk
 - ▷ Inner disk is hotter, producing higher energy X-rays
- > 200 ks simulated IXPE observation


Overview of the observatory

- Three identical telescopes (redundancy, mitigation of systematic effects, larger acceptance)
- ▷ Conventional Wolter Type I grazing-incidence optics
- > New imaging and polarization-sensitive detector at the focus
- Extensible boom to save space during launch

armelo Sgrò (INFN) May 6, 2019 Page 11/36

Detection principle: the photoelectric effect

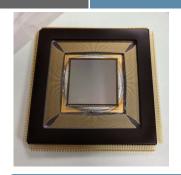


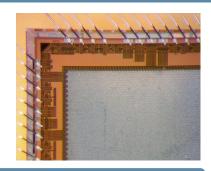
- ▷ Dominant interaction process at low energy (< 10 keV)</p>
- Distribution of the direction of emission of a K-shell photoelectron 100% modulated for linearly polarized radiation:

$$\frac{d\sigma_C^k}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \frac{\sin^2\theta\cos^2\phi}{(1+\beta\cos\theta)^4}$$

- > Need to reconstruct the direction of emission of the photoelectron
 - $\,ert$ The challenge is to be able to measure the initial part of the photoenectron track
- ⊳ In principle this is the perfect polarization analyzer, but...
 - \triangleright Granularity significantly smaller than the typical range (e.g. few μ m in a solid for a 5 keV photoelectron)
 - Diffusion and scattering can smear out the emission direction information

The Gas Pixel Detector (GPD)




- - □ cm of DME at 800 mbar

- $\,
 ightarrow\,$ Designed for energy range $\sim 2-8~\text{keV}$

Carmelo Sgrò (INFN) May 6, 2019 Page 13/36

The core of the detector: the ASIC

Properties

Pixels organization

Pixel pitch

Active area

Shaping time

Pixel Noise Trigger

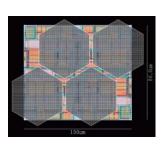
Output

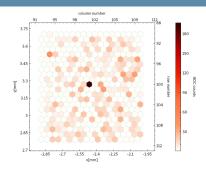
Technology

300×352 pixels in hexagonal pattern

 $50 \mu m$

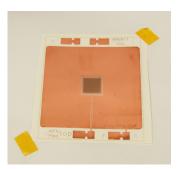
 $15 \times 15 \text{ mm}^2$


 $4 \mu s$

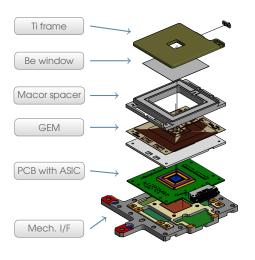

 ~ 50 electrons ENC

internal, with definition of a region of interest analog (external ADC required)

CMOS 0.18 μ m

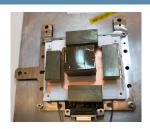


- $\,\rhd\,$ Pixels are grouped in 2×2 minicluster to contribute to a single trigger with dedicated shaping amplifier
 - Single trigger threshold for all the ASIC
 - ▷ Pixels can be individually masked to the trigger
- Autonomous definition of a square region-of-interest (ROI) around the triggering miniclusters
 - ightarrow With a margin of \sim 10 pixels
- > Serial readout of the pixels inside the ROI
 - ▷ A clock is sent to the ASIC
 - > At each cycle the next pixel is connected to the analog output buffer
 - > An external ADC read the charge of the pixel


carmelo Sgrò (INFN) May 6, 2019 Page 15/36

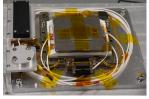
- ▷ Produced by RIKEN and SciEnergy in Japan
- \triangleright Hexagonal hole pattern, with 50 μ m pitch, 50 μ m thick
- ▷ Active size matching ASIC + large guard ring for uniform drift field
- ▷ Liquid crystal polymer (LCP) insulator (laser etching technique)
- ightarrow Mask alignment at a few μm level

Carmelo Sgrò (INFN) May 6, 2019 Page 16/36

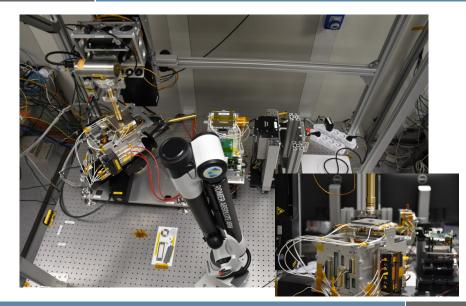

- Sealed detector
 - No gas system needed
- Ceramic parts for gas cell and GEM support
 - Low outgassing, for space application and gas purity
- ▷ A Ti frame acts as "drift" electrode
- \triangleright X-ray window in Be, 50 μ m thick
- ASIC in a standard package mounted on a custom PCB
 - > Commercial ceramic package
 - ight
 angle Space compatible PCB
- A Ti frame for mechanical and thermal interface, and for detector aligment

Carmelo Sgrò (INFN) May 6, 2019

Gluing everything together

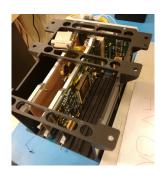


- > Part procurement from different vendors
- ▷ Assembly at INFN-Pisa
- - \triangleright Severe requirement on leak rate: $< 1 \cdot 10^{-9}$ mbar I/s
- Bake-out and filling at Oxford Instrument (OIT) in Finland
 - → A 2 weeks bake-out at 100 °C
 - $\,
 ightarrow\,$ Filling with DME at 0.8 bar is done in the same facility
 - Finally GPD is permanently sealed by crimping the filling tube

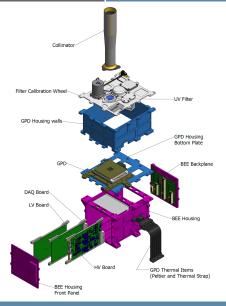


- > A few EM produced in the last year
- ▷ Production well underway
- ightarrow We plan to build \sim 10 FM

Carmelo Sgrò (INFN) May 6, 2019 Page 19/36


Testing the GPD with x-ray beams

The Back-End Electronics (BEE)


- → Four PCBs in a dedicated housing:
- ▷ Two custom digital interfaces for communication:

 - Science Data Interface (SDI)
- ▷ Event timing via 1-PPS (from spacecraft GPS) and a 1 MHz clock
- Dedicated mechanical frames provide stiffness and thermal control

Carmelo Sgrò (INFN) May 6, 2019 Page 21/

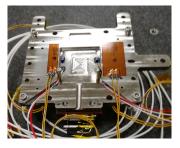
The Detector Unit (DU)

Exploded view

- The DU is the basic unit of the IXPE instrument
- DU sits on the top deck of the spacecraft
 - Mechanical and thermal interface at the bottom
- Back-end electronics mounted belod the GPD on a dedicated housing
- Dedicated GPD thermal control via TEC (Peltier) and thermal strap
- Filter and Calibration Wheel on top of the detector for in flight calibration and GPD monitoring
 - Both polarized and non polarized sources
- Stray light collimator to block diffuse light
 - ▷ Carbon fiber and Mo (and Au) coating

The Detector Unit (DU)

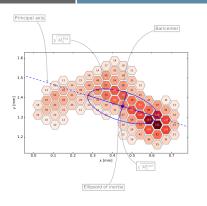
First assembly of the Engineering Mode

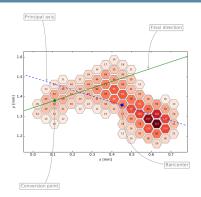


Carmelo Sgrò (INFN) May 6, 2019 P

- > Assembly of first DU just started
- Some components already available for the entire instrument
- ▷ Integration procedure developed with the EM
- FM integration & test is a quite long process:

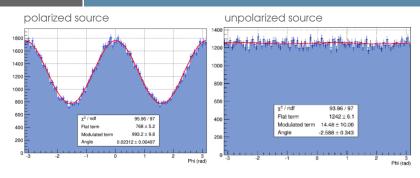
 - ▷ Electrical/functional test
 - ▷ Environmental test (Vibe, TVAC)

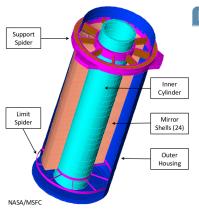




Carmelo Sgrò (INFN) May 6, 2019 Page 24/36

Event reconstruction


Real 5.9 keV photoelectron track


Page 25/36

- Event by event reconstruction
- ▷ Iterative moment analysis to reconstruct relevant information
 - > Interaction point: imaging
 - ▷ Photoelectron direction: polarimetry
 - ▷ Trigger output: timing
 - ▷ Pixel charge content: spectroscopy

- - ightharpoonup Stability over \sim 3 years demonstrated with a sealed detector
- $ho \sim$ 90 μ m spatial resolution at 5.9 keV, measured (\ll track length)
 - \triangleright Good match for a \sim 25 arcsec-type X-ray optics with \sim 4 m focal length
- - Enough for spectrally-resolved polarimetry (in a few energy bins) when statistics allow it
- \triangleright μ s-type time resolution
 - More than adequate for the shortest time scales of interest

Carmelo Sgrò (INFN) May 6, 2019

MMA Properties

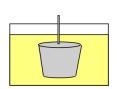
Number of MMAs Number of shells per MMA Focal length Shell length Inner-outer shell diameter Inner-outer shell thickness Shell material

Mass per MMA Effective area per MMA

Angular resolution Field of view (detector-limited) 3 24 4000 mm 600 mm 162-272 mm 0.18-0.26 mm Nickel-Cobalt alloy 30 kg (CBE) 210 cm² (2.3 keV) >230 cm² (3-6 keV) ≤ 25 arcsec HPD 12.9 arcmin

Mandrel fabrication

- 1. Machine mandrel from aluminum bar
- 2. Coat mandrel with electroless nickel (Ni-P)
- 3. Diamond turn mandrel to sub-micron figure accuracy
- 4. Polish mandrel to 0.3-0.4 nm RMS
- 5. Conduct metrology on the mandrel



Mirror-shell forming

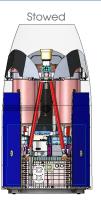
6. Passivate mandrel surface to reduce shell adhesion

7. Electroform Ni–Co shell

8. Separate shell from mandrel in chilled water

Ni-Co electroformed mirror shells

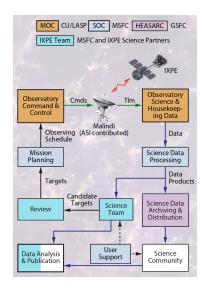
- A new NASA mission dedicated to X-ray polarimetry
 - > After 40 years from the last polarimeter in orbit
- The IXPE satellite will explore the polarization of celestial sources in the 2-8 keV energy band

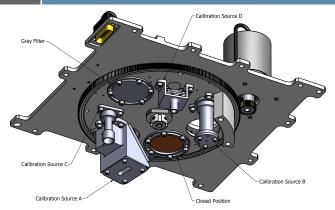

 - Will allow spatially-resolved polarimetry
- - > Three GPD FM already assembled and tested
- DU production started
 - DU EM already assembled currently under electrical and functional test
 - → First DU FM integration in progress
 - > Proto-flight model philosophy: no test-dedicated qualification article foreseen
- - > An EM already produced and under test
- ▷ Next milestone is the Mission CDR next June
- On our way for launch in 2021

Carmelo Sgrò (INFN) May 6, 2019 Page 29/36

SPARE SLIDES

Carmelo Sgrò (INFN) May 6, 2019 Pa

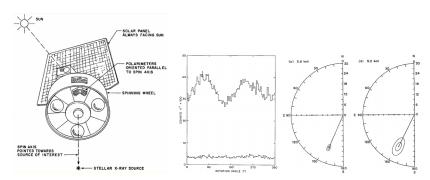



- Optical boom to be deployed after launch to extend the optics at the right position
- ▷ Satellite 3-axis stabilized, GPS positioning and star-tracker for pointing
- > S-band communication
- ▷ Launch in stowed configuration, compatible with Pegasus XL fairing

Carmelo Sgrò (INFN) May 6, 2019 Page 31/3

- Point-and-stare observations of known target
- ▷ List of 49 targets defined for the first year of the mission
 - Evaluate observation plan
 - Evaluate pointing constraints
- ⊳ S-band downlink via ground station (Malindi)
- Observation plan for the first year almost readv
- > Open to community requests in the second year
- > Data are immediately public (after downlink and validation)

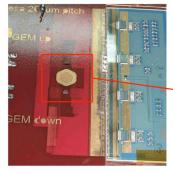
Filter and Calibration Wheel (FCW)



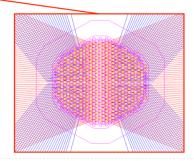
- → 7 positions: open, closed, gray and 4 calibration sources:
 - Cal A: polarized at 5.9 keV and 2.9 keV
 - ▷ Cal B: collimated, non-polarized at 5.9 keV
 - Cal C: full-illumination at 5.9 keV
 - Cal D: full-illumination at 1.7 keV
- ightarrow 55 Fe sources can be replaced from a dedicated aperture on the top side

Page 33/36

▷ Position measurement with potentiometer and Hall sensors

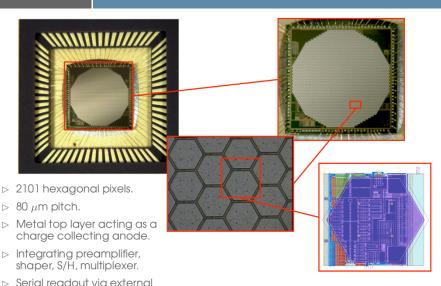

Carmelo Sgrò (INFN) May 6, 2019

- ▷ Instrument rotate around pointing axis (spin stabilization of the satellite)
- \triangleright Two narrow energy band 2.4–2.8 keV & 4.8–5.6 keV, but $\mu=0.93$
- \triangleright Measurements of the Crab Nebula: $P=19.22\pm0.92\%$ \triangleright M. C. Weisskopf, ApJL 220 (1978) L117-121


Carmelo Sgrò (INFN) May 6, 2019 Page 34/36

circa 2000

- Main technical challenge: fan-out from the readout anode to the front-end electronics.
- Yet it worked as a proof of principle.


- ightarrow Maximum number of channels: ~ 1000 at $\sim 200~\mu{\rm m}$ pitch.
- → High input capacitance to the preamplifier (high noise).

ADC.

The turning point: a dedicated readout ASIC

Bellazzini et al., NIM A 535, 477-484 (2004)

Carmelo Sgrò (INFN) May 6, 2019